46 research outputs found

    Faster SVM training via conjugate SMO

    Full text link
    We propose an improved version of the SMO algorithm for training classification and regression SVMs, based on a Conjugate Descent procedure. This new approach only involves a modest increase on the com- putational cost of each iteration but, in turn, usually results in a substantial decrease in the number of iterations required to converge to a given precision. Besides, we prove convergence of the iterates of this new Conjugate SMO as well as a linear rate when the kernel matrix is positive definite. We have im- plemented Conjugate SMO within the LIBSVM library and show experimentally that it is faster for many hyper-parameter configurations, being often a better option than second order SMO when performing a grid-search for SVM tuning

    Acceleration Methods for Classic Convex Optimization Algorithms

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 12-09-2017Most Machine Learning models are defined in terms of a convex optimization problem. Thus, developing algorithms to quickly solve such problems its of great interest to the field. We focus in this thesis on two of the most widely used models, the Lasso and Support Vector Machines. The former belongs to the family of regularization methods, and it was introduced in 1996 to perform both variable selection and regression at the same time. This is accomplished by adding a `1-regularization term to the least squares model, achieving interpretability and also a good generalization error. Support Vector Machines were originally formulated to solve a classification problem by finding the maximum-margin hyperplane, that is, the hyperplane which separates two sets of points and its at equal distance from both of them. SVMs were later extended to handle non-separable classes and non-linear classification problems, applying the kernel-trick. A first contribution of this work is to carefully analyze all the existing algorithms to solve both problems, describing not only the theory behind them but also pointing out possible advantages and disadvantages of each one. Although the Lasso and SVMs solve very different problems, we show in this thesis that they are both equivalent. Following a recent result by Jaggi, given an instance of one model we can construct an instance of the other having the same solution, and vice versa. This equivalence allows us to translate theoretical and practical results, such as algorithms, from one field to the other, that have been otherwise being developed independently. We will give in this thesis not only the theoretical result but also a practical application, that consists on solving the Lasso problem using the SMO algorithm, the state-of-the-art solver for non-linear SVMs. We also perform experiments comparing SMO to GLMNet, one of the most popular solvers for the Lasso. The results obtained show that SMO is competitive with GLMNet, and sometimes even faster. Furthermore, motivated by a recent trend where classical optimization methods are being re-discovered in improved forms and successfully applied to many problems, we have also analyzed two classical momentum-based methods: the Heavy Ball algorithm, introduced by Polyak in 1963 and Nesterov’s Accelerated Gradient, discovered by Nesterov in 1983. In this thesis we develop practical versions of Conjugate Gradient, which is essentially equivalent to the Heavy Ball method, and Nesterov’s Acceleration for the SMO algorithm. Experiments comparing the convergence of all the methods are also carried out. The results show that the proposed algorithms can achieve a faster convergence both in terms of iterations and execution time.La mayoría de modelos de Aprendizaje Automático se definen en términos de un problema de optimización convexo. Por tanto, desarrollar algoritmos para resolver rápidamente dichos problemas es de gran interés para este campo. En esta tesis nos centramos en dos de los modelos más usados, Lasso y Support Vector Machines. El primero pertenece a la familia de métodos de regularización, y fue introducido en 1996 para realizar selección de características y regresión al mismo tiempo. Esto se consigue añadiendo una penalización `1al modelo de mínimos cuadrados, obteniendo interpretabilidad y un buen error de generalización. Las Máquinas de Vectores de Soporte fueron formuladas originalmente para resolver un problema de clasificación buscando el hiper-plano de máximo margen, es decir, el hiper-plano que separa los dos conjuntos de puntos y está a la misma distancia de ambos. Las SVMs se han extendido posteriormente para manejar clases no separables y problemas de clasificación no lineales, mediante el uso de núcleos. Una primera contribución de este trabajo es analizar cuidadosamente los algoritmos existentes para resolver ambos problemas, describiendo no solo la teoría detrás de los mismos sino también mencionando las posibles ventajas y desventajas de cada uno. A pesar de que el Lasso y las SVMs resuelven problemas muy diferentes, en esta tesis demostramos que ambos son equivalentes. Continuando con un resultado reciente de Jaggi, dada una instancia de uno de los modelos podemos construir una instancia del otro que tiene la misma solución, y viceversa. Esta equivalencia nos permite trasladar resultados teóricos y prácticos, como por ejemplo algoritmos, de un campo al otro, que se han desarrollado de forma independiente. En esta tesis mostraremos no solo la equivalencia teórica sino también una aplicación práctica, que consiste en resolver el problema Lasso usando el algoritmo SMO, que es el estado del arte para la resolución de SVM no lineales. También realizamos experimentos comparando SMO a GLMNet, uno de los algoritmos más populares para resolver el Lasso. Los resultados obtenidos muestran que SMO es competitivo con GLMNet, y en ocasiones incluso más rápido. Además, motivado por una tendencia reciente donde métodos clásicos de optimización se están re- descubriendo y aplicando satisfactoriamente en muchos problemas, también hemos analizado dos métodos clásicos basados en “momento”: el algoritmo Heavy Ball, creado por Polyak en 1963 y el Gradiente Acelerado de Nesterov, descubierto por Nesterov en 1983. En esta tesis desarrollamos versiones prácticas de Gradiente Conjugado, que es equivalente a Heavy Ball, y Aceleración de Nesterov para el algortimo SMO. Además, también se realizan experimentos comparando todos los métodos. Los resultados muestran que los algoritmos propuestos a menudo convergen más rápido, tanto en términos de iteraciones como de tiempo de ejecución

    A generic coordinate descent solver for nonsmooth convex optimization

    Get PDF
    International audienceWe present a generic coordinate descent solver for the minimization of a nonsmooth convex objective with structure. The method can deal in particular with problems with linear constraints. The implementation makes use of efficient residual updates and automatically determines which dual variables should be duplicated. A list of basic functional atoms is pre-compiled for efficiency and a modelling language in Python allows the user to combine them at run time. So, the algorithm can be used to solve a large variety of problems including Lasso, sparse multinomial logistic regression, linear and quadratic programs

    Accelerating greedy coordinate descent methods

    Get PDF
    We introduce and study two algorithms to accelerate greedy coordinate descent in theory and in practice: Accelerated Semi-Greedy Coordinate Descent (ASCD) and Accelerated Greedy Co-ordinate Descent (AGCD). On the theory side, our main results are for ASCD: We show that ASCD achieves 0(l/k[superscript 2]) convergence, and it also achieves accelerated linear convergence for strongly convex functions. On the empirical side, while both AGCD and ASCD outperform Accelerated Randomized Coordinate Descent on most instances in our numerical experiments, we note that AGCD significantly outperforms the other two methods in our experiments, in spite of a lack of theoretical guarantees for this method. To complement this empirical finding for AGCD, we present an explanation why standard proof techniques for acceleration cannot work for AGCD, and we introduce a technical condition under which AGCD is guaranteed to have accelerated convergence. Finally, we confirm that this technical condition holds in our numerical experiments
    corecore