3,992 research outputs found

    Nested quantum search and NP-complete problems

    Full text link
    A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order d\sqrt{d}, where dd is the dimension of the search space, whereas any classical algorithm necessarily scales as O(d)O(d). It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree search problem by nesting this standard search algorithm. The number of iterations required to find the solution of an average instance of a constraint satisfaction problem scales as dα\sqrt{d^\alpha}, with a constant α<1\alpha<1 depending on the nesting depth and the problem considered. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring problem, this constant α\alpha is estimated to be around 0.62 for average instances of maximum difficulty. This corresponds to a square-root speedup over a classical nested search algorithm, of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure

    Adiabatic quantum search algorithm for structured problems

    Full text link
    The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speed-up over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size.Comment: 7 pages, 0 figur

    Generalized Quantum Search with Parallelism

    Get PDF
    We generalize Grover's unstructured quantum search algorithm to enable it to use an arbitrary starting superposition and an arbitrary unitary matrix simultaneously. We derive an exact formula for the probability of the generalized Grover's algorithm succeeding after n iterations. We show that the fully generalized formula reduces to the special cases considered by previous authors. We then use the generalized formula to determine the optimal strategy for using the unstructured quantum search algorithm. On average the optimal strategy is about 12% better than the naive use of Grover's algorithm. The speedup obtained is not dramatic but it illustrates that a hybrid use of quantum computing and classical computing techniques can yield a performance that is better than either alone. We extend the analysis to the case of a society of k quantum searches acting in parallel. We derive an analytic formula that connects the degree of parallelism with the optimal strategy for k-parallel quantum search. We then derive the formula for the expected speed of k-parallel quantum search.Comment: 14 pages, 2 figure

    Solving Set Cover with Pairs Problem using Quantum Annealing

    Get PDF
    Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with
    • …
    corecore