1,020 research outputs found

    Nerve complexes of circular arcs

    Full text link
    We show that the nerve complex of n arcs in the circle is homotopy equivalent to either a point, an odd-dimensional sphere, or a wedge sum of spheres of the same even dimension. Moreover this homotopy type can be computed in time O(n log n). For the particular case of the nerve complex of evenly-spaced arcs of the same length, we determine the dihedral group action on homology, and we relate the complex to a cyclic polytope with n vertices. We give three applications of our knowledge of the homotopy types of nerve complexes of circular arcs. First, we use the connection to cyclic polytopes to give a novel topological proof of a known upper bound on the distance between successive roots of a homogeneous trigonometric polynomial. Second, we show that the Lovasz bound on the chromatic number of a circular complete graph is either sharp or off by one. Third, we show that the Vietoris--Rips simplicial complex of n points in the circle is homotopy equivalent to either a point, an odd-dimensional sphere, or a wedge sum of spheres of the same even dimension, and furthermore this homotopy type can be computed in time O(n log n)

    The Vietoris-Rips complexes of a circle

    Full text link
    Given a metric space X and a distance threshold r>0, the Vietoris-Rips simplicial complex has as its simplices the finite subsets of X of diameter less than r. A theorem of Jean-Claude Hausmann states that if X is a Riemannian manifold and r is sufficiently small, then the Vietoris-Rips complex is homotopy equivalent to the original manifold. Little is known about the behavior of Vietoris-Rips complexes for larger values of r, even though these complexes arise naturally in applications using persistent homology. We show that as r increases, the Vietoris-Rips complex of the circle obtains the homotopy types of the circle, the 3-sphere, the 5-sphere, the 7-sphere, ..., until finally it is contractible. As our main tool we introduce a directed graph invariant, the winding fraction, which in some sense is dual to the circular chromatic number. Using the winding fraction we classify the homotopy types of the Vietoris-Rips complex of an arbitrary (possibly infinite) subset of the circle, and we study the expected homotopy type of the Vietoris-Rips complex of a uniformly random sample from the circle. Moreover, we show that as the distance parameter increases, the ambient Cech complex of the circle also obtains the homotopy types of the circle, the 3-sphere, the 5-sphere, the 7-sphere, ..., until finally it is contractible.Comment: Final versio

    Triangulated surfaces in triangulated categories

    Full text link
    For a triangulated category A with a 2-periodic dg-enhancement and a triangulated oriented marked surface S we introduce a dg-category F(S,A) parametrizing systems of exact triangles in A labelled by triangles of S. Our main result is that F(S,A) is independent on the choice of a triangulation of S up to essentially unique Morita equivalence. In particular, it admits a canonical action of the mapping class group. The proof is based on general properties of cyclic 2-Segal spaces. In the simplest case, where A is the category of 2-periodic complexes of vector spaces, F(S,A) turns out to be a purely topological model for the Fukaya category of the surface S. Therefore, our construction can be seen as implementing a 2-dimensional instance of Kontsevich's program on localizing the Fukaya category along a singular Lagrangian spine.Comment: 55 pages, v2: references added and typos corrected, v3: expanded version, comments welcom

    Triangulated surfaces in triangulated categories

    No full text

    Finite random coverings of one-complexes and the Euler characteristic

    Full text link
    This article presents an algebraic topology perspective on the problem of finding a complete coverage probability of a one dimensional domain XX by a random covering, and develops techniques applicable to the problem beyond the one dimensional case. In particular we obtain a general formula for the chance that a collection of finitely many compact connected random sets placed on XX has a union equal to XX. The result is derived under certain topological assumptions on the shape of the covering sets (the covering ought to be {\em good}, which holds if the diameter of the covering elements does not exceed a certain size), but no a priori requirements on their distribution. An upper bound for the coverage probability is also obtained as a consequence of the concentration inequality. The techniques rely on a formulation of the coverage criteria in terms of the Euler characteristic of the nerve complex associated to the random covering.Comment: 25 pages,2 figures; final published versio
    • …
    corecore