
Algorithmica
DOI 10.1007/s00453-017-0306-4

Greedy Oriented Flows

Ulrich Faigle1 · Walter Kern2 · Britta Peis3

Received: 18 September 2014 / Accepted: 23 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract We investigate the following greedy approach to attack linear programs of
type max{1T x | l ≤ Ax ≤ u}where A has entries in {−1, 0, 1}: The greedy algorithm
starts with a feasible solution x and, iteratively, chooses an improving variable and
raises it until some constraint becomes tight. In the special case, where A is the edge-
path incidence matrix of some digraph G = (V, E), and l = 0, this greedy algorithm
corresponds to the Ford–Fulkerson algorithm to solve themax (s, t)- flow problem
in G w.r.t. edge-capacities u. It is well-known that the Ford–Fulkerson algorithm
always terminates with an optimal flow, and that the number of augmentations strongly
depends on the choice of paths in each iteration. The Edmonds–Karp rule that prefers
paths with fewer arcs leads to a running time of at most |E |2 augmentations. The paper
investigates general types ofmatrices A and preference rules on the variables thatmake
the greedy algorithm efficient. In this paper, we identify conditions that guarantee for
the greedy algorithm not to cycle, and/or optimality of the greedy algorithm, and/or
to yield a quadratic (in the number of rows) number of augmentations. We illustrate
our approach with flow and circulation problems on regular oriented matroids.

Keywords Greedy algorithm · Regular matroid · Max flow · Cycle cancelling

B Walter Kern
w.kern@math.utwente.nl

Ulrich Faigle
faigle@zpr.uni-koeln.de

Britta Peis
britta.peis@oms.rwth-aachen.de

1 Mathematisches Institut, Universität zu Köln, Weyertal 80, 50931 Köln, Germany

2 Universiteit Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

3 RWTH Aachen, Kackertstraße 7, 52072 Aachen, Germany

123

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

https://core.ac.uk/display/81165238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0306-4&domain=pdf

Algorithmica

1 Introduction

Consider a linear program of the form

max
{
1T x | l ≤ Ax ≤ u

}
, (1)

where A is a {−1, 0, 1}m×n-matrix whose row and column index sets we denote by E
andP , respectively, and l, u ∈ R

m are lower and upper capacities (i.e., |E | = m and
|P| = n). To simplify notation, let us identify each column index P ∈ P with the
corresponding matrix column P ∈ {−1, 0, 1}m , and each row index e ∈ E with the
corresponding constraint. Hence, P is a vector with components Pe ∈ {−1, 0, 1} for
e ∈ E .

Our investigation is motivated by the classical max-flow problem of Ford and Fulk-
erson [16] relative to the directed graph G = (V, E) with designated source s ∈ V
and sink t ∈ V and capacity restrictions u ∈ R

|E |
+ . Let P denote the collection of all

(characteristic vectors of) (s, t)-paths P , in the sense that Pe = 1 [Pe = −1] if e is
traversed by P in forward [backward] direction, and Pe = 0 if e is not traversed by P
at all. Indeed, choosing l = 0, problem (1) becomes the Ford–Fulkerson problem

max
{
1T x | 0 ≤ Ax ≤ u

}
. (2)

A natural approach to solve (2) is to start with the all-zero vector x = 0, and to
iteratively increase one of the variables (among those that can be increased at all) as far
as possible, i.e., until some constraint e ∈ E becomes tight w.r.t. either the lower or the
upper capacity bound. Ford and Fulkerson suggest the following iterative algorithmic
solution procedure for (2):

Start with a feasible solution x0 (for example, x0 = 0). Where x is the current
solution, consider the path collection

Px := {P ∈ P | ∃ε > 0 with 0 ≤ Ax + εP ≤ u} . (3)

The elements inPx are called residual or augmenting paths w.r.t. x . UnlessPx = ∅,
pick some augmenting path P ∈ Px and raise the variable xP as much as is feasibly
permitted in order to achieve a new solution x . If the algorithm terminates after a finite
number of steps with x∗, it follows from themax-flowmin-cut theorem that an optimal
feasible flow f ∗ = ∑

x∗
P P has been found. Furthermore, it is clear that x∗ is integral

when the capacity bound u is integral.
The Ford–Fulkerson algorithm may not be finite if augmenting paths are cho-

sen arbitrarily. However, if the augmenting path is always selected according to
the Edmonds–Karp rule ([10]), i.e., as a path P ∈ Px with a minimal number
of arcs, termination after at most |V | · |E | augmentations is guaranteed (see, e.g.,
[1] or [12]). So we find that the running time of the Ford–Fulkerson algorithm
depends strongly on our preferences for breaking possible ties among augmenting
paths.

123

Algorithmica

The General Oriented Flow Problem Wenow turn to the generalmax-flowproblem (1)
where we consider arbitrary {−1, 0, 1}-matrices (instead of just edge-path incidence
matrices), and call it the general oriented flow problem. In analogy with the Ford–
Fulkerson setting, we refer to the members of P ⊆ {−1, 0, 1}m as (generalized
oriented) paths. We approach the general oriented flow problem (1) algorithmically
in the spirit of Ford–Fulkerson and start with an initial feasible solution x0. Where
Px is defined as in (3), we iteratively try to improve the current feasible solutions x
by picking an augmenting residual generalized path P ∈ Px and taking x + εP P
as our new current solution with εP as large as possible subject to the given capacity
constraints.

We assume a initial feasible solution x0 to be given. In the case l ≤ 0 ≤ u, for
example, x0 = 0 will do. Moreover, if l, u and x0 are integral, this algorithm returns
an integral solution x∗ (if it terminates at all) for the following reason: in each iteration
the algorithm increases the current integral solution x by raising one variable xP by
an integral amount (namely, the capacity of an element, say ê, which becomes tight,
minus the current flow

∑
P∈P :ê∈P+ xP − ∑

P∈P :ê∈P− xP).

Ternary Matrices and Families of Signed Sets Note that any ternary matrix A ∈
{−1, 0, 1}|E |×|P| encodes a familyP of oriented (a.k.a. signed) subsets of the set E ,
where an oriented subset of E is a pair P = (P+, P−) of disjoint subsets of E . That
is, the elements in P+ [P−] correspond to the positive [negative] entries of column
P . Let |P| := |P+| + |P−| denote the length of the oriented set P = (P+, P−). For
later use we note that the column ordering of the matrix A even defines a total order
of the associated family of signed sets.

Performance on Ternary Matrices in General In contrast to the classical max-flow
problem, however, a solution x∗ returned by the algorithm above is not guaranteed to
be optimal. Consider, for example, the general oriented flow problem with capacity
constraints

[
0
0

]
≤

[
1 1 0
1 0 1

]
x ≤

[
1
1

]
.

If we augment the first variable (i.e., choose the first path for augmentation), the
algorithm terminates with objective value 1 while an optimal solution is achievable
by raising the second and third variable up to 1 instead.

Even when the algorithm finds an optimal solution, its running time performance
might be extremely poor. Consider, i.e., the classical textbook example for exponential
time flow augmentation: A large natural number M and the constraints

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎣

1 0 1 0
0 1 1 0
1 −1 0 0
0 1 0 1
1 0 0 1

⎤
⎥⎥⎥⎥⎦

x ≤

⎡
⎢⎢⎢⎢⎣

M
M
1
M
M

⎤
⎥⎥⎥⎥⎦

.

123

Algorithmica

If we always augment along the residual path (variable) with the smallest column
index, the algorithm jumps M times back and forth between the first and second
column, each time raising the current variable by only 1. If preference were given to
the third and fourth column, however, the algorithm would terminate after only two
iterations with an optimal solution.

Thus, even when the optimality of the algorithm is guaranteed, regardless of the
preference relation with respect to which the paths are chosen for augmentation, the
choice of the preference relation is crucial when it comes to runtime analysis. Con-
sider, for example, the ordinary max flow setting: We have already remarked that the
Edmonds–Karp rule to prefer paths with fewer arcs bounds the number of augmen-
tations in a classical max-flow problem on G = (V, E) by |V | · |E |. In the special
case of a plane graph G, Borradaile and Klein [6] showed that, at least after some
preprocessing, only O(|E | log |E |) iterations suffice when preference is given to the
respective ”leftmost” paths in the residual path structures Px (see also Sect. 3.1
below).

Greedy Algorithms In order to formalize preference rules for the selection of augment-
ing paths P ∈ Px , we assume to be given an acyclic and transitive preference relation
(P,≺) on the paths. For any feasible solution x for (1), we denote the collection of
≺-minimal augmenting paths by

Px≺ := {
P ∈ Px | Q ⊀ P ∀Q ∈ Px} .

The associated greedy algorithm is now the iterative algorithm of Ford–Fulkerson
type with the augmentation rule

(G) The current feasible solution x may be augmented along any path P ∈ Px≺. If
no such P exists, the algorithm terminates and outputs x .

In the special case of the trivial preference relation (i.e., P ⊀ Q for all P, Q ∈
P), we have Px = Px≺. So the greedy algorithm may choose any P ∈ Px for
augmentation.

Optimality There is generally no guarantee that a solution returned by the greedy
algorithm is optimal unless the linear program (1) has special structural properties.
Let us say that (1) is augmentation optimal if the following is true:

(O) A feasible solution x is optimal if Px = ∅.

Assumptions We assume throughout that |E | is finite and rather small, whereas |P|
might be big, i.e., exponential in |E |. In particular, we assume that the matrix A
(resp. the signed system P), is not given explicitly, but via an oracle returning the
next variable to be raised. Note that this assumption is justified by several examples
where the matrix is not given explicitly (as this would be highly inefficient), but the
next variable to be raised can be found efficiently. So the running time is essentially
determined by the number of augmentations.

123

Algorithmica

Questions Some immediate questions arise in the above context:

– Which structuresP guarantee the greedy solution to be optimal (and found after
finitely many steps)—no matter what capacities are considered, and independent
of the chosen preference relation ≺?

– Which structures (P,≺) guarantee the number of greedy augmentations to be
polynomially bounded in |E |?

– Which structures (P,≺) guarantee the greedy algorithm to never raise a variable
more than once?

Our Results We start by introducing conformal systems as a far reaching general-
ization of ordinary path systems in the subsequent Sect. 2. Additionally, we define
the notion of compatibility as a condition on preference orders (P,≺) on confor-
mal systems. In Sect. 3, we show that the compatibility condition on conformal
systems (P,≺) ensures the greedy algorithm to raise none of the variables twice
(Theorem 1) and to terminate after < g > ·|E | iterations, where < g > denotes
the number of different values of a potential function g : P → R on (P,≺)

like, e.g., the height of (P,≺). Conformal systems P ordered by non-decreasing
support-size are compatible, for example, and so is the lexicographic order of P
induced by a total ordering of |E |, or the left–right order of ordinary paths used by
Borradaile and Klein for planar max flow problems. As one of the consequences,
it follows that the greedy algorithm takes at most |E |2 iterations (Corollary 1)
whenever (P,≺) is a conformal system that is ordered by non-decreasing support
size, which generalizes the Edmonds-Karp variant of the classical Ford–Fulkerson
algorithm.

Finally, in Sect. 4, we apply our results to the case of a path system corresponding
to the system of circuits of a regular oriented matroid. It turns out (Theorem 3), that
in this case a solution returned by the greedy algorithm is guaranteed to be optimal,
independent of the capacities l, u ∈ R

E , and independent of the preference order ≺.
Since regular oriented matroids yield conformal systems, it follows that ordering such
a system in a compatible way guarantees that none of the variables is raised twice.
Moreover, it follows that the greedy algorithm on regular oriented matroids terminates
already after atmost |E |2 augmentationswith an optimal solutionwhenever preference
is given to paths of smaller support size.

The min-cost circulation problem has been studied on regular oriented matroids by
Karzanov andMcCormick [25].We outline how our approach allows a straightforward
primal analysis of the the generalized cycle canceling algorithm.

Related Results There is previous work on greedy solvability of linear programs. For
example, [11] identifies a class of non-negative real constraint matrices that allow
greedy optimization relative to any objective, right hand side and arbitrary box con-
straints. Also other work in this area typically focusses on (0, 1)-matrices (see, e.g.,
[13,15,17,23], or [14]). We also mention the research on binary and ternary systems
originated by Fujishige (cf. [19–21]). Already Bland [5] reported that the Edmonds–
Karp variant generalizes to regular matroids. Unfortunately, a proof of this important
result has never been published until now.

123

Algorithmica

2 Conformal Systems and Compatible Orderings

We call two vectors P, Q ∈ {−1, 0, 1}|E | conforming if

P+ ∩ Q− = ∅ = P− ∩ Q+.

For example, if system P ⊆ {−1, 0, 1}|E | encodes the s − t-paths in a directed
graph G = (V, E), two paths P and Q are conforming whenever they do not traverse
any edge in opposite direction.

Definition 1 System P ⊆ {−1, 0, 1}|E | is said to be conformal if for all non-
conforming elements P, Q ∈ P there exist two designated elements in P , call
them P ∧ Q and P ∨ Q ∈ P , such that P ∧ Q and P ∨ Q are conforming and

P ∧ Q + P ∨ Q � P + Q, (4)

where, for any two vectors x, y ∈ R
E , we write x � y if x+ ≤ y+ and x− ≤ y−.

Here, as usual, x+ and x− are the two non-negative vectors of disjoint support such
that x = x+ − x− (note that each x ∈ R

|E | uniquely decomposes in two such vectors
x+ and x−).

Throughout, we call P ∧ Q the meet, and P ∨ Q the join of P and Q, although
our definition does not correspond to the typical meet- and join-operation in lattices.
Intuitively, a conformal systemP ensures a certain uncrossing property: whenever x
is a feasible solution to (2) with δ = min{xP , xQ} > 0, subtracting δ from xP and xQ ,
and adding δ to xP∧Q and xP∨Q yields a feasible solution as well.

2.1 Examples of Conformal Systems

It is not hard to see that (characteristic vectors of) paths in a given directed graph
G = (V, E) yield a conformal system: Whenever two such paths P and Q use an arc
in opposite direction, the ”switched paths“ (i.e., the two paths into which the vector
sum P + Q decomposes after possible cycles have been removed) are suitable choices
for ”meet” and ”join”. Similarily, the collection

C = {(δ+(S), δ−(S)) | S ⊆ V }

of oriented cuts in a digraph G = (V, E) yields a conformal system. Notice that the
dual of the problem

(SF) min
{

uT y | y(δ+(S)) − y(δ−(S)) ≥ 1 ∀S ⊆ V, y ≥ 0
}

belongs to our class of generalized oriented flow problems. (SF) is a variant of a
submodular flow problem with constant rank function (cf. [9] or [18]). We will
show below that in this special case, the oriented flow problem can be solved with the
greedy algorithm.

123

Algorithmica

Other examples of conformal systems are ring families as they occur in the context
of bisubmodular function optimization (see, e.g., [21], or [2]): A path system P ⊆
{−1, 0, 1}|E | is called signed ring family if P is closed w.r.t. reduced union � and
intersection � on {−1, 0, 1}|E |, defined as

P � Q = ((P+ ∪ Q+)\(P− ∪ Q−), (P− ∪ Q−)\(P+ ∪ Q+))

P � Q = (P+ ∩ Q+, P− ∩ Q−).

2.2 Submodularity of the Length Function

It is straightforward to check that any two non-conforming P, Q ∈ P of a conformal
system P satisfy the inequality |(P ∧ Q)e| + |(P ∨ Q)e| ≤ |Pe| + |Qe| for each
e ∈ E . It follows that the length function of a conformal systemP is submodular in
the sense

|P ∧ Q| + |P ∨ Q| ≤ |P| + |Q| for all non-conforming P, Q ∈ P .

In fact, a strict submodular inequality holds.

Lemma 1 Assume that P ⊆ {−1, 0, 1}|E | is a conformal system and P, Q ∈ P are
non-conforming. Then the following strict submodular path length inequality holds:

|P ∧ Q| + |P ∨ Q| < |P| + |Q| . (5)

Proof Consider any oppositely oriented element e ∈ E . Then e lies in the support of
both P and Q. On the other hand, the defining property (2) of the conformal system
P implies that e cannot lie in the supports of P ∧ Q and P ∨ Q simultaneously. So
the path length inequality must be strict. ��

2.3 Residual Paths in Conformal Systems

Recall that the greedy algorithm raises the variable xP to the largest currently possible
value when P is the current augmenting column. So at least one capacity constraint ê
becomes tight and P is only available at a later iteration when it has eventually been
“unblocked” by an augmenting column Q with Qê · Pê = −1.

Let us call P ′ ∈ P blocked by e ∈ E (w.r.t. the current x) if either P ′
e = 1

and Axe = ue, or P ′
e = −1 and Axe = le. The residual members in Px are thus

those paths/columns that are not blocked by any constraint. The following (somewhat
technical, but also fundamental) result tells us when and under what circumstances a
path may get blocked or unblocked.

Lemma 2 Let P ⊆ {−1, 0, 1}|E | be a conformal system with incidence matrix A and
capacities and l, u ∈ R

|E |. Let x ∈ R
P be a feasible solution of (1) and consider two

non-conforming members P, Q ∈ P . Then the following is true:

(i) If P, Q ∈ Px , then P ∧ Q ∈ Px and P ∨ Q ∈ Px (i.e., also the residual
system Px is conformal).

123

Algorithmica

(ii) If P ∈ Px and Q is non-augmenting (relative to x) but becomes augmenting
after an augmentation along P, then P ∧ Q ∈ Px and P ∨ Q ∈ Px .

Proof We first show (i) and suppose P ∧ Q /∈ Px . So there exists some e ∈ E with
either (P ∧ Q)e = −1 and (Ax)e = le, or (P ∧ Q)e = +1 and (Ax)e = ue. Assume
the former to be the case, for example. Then (P ∨ Q)e ≤ 0 holds (since P ∧ Q and
P ∨ Q are conforming). On the other hand, P, Q ∈ Px implies Pe ≥ 0 and Qe ≥ 0.
So property (4) implies (P ∧ Q + P ∨ Q)e ≥ 0 as well, contradicting the fact that
(P ∧ Q)e = −1 and (P ∨ Q)e ≤ 0. A violation of the upper bound is disproved the
same way.

Claim (ii) can be proved in a similar way: Assume that (P ∧ Q) /∈ Px (P ∨ Q can
be analyzed in the same way.) So there exists some e ∈ E with either (P ∧ Q)e = −1
and (Ax)e = le, or (P ∧ Q)e = +1 and (Ax)e = ue. Assume the former to be the
case, for example. Again this implies (P ∨ Q)e ≤ 0 (since P ∧ Q and P ∨ Q are
conforming). Hence property (4) tells us that Pe + Qe ≤ −1. But Pe ≥ 0, as P ∈ Px .
Thus Pe + Qe ≤ −1 can only happen if Pe = 0 and Qe = −1. But then P cannot
unblock Q, contrary to our assumption. Hence P ∧ Q ∈ Px must hold indeed. ��

2.4 Compatible Preferences

Any preference order (P,≺) gives rise to the definition of a height function h : P →
Z+ via

h(P) := max {k | ∃P1, . . . , Pk−1 with P1 ≺ · · · ≺ Pk−1 ≺ P} ∀P ∈ P.

The value h(P) is usually referred to as the height of P and corresponds to the length
of a longest chain with top element P in (P,≺).

Definition 2 A preference order (P,≺) on a conformal systemP is called compat-
ible if for any two non-conformal members P, Q ∈ P holds

min{h(P ∧ Q), h(P ∨ Q)} < max{h(P), h(Q)}.

For the remainder of the paper, let us denote meet and join in such a way that for
any two non-conformal members P, Q ∈ P we have h(P ∧ Q) ≤ h(P ∨ Q). Then
(P,≺) is compatible if h(P ∧ Q) < max{h(P), h(Q)}, i.e., if P ∧ Q is preferred to
either P or Q for any two non-conforming P, Q ∈ P .

2.5 Examples of Compatible Systems

Lexicographical Ordering Any total order on E induces an appropriate lexicographic
ordering on P: Write P ≺ Q if Qe �= 0 holds for the first element e ∈ E with
|Pe − Qe| = 1 (i.e., the first element where the supports of P and Q disagree lies in
the support of Q but not in the support of P). Clearly, this lexicographic order yields
a compatible preference relation for any conformal path system P .

123

Algorithmica

Shortest Path Preference The submodular length inequality (5) shows that shortest
path length preferences

P ≺ Q ⇐⇒ |P| < |Q| ∀P, Q ∈ P

in conformal systems are compatible.

Cut Lattice The collection C = {(δ+(S), δ−(S)) | S ⊆ V } of oriented cuts in a
digraph G = (V, E) yields a conformal system which is compatible with respect to
the ordering

(δ+(S), δ−(S)) ≺ (δ+(T), δ−(T)) ⇐⇒ S ⊂ T ⊆ E .

System (C ,≺) is usually referred to as oriented cut lattice.

Signed Ring Families Recall that system P ⊆ {−1, 0, 1}|E | is a signed ring family
if P is closed with respect to reduced union and intersection, as defined above. It
follows that (P,≺) with preference relation ≺ defined via

P ≺ Q ⇐⇒ P+ ≤ Q+ and P− ≤ Q− ∀P, Q ∈ P

is a compatible conformal system.

3 Running-Time on Compatible Conformal Systems

The following theorem shows that compatibility of a conformal systems guarantees
the greedy algorithm to never raise the same variable twice.

Theorem 1 Let (P,≺) be a compatible preference relation on the conformal system
P ⊆ {−1, 0, 1}|E |. Then the corresponding greedy algorithm which always augments
along ≺-minimal residual paths never raises the same variable twice.

Proof Let us assume that P is unblocked by augmentation along Q. Then Pe · Qe =
−1 for all constraints e ∈ E that blocked P at the time when Q was selected for
augmentation. Clearly, this Q cannot be conforming with P . Hence P ∧ Q and P ∨ Q
exist and, since the preference order under investigation is compatible, P ∧ Q is
preferred to P or Q.

After the augmentation along Q, the paths P and P ∧ Q are augmenting [cf.
Lemma 2(ii)]. In case P ∧ Q ≺ P , the algorithm would have chosen P ∧ Q prior to
P for augmentation, and the constraint that becomes tight when P ∧ Q is raised also
blocks P . So P ∧ Q ≺ Q must be the case, which tells us that P ∧ Q was blocked at
the moment Q was chosen.

Let e ∈ E be an element that blocked P ∧ Q and recall that P ∨ Q is conforming
with P ∧ Q. Therefore, we know (since P is conformal) that e also blocks either
P or Q. Since Q is actually used as an augmenting path, Q cannot be blocked. So
P is blocked by e. However, this implies Qe = 0, since Q is not blocked by e, and
Pe + Qe = 0 would imply that e cannot block P ∧ Q.

123

Algorithmica

The latter, however, is contradictory as it would imply that Q does not unblock P .
We therefore conclude that a variable xP that has been raised once during the greedy
algorithm is never raised again. ��

In order to bound the number of iterations of the greedy algorithm, we consider
path selection rules associated to so-called potential functions on (P,≺):

Definition 3 A function g : P → R is a potential function for system (P,≺) if

P ≺ Q �⇒ g(P) < g(Q) ∀P, Q ∈ P.

We denote by < g >= |{g(P) | P ∈ P}| the number of different values function
g : P → R attains.

Note that the height function, as defined above, as well as the length function is a
potential function.

The greedy algorithm on (P,≺) associated to potential function g always selects
a residual path of minimal g-value which, by definition, is a ≺-minimal residual path.

The following theorem can be seen as a generalization of Edmonds–Karp’s result
from ordinary max flow with shortest path preference to conformal compatible sys-
tems:

Theorem 2 If (P,≺) is a compatible conformal system with potential function g,
then the associated greedy algorithm which always augments along residual paths of
smallest g-value terminates after at most 〈g〉|E | iterations.

Proof Let P1, . . . , Pk denote the paths chosen for augmentation in iterations 1, . . . , k.
Accordingly, let x (0), x (1), . . . , x (k) be the series of feasible solutions constructed
during the algorithm, i.e., x (i+1) is obtained from x (i) by augmentation along Pi . To
shorten notation, we let Pi = Px (i)

be the collection of residual paths in iteration
i = 0, . . . , k. In order to prove the statement of the theorem, we show that the g-
value of the augmenting paths monotonically increases throughout execution of the
algorithm, and strictly increases after at most m = |E | iterations.
Claim For all iterations i = 1, . . . , k − 1, we have g(Pi+1) ≥ g(Pi). Moreover,
g(Pi+1) = g(Pi) implies Pi+1 ∈ Pi .

Proof of claim If Pi+1 /∈ Pi , then Pi+1 ∈ Pi+1\Pi , implying that augmentation
along Pi unblocks Pi+1, and Pi and Pi+1 must be non-conforming. By Lemma 2(ii),
there exists some Q = Pi ∧ Pi+1 ∈ Pi . Since system (P,≺) is compatible, we know
that either Q ≺ Pi or Q ≺ Pi+1 must be the case. Since Q ≺ Pi is not possible by the
choice of Pi , we have Q ≺ Pi+1, implying g(Q) < g(Pi+1). Hence, g(Pi+1) ≤ g(Pi)

would imply g(Q) < g(Pi+1) ≤ g(Pi), contradicting the choice of Pi (instead of Q).
Thus, indeed, g(Pi+1) > g(Pi) must hold.
If Pi+1 ∈ Pi , the inequality g(Pi+1) ≥ g(Pi) follows immediately by the choice of Pi .
Summarizing, we obtain g(Pi+1) ≥ g(Pi) with g(Pi+1) = g(Pi) only if Pi+1 ∈ Pi .

Claim For any two iterations i, j ∈ [k] with j ≥ i + |E |, we have g(Pj) < g(Pi).

123

Algorithmica

Proof of claim For the sake of contradiction, suppose g(Pj) ≥ g(Pi). By our claim
above, it follows that g(Pi) = g(Pi+1) = . . . = g(Pj) and all |E | + 1 paths
Pi , Pi+1, . . . , Pj belong toPi . As a consequence of Lemma 2(i), all of these |E | + 1
pathsmust be pairwise conforming. (Otherwise, themeet of two non-conforming paths
in Pi also belongs to Pi , and is of smaller g-value.) However, as long as we only
augment along residual paths that are pairwise conforming, none of the constraints
that become tight throughout iterations i, i + 1, . . . , j can be “untightened”.
Consequently, the number of iterations is bounded by |E |, the number of constraints.

��
In the special case where P consists only of {0, 1}-paths (i.e., if P ⊆ {0, 1}|E |)

every preference order (P,≺) is trivially a compatible, conformal system. So wemay
assume that the greedy algorithm was carried out with respect to the trivial preference
relation with constant potential g = c and hence 〈g〉 = 1 and terminates after at most
|E | iterations.

We will discuss a less trivial framework for compatible preference relations on
conformal systems next.

3.1 Generalized Left–Right Order of Network Paths

As a further example, we show that a generalized left–right order on (s, t)-paths in
a network (directed graph) G = (V, E) yields a compatible preference relation on a
conformal system. In our discussion, we assume without loss of generality that the
source s has degree 1.

For each vertex v ∈ V , choose a cyclic ordering πv of the edges that are incident
with v. The πv’s induce an order on the setP of (s, t)-paths in a natural way:

Consider two such paths P and Q and let R denote the maximal initial subpath
contained in both P and Q. Then |R| ≥ 1 holds as we assume that s has degree 1. Let
e denote the last edge in R and let eP , eQ be the edges following e on P resp. Q. Let
v be the vertex in which P and Q split. Then we define

P ≺ Q :⇐⇒ πv = (. . . , e, . . . , eP , . . . , eQ, . . .).

(See Fig. 1).
If G is planar embedded, for example, we can choose each πv as the clockwise

order of the edges around v, which induces the canonical “left to right” order on P ,
starting with the leftmost path and ending with the rightmost path from s to t . For
(s, t)-plane graphs, this left–right order≺ even guarantees, for non-conforming P, Q,

s t

Q

P
R

Fig. 1 Left–right order of two s, t-paths P ≺ Q

123

Algorithmica

that P ∧ Q ≺ P and Q ≺ P ∨ Q, which explains why flow is never reduced during
the augmentation and non-directed paths may be disregarded completely (see [16]).

For other graphs, only compatibility can be established:

Proposition 1 LetP be the set of (s, t)-paths of the directed graph G = (V, E). Then
the preference relation (P,≺) induced by cyclic orders πv on the edges incident with
the vertex v is compatible.

Proof As above, we assume that s has degree 1. Consider two paths P and Q and let
R denote their maximal common initial subpath. Let e denote the last edge in R and
let eP , eQ the edges succeeding e on P resp. Q. Let v denote the vertex in which P
and Q split. So P ≺ Q means that πv = (. . . , e, . . . , eP , . . . , eQ, . . .).

Now assume that P and Q are not conforming (i.e., have a common arc that is
oppositely oriented in P and Q). Consider the (vector) sum F = P + Q (in R

E).
After removing directed cycles from F (in case there are any), the resulting 2-flow
decomposes into paths P ∧ Q and P ∨ Q that both follow R up to the last edge e and
then split into eP resp. eQ . So P ∧ Q (following eP) precedes Q in the path order. ��

Recall that shortest path preferencemeans that the greedy algorithm always chooses
augmenting paths of smallest length. As mentioned earlier (cf. Sect. 2.5), this pref-
erence relation is compatible, Theorem 2 implies the Edmonds–Karp bound on the
number of iterations:

Corollary 1 Let P ⊆ {−1, 0, 1}|E | be a conformal path system and (P,≺) the
shortest length preference (i.e., P ≺ Q ⇐⇒ |P| < |Q|). Then the greedy algorithm
terminates after at most |E |2 augmentations. ��

4 Regular Flow

Orientedmatroids (see, e.g., [3] or [4]) are combinatorial abstractions of vector spaces:
For x ∈ R

|N | let X := σ(x) ∈ {−1, 0,+1}|N | denote the corresponding sign vector
defined by X+ := {i ∈ N | xi > 0} and X− := {i ∈ N | xi < 0}. If L ⊆ R

|N | is a
subspace, then

O = σ(L) = {σ(x) | x ∈ L}

is the associated (linear) oriented matroid. A vector x ∈ L of (inclusionwise) minimal
support is elementary. The corresponding sign vector X is referred to as a circuit of
σ(L). It is well-known (see, e.g., Prop. 5.35 in [3]) that every x ∈ L can be expressed
as a conformal sum x = x (1) + · · · + x (r) of elementary vectors x (i) ∈ L , i.e., a sum
of pairwise conforming elementary vectors.

The oriented matroid O is regular if O = σ(L) with L = ker U for some totally
unimodular matrix U . In this case, elementary vectors are (up to scalar multiples) in
{−1, 0,+1}|N |. Indeed, assume, say, that the first k + 1 columns of U form a minimal
dependent set and that

x1u1 + · · · + xkuk = uk+1

123

Algorithmica

for suitable xi ∈ R. Then the total unimodularity of U yields xi ∈ {−1, 0,+1} when
Cramer’s rule is applied.

4.1 Regular Max Flow

Classical instances of regular matroids arise from the inclusion-wise minimal oriented
cuts or the oriented circuits of a directed graph G = (V, E). Consider, for example,
the max flow problem (2) in G with source s ∈ V , sink t ∈ V and capacities u ∈ R

|E |
+ .

Note that we could add an additional dummy edge e∗ = (t, s) of unbounded capacity
u∗ = ∞ without changing the max-flow problem essentially. In terms of the linear
program (2), the addition of e∗ means that we augment the path incidence matrix A
by an all-one row 1T . The (s, t)-paths P of G now correspond exactly to the circuits
of the regular oriented matroid that have the entry +1 in component e∗. The fact that
the Ford–Fulkerson algorithm terminates with an optimal solution (if it terminates at
all) generalizes from paths to ”circuits minus a fixed element” in the setting of regular
matroids.

Let now C ∗ ∈ {−1, 0,+1}|N | be the system of all oriented circuits C of a regular
oriented matroid on N with positive coefficient Ce∗ = +1 in a fixed component
e∗ ∈ N . Set E = N\e∗ and let P = P(C ∗) be the induced system on E that
arises from C ∗ by restricting the vectors C ∈ C ∗ to the component set E . If A is the
incidence matrix of P , we call problem (2), i.e.,

max{1T x | 0 ≤ Ax ≤ u},

regular max flow problem.
The following theorem, originally due to [22], states that the greedy algorithm

always returns an optimal solution of the regular max flow problem, regardless of the
capacity bound u, and regardless of the preference rule for selecting residual paths for
augmentation. We include a short proof for completeness.

Theorem 3 Let x̂ be a solution returned by the greedy algorithm executed on a regular
max flow problem. Then x̂ is an optimal solution.

Proof Augment the matrix A to the incidence matrix A∗ of C ∗ by adding the row
1T = (1, . . . , 1) with all coefficients 1. Then we want to maximize 1T x under the
constraints

0 ≤ A∗x =
[

A
1T

]
x ≤

[
u
∞

]
.

Suppose to the contrary that the statement of the Theorem is false and there is an
improving “ascent direction” d such that x = x̂ + d yields a better feasible solution.
Then the vector y = A∗d must satisfy ye∗ = 1T d > 0. The vector y, being a member
of the column space of A∗, is in ker U . Hence y is a conformal sum of oriented
circuits. In particular, there must be one circuit C with Ce∗ = 1 that induces an
improving augmenting column P ∈ P , which contradicts the fact that the greedy
algorithm has come to a halt with x̂ . ��

123

Algorithmica

It is easy to see that the system P = P(C ∗), as defined above, is conformal:
Assume that P and Q are non-conforming. Then the sum P + Q is integral and,
extended by a “+2” entry in component e∗, yields a vector s in the kernel of the totally
unimodular matrix U . This vector s can be written as conformal sum of elementary
(−1, 0,+1)-vectors, twoof themwith a “+1” entry in coordinate e∗. These twovectors,
with coordinate e∗ removed, may be taken as P ∧ Q and P ∨ Q.

In view of Theorem 2, we therefore conclude

Corollary 2 If P satisfies the hypothesis of Theorem 3 and (P,≺) is a compatible
preference relation, then the greedy algorithm never steps backwards and terminates
with an optimal solution. In particular, the shortest path rule ensures that an opti-
mal solution for the regular max flow problem is attained after at most |E |2 path
augmentations. ��
Remark Regular max flow is already studied by Minty [27] (see also [24]). In partic-
ular, it seems that Bland [5] reported on the generalization of the Edmonds–Karp rule
to regular flows. Unfortunately, there is no written contribution of Bland’s result in
the corresponding conference proceedings. Indeed, the result seems to have not been
published independently.

4.2 Cycle Cancelling

Our analysis may also be applied to problems with more general objective functions,
e.g., min cost flow on directed graphs. In the latter case, the well-known “cycle can-
celling” method can be seen as a greedy algorithm seeking for a min cost circulation in
a weighted, capacitated digraph. The latter has actually been studied in detail before,
even in the context of regular (or ”unimodular”) spaces (cf. [7]) andwith convex (rather
than linear) cost functions (cf. [25]). We therefore comment only briefly on this topic
(in the maximization setting that we have used throughout in our paper).

Let C ⊆ {−1, 0,+1}|E | be the family of oriented circuits of a regular oriented
matroid on E . Assume that w ∈ R

E is a vector of given weights and set w(P) =
w(P+) − w(P−) for all P ∈ C . We seek to solve the linear program

max

⎧⎨
⎩

∑
P∈C

w(P)xP | l ≤
∑
P∈C

xP P ≤ u

⎫⎬
⎭ .

Given two non-conforming circuits P, Q ∈ C (interpreted as vectors inR
|E |), their

sum can be expressed as a conformal sum of circuits Ri ∈ C ,

P + Q = R1 + · · · + Rt .

If t = 1, we set P ∧ Q = R1 and P ∨ Q = 0. If t ≥ 2, we seek to choose P ∧ Q
and P ∨ Q such that, in a suitable preference relation on C ∪ {0}, at least one of them
precedes P or Q. A well-known preference relation achieving this is the so-called
mean value relation with potential −m,

123

Algorithmica

P ≺ Q ⇐⇒ m(P) > m(Q), with m(P) = w(P)

|P| .

The mean value preference which selects paths with highest mean is compatible.
Indeed, assume, say, m(P) ≥ m(Q). In the first case P + Q ∈ C , we then find

w(P ∧ Q)

|P ∧ Q| = w(P + Q)

|P + Q| ≥ w(P) + w(Q)

|P| + |Q| − 2
>

w(P) + w(Q)

|P| + |Q| ≥ w(Q)

|Q|
as required. In the second case, where P + Q = R1 + · · · + Rt is the conformal sum
of t ≥ 2 circuits, we choose for P ∧ Q and P ∨ Q the two circuits with highest mean
value to ensure that, say,

w(P ∧ Q)

|P ∧ Q| = max
i

w(Ri)

|Ri | ≥
∑

i w(Ri)∑
i |Ri | ≥ w(P) + w(Q)

|P| + |Q| − 2
>

w(Q)

|Q|
as before. Hence P ∧ Q if preferred to Q in the mean value order. For later use we
note that the inequalities above can actually be strengthened to

w(P ∧ Q)

|P ∧ Q| ≥ |P| + |Q|
|P| + |Q| − 2

w(Q)

|Q| ≥ |E |
|E | − 1

w(Q)

|Q| (6)

Theorem2 now implies that the greedy algorithm produces an optimal solution after
at most 〈m〉|E | iterations. Aa a consequence, the solution can be found in polynomial
time (even a strongly polynomial time bound can be shown (cf. [25]).Most polynomial
time proofs for the mean cycle method are based on dual arguments. So it might be
interesting to observe that a ”primal” proof is quite straightforward in our framework
along the lines of the proof of Theorem 2.

Assume that the greedy algorithm increases x on the circuits P1, . . . , Pt in this
order. Each augmentation on P = Pi tightens some constraint e ∈ E (an upper bound
in case e ∈ P+ and a lower bound in case e ∈ P−). As a consequence, any |E |
consecutive augmentations must contain a non-conforming pair Pi , Pj , i < j . We
claim that

m(Pj) = w(Pj)

|Pj | ≤ w(Pi)

|Pi |
|E | − 1

|E | = m(Pi)
|E | − 1

|E |
holds for any such pair, showing that after at most |E | augmentations, the mean value
has decreased by at least a factor of |E |−1

|E | . The latter implies that after at most |E |2
augmentations, the mean value has decreased at least by a factor 1/2. As the mean
value ranges from at most wmax, the maximum arc weight, to 1/|E | (assuming integer
weights), we find that the number of augmentations is of order

O(|E |2 log(|E |wmax)).

The desired decrease follows readily from our observations above: Assume, say,
that P = Pi and Q = Pj are the two non-conforming circuits. We may assume as

123

Algorithmica

well that all Pk with i < k < j are conforming with Q as otherwise we can replace i
with k and conclude

w(Pi)

|Pi | ≥ w(Pk)

|Pk | ≥ w(Pj)

|Pj |
|E |

|E | − 1
.

So Q = Pj is eligible for the greedy algorithm immediately after P = Pi has been
augmented. Hence P ∧ Q must be eligible already at the time when P = Pi gets
augmented. The only reason for selecting P instead of P ∧ Q thus must be that
m(P) ≥ m(P ∧ Q) is true. Hence indeed we may conclude from (6) that

m(P) = w(P)

|P| ≥ w(Q)

|Q|
|E |

|E | − 1
= |E |

|E | − 1
m(Q)

follows, proving our claim.

5 Open Problems

One of the most interesting questions in our opinion concerns the generalized left–
right order of network paths in the classical setting: Is there a polynomial bound on
the number of augmentations when ordinary paths are ordered by the generalized
left–right order, i.e., if we use depth first search (according to suitably chosen cyclic
orderings πν) for constructing the augmenting paths, instead of breadth first search
as usual? Recent work by Dean et al. [8] implies that some cyclic orderings require
exponential time—but maybe others (possibly randomly chosen ones) work well?

Acknowledgements We are grateful to Jon Lee [26] for pointing our attention to Bland [5] and to an
anonymous referee for making us aware of several other related publications.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Englewood Cliffs (1993)

2. Ando, K., Fujsihige, S.: On structures of bisubmodular polyhedra. Math. Program. 74, 293–317 (1996)
3. Bachem, A., Kern, W.: Linear Programming Duality: An Introduction to Oriented Matroids. Springer,

Berlin (1992)
4. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented Matroids. Cambridge

University Press, Cambridge (1993)
5. Bland, R.: Fast algorithms for totally unimodular linear programming. In: Lecture at XIth International

Symposium on Mathematical Programming, Bonn (1982)
6. Borradaile, G., Klein, P.: An O(n log n) algorithm for maximum st-flow in a directed planar graph.

In: SODA06 Proceedings, pp. 524–533 (2006)
7. Burhard, R.E., Hamacher, H.: Minimal cost flows in regular matroids. Math. Program. Study 14, 32–47

(1981)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

8. Dean, B.C., Goemans, M.X., Immorlica, N.: Finite Termination of Augmenting Path Algorithms in
the Presence of Irrational Problem Data. ESA 2006. Lecture Notes in Computer Science, vol. 4168.
Springer, Berlin, Heidelberg

9. Edmonds, J., Giles, R.: A min–max relation for submodular functions on graphs. Ann. Discrete Math.
1, 185204 (1977)

10. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow prob-
lems. J. ACM 19(2), 248–264 (1972)

11. Faigle, U., Hoffman, A.J., Kern, W.: A characterization of non-negative greedy matrices. SIAM J.
Discrete Math. 9, 1–6 (1996)

12. Faigle, U., Kern, W., Still, G.: Algorithmic Principles of Mathematical Programming. Kluwer Texts in
Mathematical Sciences. Kluwer Academic Publisher, Dordrecht (2002)

13. Faigle, U., Peis, B.: Two-phase greedy algorithm for some classes of combinatorial linear programs.
In: SODA08 Proceedings (2008)

14. Faigle, U., Kern, W., Peis, B.: A ranking model for cooperative games, convexity and the greedy
algorithm. Math. Program. 132, 303–407 (2012)

15. Faigle, U., Kern, W., Peis, B.: On greedy and submodular matrices. In: Proceedings of TAPAS 2011,
Springer LNCS, p. 6595 (2011)

16. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)
17. Frank, A.: Increasing the rooted connectivity of a digraph by one. Math. Program. 84, 565–576 (1999)
18. Frank, A.: Submodular flows. In: Frank, A. (ed.) Connections in Combinatorial Optimization. Oxford

Lecture Series in Mathematics and its Applications, vol. 38. Oxford University Press, Oxford (2011)
19. Fujishige, S.: Principal structures in submodular systems. Discrete Appl. Math. 2, 77–79 (1980)
20. Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Mathematics, vol. 58, 2nd

edn. Elsevier, Amsterdam (2005)
21. Fujishige, S., Iwata, S.: Bisubmodular function minimization. SIAM J. Discrete Math. 19, 1065–1073

(2006)
22. Hamacher, H.: Algebraic flows in regular matroids. Discrete Appl. Math. 2, 27–38 (1980)
23. Hoffman, A.J., Kolen, A.W.J., Sakarovitch, M.: Totally balanced and greedy matrices. SIAM J. Alge-

braic Discrete Methods 6, 721–730 (1985)
24. Hochstaettler, W., Nickel, R.: Note on a MaxFlowMinCut property for oriented matroids.

Technical Report feU-dmo008.07 (2007). http://www.fernuni-hagen.de/MATHEMATIK/DMO/pubs/
feu-dmo008-07

25. Karzanov, A.V., McCormick, S.T.: Polynomial methods for separable convex optimization in unimod-
ular linear spaces with applications. SIAM J. Comput. 26(4), 1245–1275 (1997)

26. Lee, J.: Personal communication (2012)
27. Minty, G.J.: On the axiomatic foundations of the theories of directed linear graphs, electrical networks

and network programming. J. Math. Mech. 15, 485–520 (1966)

123

http://www.fernuni-hagen.de/MATHEMATIK/DMO/pubs/feu-dmo008-07
http://www.fernuni-hagen.de/MATHEMATIK/DMO/pubs/feu-dmo008-07

	Greedy Oriented Flows
	Abstract
	1 Introduction
	2 Conformal Systems and Compatible Orderings
	2.1 Examples of Conformal Systems
	2.2 Submodularity of the Length Function
	2.3 Residual Paths in Conformal Systems
	2.4 Compatible Preferences
	2.5 Examples of Compatible Systems

	3 Running-Time on Compatible Conformal Systems
	3.1 Generalized Left–Right Order of Network Paths

	4 Regular Flow
	4.1 Regular Max Flow
	4.2 Cycle Cancelling

	5 Open Problems
	Acknowledgements
	References

