5 research outputs found

    Battery-sourced switched-inductor multiple-output CMOS power-supply systems

    Get PDF
    Wireless microsystems add intelligence to larger systems by sensing, processing and transmitting information which can ultimately save energy and resources. Each function has their own power profile and supply level to maximize performance and save energy since they are powered by a small battery. Also, due to its small size, the battery has limited energy and therefore the power-supply system cannot consume much power. Switched-inductor converters are efficient across wide operating conditions but one fundamental challenge is integration because miniaturized dc-dc converters cannot afford to accommodate more than one off-chip power inductor. The objective of this research is to explore, develop, analyze, prototype, test, and evaluate how one switched inductor can derive power from a small battery to supply, regulate, and respond to several independent outputs reliably and accurately. Managing and stabilizing the feedback loops that supply several outputs at different voltages under diverse and dynamic loading conditions with one CMOS chip and one inductor is also challenging. Plus, since a single inductor cannot supply all outputs at once, steady-state ripples and load dumps produce cross-regulation effects that are difficult to manage and suppress. Additionally, as the battery depletes the power-supply system must be able to regulate both buck and boost voltages. The presented system can efficiently generate buck and boost voltages with the fastest response time while having a low silicon area consumption per output in a low-cost technology which can reduce the overall size and cost of the system.Ph.D

    Mixed-source charger-supply CMOS IC

    Get PDF
    The proposed research objective is to develop, test, and evaluate a mixer and charger-supply CMOS IC that derives and mixes energy and power from mixed sources to accurately supply a miniaturized system. Since the energy-dense source stores more energy than the power-dense source while the latter supplies more power than the former, the proposed research aims to develop an IC that automatically selects how much and from which source to draw power to maximize lifetime per unit volume. Today, the state of the art lacks the intelligence and capability to select the most appropriate source from which to extract power to supply the time-varying needs of a small system. As such, the underlying objective and benefit of this research is to reduce the size of a complete electronic system so that wireless sensors and biomedical implants, for example, as a whole, perform well, operate for extended periods, and integrate into tiny spaces.Ph.D

    Efficient power management circuits for energy harvesting applications

    Get PDF
    Low power IoT devices are growing in numbers and by 2020 there will be more than 25 Billion of those in areas such as wearables, smart homes, remote surveillance, transportation and industrial systems, including many others. Many IoT electronics either will operate from stand-alone energy supply (e.g., battery) or be self-powered by harvesting from ambient energy sources or have both options. Harvesting sustainable energy from ambient environment plays significant role in extending the operation lifetime of these devices and hence, lower the maintenance cost of the system, which in turn help make them integral to simpler systems. Both for battery-powered and harvesting capable systems, efficient power delivery unit remains an essential component for maximizing energy efficiency. The goal of this research is to investigate the challenges of energy delivery for low power electronics considering both energy harvesting as well as battery-powered conditions and to address those challenges. Different challenges of energy harvesting from low voltage energy sources based on the limitations of the sources, the type of the regulator used and the pattern of the load demands have been investigated. Different aspects of the each challenges are further investigated to seek optimized solutions for both load specific and generalized applications. A voltage boost mechanism is chosen as the primary mechanism to investigate and to addressing those challenges, befitting the need for low power applications which often rely on battery voltage or on low voltage energy harvesting sources. Additionally, a multiple output buck regulator is also discussed. The challenges analyzed include very low voltage start up issues for an inductive boost regulator, cascading of boost regulator stages, and reduction of the number of external component through reusing those. Design techniques for very high conversion ratio, bias current reduction with autonomous bias gating, battery-less cold start, component and power stage multiplexing for reconfigurable and multi-domain regulators are presented. Measurement results from several silicon prototypes are also presented.Ph.D

    Nested hysteretic current-mode single-inductor multiple-output (SIMO) boosting buck converter

    No full text

    Neue Methodik zur Optimierung der Energieeffizienz des Künstlichen Akkommodationssystems

    Get PDF
    Das Künstliche Akkommodationssystem ist ein neuer Ansatz zur Wiederherstellung der Akkommodationsfähigkeit des menschlichen Auges. Das hochintegrierte, gekapselte Mikrosystem soll autonom die Funktion der natürlichen Linse übernehmen. Das Ziel der Arbeit besteht darin, eine neue Methodik zur Optimierung der Energieeffizienz des Künstlichen Akkommodationssystems zu entwickeln. Dazu werden Konzepte zur Optimierung der Spannungswandlung sowie Konzepte zur Reduktion der Leistungsaufnahme und zur Verlängerung der autonomen Betriebsdauer des Implantats vorgestellt
    corecore