632 research outputs found

    Stabilization over power-constrained parallel Gaussian channels

    No full text
    This technical note is concerned with state-feedback stabilization of multi-input systems over parallel Gaussian channels subject to a total power constraint. Both continuous-time and discrete-time systems are treated under the framework of H2 control, and necessary/sufficient conditions for stabilizability are established in terms of inequalities involving unstable plant poles, transmitted power, and noise variances. These results are further used to clarify the relationship between channel capacity and stabilizability. Compared to single-input systems, a range of technical issues arise. In particular, in the multi-input case, the optimal controller has a separation structure, and the lower bound on channel capacity for some discrete-time systems is unachievable by linear time-invariant (LTI) encoders/decoder

    Mean Square Capacity of Power Constrained Fading Channels with Causal Encoders and Decoders

    Full text link
    This paper is concerned with the mean square stabilization problem of discrete-time LTI systems over a power constrained fading channel. Different from existing research works, the channel considered in this paper suffers from both fading and additive noises. We allow any form of causal channel encoders/decoders, unlike linear encoders/decoders commonly studied in the literature. Sufficient conditions and necessary conditions for the mean square stabilizability are given in terms of channel parameters such as transmission power and fading and additive noise statistics in relation to the unstable eigenvalues of the open-loop system matrix. The corresponding mean square capacity of the power constrained fading channel under causal encoders/decoders is given. It is proved that this mean square capacity is smaller than the corresponding Shannon channel capacity. In the end, numerical examples are presented, which demonstrate that the causal encoders/decoders render less restrictive stabilizability conditions than those under linear encoders/decoders studied in the existing works.Comment: Accepted by the 54th IEEE Conference on Decision and Contro

    Stabilization of systems with asynchronous sensors and controllers

    Full text link
    We study the stabilization of networked control systems with asynchronous sensors and controllers. Offsets between the sensor and controller clocks are unknown and modeled as parametric uncertainty. First we consider multi-input linear systems and provide a sufficient condition for the existence of linear time-invariant controllers that are capable of stabilizing the closed-loop system for every clock offset in a given range of admissible values. For first-order systems, we next obtain the maximum length of the offset range for which the system can be stabilized by a single controller. Finally, this bound is compared with the offset bounds that would be allowed if we restricted our attention to static output feedback controllers.Comment: 32 pages, 6 figures. This paper was partially presented at the 2015 American Control Conference, July 1-3, 2015, the US

    Input-output stabilization of linear systems on Z

    Get PDF
    A formal framework is set up for the discussion of generalized autoregressive with external input models of the form Ay__Bu, where A and B are linear operators, with the main emphasis being on signal spaces consisting of bounded sequences parametrized by the integers. Different notions of stability are explored, and topological notions such as the idea of a closed system are linked with questions of stabilizability in this very general context. Various problems inherent in using Z as the time axis are analyzed in this operatorial framework
    corecore