4,128 research outputs found

    On the Collaboration of an Automatic Path-Planner and a Human User for Path-Finding in Virtual Industrial Scenes

    Get PDF
    This paper describes a global interactive framework enabling an automatic path-planner and a user to collaborate for finding a path in cluttered virtual environments. First, a collaborative architecture including the user and the planner is described. Then, for real time purpose, a motion planner divided into different steps is presented. First, a preliminary workspace discretization is done without time limitations at the beginning of the simulation. Then, using these pre-computed data, a second algorithm finds a collision free path in real time. Once the path is found, an haptic artificial guidance on the path is provided to the user. The user can then influence the planner by not following the path and automatically order a new path research. The performances are measured on tests based on assembly simulation in CAD scenes

    Querying RDF Data Using A Multigraph-based Approach

    Get PDF
    International audienceRDF is a standard for the conceptual description of knowledge , and SPARQL is the query language conceived to query RDF data. The RDF data is cherished and exploited by various domains such as life sciences, Semantic Web, social network, etc. Further, its integration at Web-scale compels RDF management engines to deal with complex queries in terms of both size and structure. In this paper, we propose AMbER (Attributed Multigraph Based Engine for RDF querying), a novel RDF query engine specifically designed to optimize the computation of complex queries. AMbER leverages subgraph matching techniques and extends them to tackle the SPARQL query problem. First of all RDF data is represented as a multigraph, and then novel indexing structures are established to efficiently access the information from the multigraph. Finally a SPARQL query is represented as a multigraph, and the SPARQL querying problem is reduced to the subgraph homomorphism problem. AMbER exploits structural properties of the query multigraph as well as the proposed indexes, in order to tackle the problem of subgraph homomorphism. The performance of AMbER, in comparison with state-of-the-art systems, has been extensively evaluated over several RDF benchmarks. The advantages of employing AMbER for complex SPARQL queries have been experimentally validated

    Neighbourhood Broadcasting in Hypercubes

    Get PDF
    International audienceIn the broadcasting problem, one node needs to broadcast a message to all other nodes in a network. If nodes can only communicate with one neighbor at a time, broadcasting takes at least log2N\lceil \log_2 N \rceil rounds in a network of NN nodes. In the neighborhood broadcasting problem, the node that is broadcasting needs to inform only its neighbors. In a binary hypercube with NN nodes, each node has log2N\log_2 N neighbors, so neighborhood broadcasting takes at least log2log2(N+1)\lceil \log_2 \log_2 (N+1) \rceil rounds. In this paper, we present asymptotically optimal neighborhood broadcast protocols for binary hypercubes

    Communications in Vehicular Ad Hoc Networks

    Get PDF

    Agent Street: An Environment for Exploring Agent-Based Models in Second Life

    Get PDF
    Urban models can be seen on a continuum between iconic and symbolic. Generally speaking, iconic models are physical versions of the real world at some scaled down representation, while symbolic models represent the system in terms of the way they function replacing the physical or material system by some logical and/or mathematical formulae. Traditionally iconic and symbolic models were distinct classes of model but due to the rise of digital computing the distinction between the two is becoming blurred, with symbolic models being embedded into iconic models. However, such models tend to be single user. This paper demonstrates how 3D symbolic models in the form of agent-based simulations can be embedded into iconic models using the multi-user virtual world of Second Life. Furthermore, the paper demonstrates Second Life\'s potential for social science simulation. To demonstrate this, we first introduce Second Life and provide two exemplar models; Conway\'s Game of Life, and Schelling\'s Segregation Model which highlight how symbolic models can be viewed in an iconic environment. We then present a simple pedestrian evacuation model which merges the iconic and symbolic together and extends the model to directly incorporate avatars and agents in the same environment illustrating how \'real\' participants can influence simulation outcomes. Such examples demonstrate the potential for creating highly visual, immersive, interactive agent-based models for social scientists in multi-user real time virtual worlds. The paper concludes with some final comments on problems with representing models in current virtual worlds and future avenues of research.Agent-Based Modelling, Pedestrian Evacuation, Segregation, Virtual Worlds, Second Life

    Innovative retrofit to improve energy efficiency in public buildings

    Get PDF
    corecore