224 research outputs found

    Negative circuits for flows and submodular flows

    Get PDF
    AbstractFor solving minimum cost flow problems Goldberg and Tarjan [7] prove strongly polynomial bounds on the negative circuit method of Klein [9] which previously was not even known to be finite. Following the proposal of Goldberg and Tarjan, Cui and Fujishige [1] discuss the use of minimum mean circuits for solving the much more general minimum cost submodular flow problem and prove finiteness where the minimum mean circuit is chosen using a secondary criterium. We introduce certain additional positive weights on negative circuits and propose selecting a negative circuit with minimum ration of cost and weight. The resulting method for solving minimum cost submodular flow problems is pseudopolynomial. In fact, it terminates after at most m·U minimum ratio computations where m denotes the number of arcs and U the maximum capacity of an arc

    Power packet transferability via symbol propagation matrix

    Get PDF
    Power packet is a unit of electric power transferred by a power pulse with an information tag. In Shannon's information theory, messages are represented by symbol sequences in a digitized manner. Referring to this formulation, we define symbols in power packetization as a minimum unit of power transferred by a tagged pulse. Here, power is digitized and quantized. In this paper, we consider packetized power in networks for a finite duration, giving symbols and their energies to the networks. A network structure is defined using a graph whose nodes represent routers, sources, and destinations. First, we introduce symbol propagation matrix (SPM) in which symbols are transferred at links during unit times. Packetized power is described as a network flow in a spatio-temporal structure. Then, we study the problem of selecting an SPM in terms of transferability, that is, the possibility to represent given energies at sources and destinations during the finite duration. To select an SPM, we consider a network flow problem of packetized power. The problem is formulated as an M-convex submodular flow problem which is known as generalization of the minimum cost flow problem and solvable. Finally, through examples, we verify that this formulation provides reasonable packetized power.Comment: Submitted to Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science

    Greedy Oriented Flows

    Get PDF

    Min-max results in combinatorial optimization

    Get PDF

    Optimizing Opinions with Stubborn Agents

    Full text link
    We consider the problem of optimizing the placement of stubborn agents in a social network in order to maximally influence the population. We assume the network contains stubborn users whose opinions do not change, and non-stubborn users who can be persuaded. We further assume the opinions in the network are in an equilibrium that is common to many opinion dynamics models, including the well-known DeGroot model. We develop a discrete optimization formulation for the problem of maximally shifting the equilibrium opinions in a network by targeting users with stubborn agents. The opinion objective functions we consider are the opinion mean, the opinion variance, and the number of individuals whose opinion exceeds a fixed threshold. We show that the mean opinion is a monotone submodular function, allowing us to find a good solution using a greedy algorithm. We find that on real social networks in Twitter consisting of tens of thousands of individuals, a small number of stubborn agents can non-trivially influence the equilibrium opinions. Furthermore, we show that our greedy algorithm outperforms several common benchmarks. We then propose an opinion dynamics model where users communicate noisy versions of their opinions, communications are random, users grow more stubborn with time, and there is heterogeneity is how users' stubbornness increases. We prove that under fairly general conditions on the stubbornness rates of the individuals, the opinions in this model converge to the same equilibrium as the DeGroot model, despite the randomness and user heterogeneity in the model.Comment: 40 pages, 11 figure
    corecore