5 research outputs found

    Needs and challenges for a platform to support large-scale requirements engineering: a multiple-case study

    Get PDF
    Background: Requirement engineering is often considered a critical activity in system development projects. The increasing complexity of software as well as number and heterogeneity of stakeholders motivate the development of methods and tools for improving large-scale requirement engineering. Aims: The empirical study presented in this paper aim to identify and understand the characteristics and challenges of a platform, as desired by experts, to support requirement engineering for individual stakeholders, based on the current pain-points of their organizations when dealing with a large number requirements. Method: We conducted a multiple case study with three companies in different domains. We collected data through ten semi-structured interviews with experts from these companies. Results: The main pain-point for stakeholders is handling the vast amount of data from different sources. The foreseen platform should leverage such data to manage changes in requirements according to customers' and users' preferences. It should also offer stakeholders an estimation of how long a requirements engineering task will take to complete, along with an easier requirements dependency identification and requirements reuse strategy. Conclusions: The findings provide empirical evidence about how practitioners wish to improve their requirement engineering processes and tools. The insights are a starting point for in-depth investigations into the problems and solutions presented. Practitioners can use the results to improve existing or design new practices and toolsPeer ReviewedPostprint (published version

    Why and How to Balance Alignment and Diversity of Requirements Engineering Practices in Automotive

    Full text link
    In large-scale automotive companies, various requirements engineering (RE) practices are used across teams. RE practices manifest in Requirements Information Models (RIM) that define what concepts and information should be captured for requirements. Collaboration of practitioners from different parts of an organization is required to define a suitable RIM that balances support for diverse practices in individual teams with the alignment needed for a shared view and team support on system level. There exists no guidance for this challenging task. This paper presents a mixed methods study to examine the role of RIMs in balancing alignment and diversity of RE practices in four automotive companies. Our analysis is based on data from systems engineering tools, 11 semi-structured interviews, and a survey to validate findings and suggestions. We found that balancing alignment and diversity of RE practices is important to consider when defining RIMs. We further investigated enablers for this balance and actions that practitioners take to achieve it. From these factors, we derived and evaluated recommendations for managing RIMs in practice that take into account the lifecycle of requirements and allow for diverse practices across sub-disciplines in early development, while enforcing alignment of requirements that are close to release.Comment: 19 page

    Requirements Engineering that Balances Agility of Teams and System-level Information Needs at Scale

    Get PDF
    Context: Motivated by their success in software development, large-scale systems development companies are increasingly adopting agile methods and their practices. Such companies need to accommodate different development cycles of hardware and software and are usually subject to regulation and safety concerns. Also, for such companies, requirements engineering is an essential activity that involves upfront and detailed analysis which can be at odds with agile development methods. Objective: The overall aim of this thesis is to investigate the challenges and solution candidates of performing effective requirements engineering in an agile environment, based on empirical evidence. Illustrated with studies on safety and system-level information needs, we explore RE challenges and solutions in large-scale agile development, both in general and from the teams’ perspectives. Method: To meet our aim, we performed a secondary study and a series of empirical studies based on case studies. We collected qualitative data using interviews, focus groups and workshops to derive challenges and potential solutions from industry. Findings: Our findings show that there are numerous challenges of conducting requirements engineering in agile development especially where systems development is concerned. The challenges discovered sprout from an integration problem of working with agile methods while relying on established plan-driven processes for the overall system. We highlight the communication challenge of crossing the boundary of agile methods and system-level (or plan-driven) development, which also proves the coexistence of both methods. Conclusions: Our results highlight the painful areas of requirements engineering in agile development and propose solutions that can be explored further. This thesis contributes to future research, by establishing a holistic map of challenges and candidate solutions that can be further developed to make RE more efficient within agile environments

    Needs and challenges for a platform to support large-scale requirements engineering: a multiple-case study

    No full text
    Background: Requirement engineering is often considered a critical activity in system development projects. The increasing complexity of software as well as number and heterogeneity of stakeholders motivate the development of methods and tools for improving large-scale requirement engineering. Aims: The empirical study presented in this paper aim to identify and understand the characteristics and challenges of a platform, as desired by experts, to support requirement engineering for individual stakeholders, based on the current pain-points of their organizations when dealing with a large number requirements. Method: We conducted a multiple case study with three companies in different domains. We collected data through ten semi-structured interviews with experts from these companies. Results: The main pain-point for stakeholders is handling the vast amount of data from different sources. The foreseen platform should leverage such data to manage changes in requirements according to customers' and users' preferences. It should also offer stakeholders an estimation of how long a requirements engineering task will take to complete, along with an easier requirements dependency identification and requirements reuse strategy. Conclusions: The findings provide empirical evidence about how practitioners wish to improve their requirement engineering processes and tools. The insights are a starting point for in-depth investigations into the problems and solutions presented. Practitioners can use the results to improve existing or design new practices and toolsPeer Reviewe
    corecore