77 research outputs found

    Meta-Heuristics for Dynamic Lot Sizing: a review and comparison of solution approaches

    Get PDF
    Proofs from complexity theory as well as computational experiments indicate that most lot sizing problems are hard to solve. Because these problems are so difficult, various solution techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu search, genetic algorithms and simulated annealing, have become popular and efficient tools for solving hard combinational optimization problems. We review the various meta-heuristics that have been specifically developed to solve lot sizing problems, discussing their main components such as representation, evaluation neighborhood definition and genetic operators. Further, we briefly review other solution approaches, such as dynamic programming, cutting planes, Dantzig-Wolfe decomposition, Lagrange relaxation and dedicated heuristics. This allows us to compare these techniques. Understanding their respective advantages and disadvantages gives insight into how we can integrate elements from several solution approaches into more powerful hybrid algorithms. Finally, we discuss general guidelines for computational experiments and illustrate these with several examples

    A heuristic approach for big bucket multi-level production planning problems

    Get PDF
    Multi-level production planning problems in which multiple items compete for the same resources frequently occur in practice, yet remain daunting in their difficulty to solve. In this paper, we propose a heuristic framework that can generate high quality feasible solutions quickly for various kinds of lot-sizing problems. In addition, unlike many other heuristics, it generates high quality lower bounds using strong formulations, and its simple scheme allows it to be easily implemented in the Xpress-Mosel modeling language. Extensive computational results from widely used test sets that include a variety of problems demonstrate the efficiency of the heuristic, particularly for challenging problems

    An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging

    Get PDF
    This paper proposes two new mixed integer programming models for capacitated multi-level lot-sizing problems with backlogging, whose linear programming relaxations provide good lower bounds on the optimal solution value. We show that both of these strong formulations yield the same lower bounds. In addition to these theoretical results, we propose a new, effective optimization framework that achieves high quality solutions in reasonable computational time. Computational results show that the proposed optimization framework is superior to other well-known approaches on several important performance dimensions

    Mixed integer programming in production planning with backlogging and setup carryover : modeling and algorithms

    Get PDF
    This paper proposes a mixed integer programming formulation for modeling the capacitated multi-level lot sizing problem with both backlogging and setup carryover. Based on the model formulation, a progressive time-oriented decomposition heuristic framework is then proposed, where improvement and construction heuristics are effectively combined, therefore efficiently avoiding the weaknesses associated with the one-time decisions made by other classical time-oriented decomposition algorithms. Computational results show that the proposed optimization framework provides competitive solutions within a reasonable time

    Lot-Sizing Problem for a Multi-Item Multi-level Capacitated Batch Production System with Setup Carryover, Emission Control and Backlogging using a Dynamic Program and Decomposition Heuristic

    Get PDF
    Wagner and Whitin (1958) develop an algorithm to solve the dynamic Economic Lot-Sizing Problem (ELSP), which is widely applied in inventory control, production planning, and capacity planning. The original algorithm runs in O(T^2) time, where T is the number of periods of the problem instance. Afterward few linear-time algorithms have been developed to solve the Wagner-Whitin (WW) lot-sizing problem; examples include the ELSP and equivalent Single Machine Batch-Sizing Problem (SMBSP). This dissertation revisits the algorithms for ELSPs and SMBSPs under WW cost structure, presents a new efficient linear-time algorithm, and compares the developed algorithm against comparable ones in the literature. The developed algorithm employs both lists and stacks data structure, which is completely a different approach than the rest of the algorithms for ELSPs and SMBSPs. Analysis of the developed algorithm shows that it executes fewer number of basic actions throughout the algorithm and hence it improves the CPU time by a maximum of 51.40% for ELSPs and 29.03% for SMBSPs. It can be concluded that the new algorithm is faster than existing algorithms for both ELSPs and SMBSPs. Lot-sizing decisions are crucial because these decisions help the manufacturer determine the quantity and time to produce an item with a minimum cost. The efficiency and productivity of a system is completely dependent upon the right choice of lot-sizes. Therefore, developing and improving solution procedures for lot-sizing problems is key. This dissertation addresses the classical Multi-Level Capacitated Lot-Sizing Problem (MLCLSP) and an extension of the MLCLSP with a Setup Carryover, Backlogging and Emission control. An item Dantzig Wolfe (DW) decomposition technique with an embedded Column Generation (CG) procedure is used to solve the problem. The original problem is decomposed into a master problem and a number of subproblems, which are solved using dynamic programming approach. Since the subproblems are solved independently, the solution of the subproblems often becomes infeasible for the master problem. A multi-step iterative Capacity Allocation (CA) heuristic is used to tackle this infeasibility. A Linear Programming (LP) based improvement procedure is used to refine the solutions obtained from the heuristic method. A comparative study of the proposed heuristic for the first problem (MLCLSP) is conducted and the results demonstrate that the proposed heuristic provide less optimality gap in comparison with that obtained in the literature. The Setup Carryover Assignment Problem (SCAP), which consists of determining the setup carryover plan of multiple items for a given lot-size over a finite planning horizon is modelled as a problem of finding Maximum Weighted Independent Set (MWIS) in a chain of cliques. The SCAP is formulated using a clique constraint and it is proved that the incidence matrix of the SCAP has totally unimodular structure and the LP relaxation of the proposed SCAP formulation always provides integer optimum solution. Moreover, an alternative proof that the relaxed ILP guarantees integer solution is presented in this dissertation. Thus, the SCAP and the special case of the MWIS in a chain of cliques are solvable in polynomial time

    Adaptive genetic algorithm based on fuzzy reasoning for the multilevel capacitated lot-sizing problem with energy consumption in synchronizer production

    Get PDF
    The multilevel capacitated lot-sizing problem (MLCLSP) is a vital theoretical problem of production planning in discrete manufacturing. An improved algorithm based on the genetic algorithm (GA) is proposed to solve the MLCLSP. Based on the solution results, the distribution of energy consumption in a synchronous production case is analyzed. In the related literature, the GA has become a much-discussed topic in solving these kinds of problems. Although the standard GA can make up for the defects of the traditional algorithm, it will lead to the problems of unstable solution results and easy local convergence. For these reasons, this research presents an adaptive genetic algorithm based on fuzzy theory (fuzzy-GA) to solve the MLCLSP. Firstly, the solving process of the MLCLSP with the fuzzy-GA is described in detail, where algorithms for key technologies such as the capacity constraint algorithm and the algorithm of solving fitness value are developed. Secondly, the auto-encoding of decision variables for MLCLSPs is studied; within this, the decision variables of whether to produce or not are encoded into a hierarchical structure based on the bill of material; combined with external demand, the decision variables of lot-sizing are constructed. Thirdly, the adaptive optimization process of parameters of the GA for the MLCLSP based on fuzzy theory is expounded, in which membership function, fuzzy rule, and defuzzification of the MLCLSP is mainly presented. Experimental studies using the processed dataset collected from a synchronizer manufacturer have demonstrated the merits of the proposed approach, in which the energy consumption distribution of the optimized production plan is given. The optimal lot-sizing is closer to the average value of the optimal value compared with the standard GA, which indicates that the proposed fuzzy-GA approach has better convergence and stability

    Self-adaptive randomized constructive heuristics for the multi-item capacitated lot-sizing problem

    Get PDF
    Capacitated lot-sizing problems (CLSPs) are important and challenging optimization problems in production planning. Amongst the many approaches developed for CLSPs, constructive heuristics are known to be the most intuitive and fastest method for finding good feasible solutions for the CLSPs, and therefore are often used as a subroutine in building more sophisticated exact and metaheuristic approaches. Classical constructive heuristics, such as the period-by-period heuristics and lot elimination heuristics, are first introduced in the 1990s, and thereafter widely used in solving the CLSPs. This paper evaluates the performance of period-by-period and lot elimination heuristics, and improves the heuristics using perturbation techniques and self-adaptive methods. We have also proposed a procedure for automatically adjusting the parameters of the proposed heuristics so that the values of the parameters can be chosen based on features of individual instances. Experimental results show that the proposed self-adaptive randomized period-by-period constructive heuristics are efficient and can find better solutions with less computational time than the tabu search and lot elimination heuristics. When the proposed constructive heuristic is used in a basic tabu search framework, high-quality solutions with 0.88% average optimality gap can be obtained on benchmark instances of 12 periods and 12 items, and optimality gap within 1.2% for the instances with 24 periods and 24 items

    Variable Neighborhood Search for the File Transfer Scheduling Problem

    Get PDF
    ACM Computing Classification System (1998): I.2.8, G.1.6.In this paper a file transfer scheduling problem is considered. This problem is known to be NP-hard, and thus provides a challenging area for metaheuristics. A variable neighborhood search algorithm is designed for the transfer scheduling of files between various nodes of a network, by which the overall transfer times are to be minimized. Optimality of VNS solutions on smaller size instances has been verified by total enumeration. For several larger instances optimality follows from reaching the elementary lower bound of a problem
    corecore