6,746 research outputs found

    Necessary and Sufficient Conditions for Deterministic Desynchronization

    Get PDF
    Synchronous reactive formalisms associate concurrent behaviors to precise schedules on global clock(s). This allows a non-ambiguous notion of "absent" signal, which can be reacted upon. But in desynchronized (distributed) implementations, absent values must be explicitely exchanged, unless behaviors were already provably independent and asynchronous (a property formerly introduced as endochrony). We provide further criteria restricting "reaction to absence" for correct desynchronization

    Principles and Implementation of Deductive Parsing

    Get PDF
    We present a system for generating parsers based directly on the metaphor of parsing as deduction. Parsing algorithms can be represented directly as deduction systems, and a single deduction engine can interpret such deduction systems so as to implement the corresponding parser. The method generalizes easily to parsers for augmented phrase structure formalisms, such as definite-clause grammars and other logic grammar formalisms, and has been used for rapid prototyping of parsing algorithms for a variety of formalisms including variants of tree-adjoining grammars, categorial grammars, and lexicalized context-free grammars.Comment: 69 pages, includes full Prolog cod

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Discrete Approximations and Necessary Optimality Conditions for Functional-Differential Inclusions of Neutral Type

    Get PDF
    This paper deals with necessary optimality conditions for optimal control systems governed by constrained functional-differential inclusions of neutral type. While some results are available for smooth control systems governed by neutral functional-differential equations, we are not familiar with any results for neutral functional-differential inclusions, even with smooth cost functionals in the absence of endpoint constraints. Developing the method of discrete approximations and employing advanced tools of generalized differentiation, we conduct a variational analysis of neutral functional-differential inclusions and obtain new necessary optimality conditions of both Euler-Lagrange and Hamiltonian types

    Actor Network Procedures as Psi-calculi for Security Ceremonies

    Full text link
    The actor network procedures of Pavlovic and Meadows are a recent graphical formalism developed for describing security ceremonies and for reasoning about their security properties. The present work studies the relations of the actor network procedures (ANP) to the recent psi-calculi framework. Psi-calculi is a parametric formalism where calculi like spi- or applied-pi are found as instances. Psi-calculi are operational and largely non-graphical, but have strong foundation based on the theory of nominal sets and process algebras. One purpose of the present work is to give a semantics to ANP through psi-calculi. Another aim was to give a graphical language for a psi-calculus instance for security ceremonies. At the same time, this work provides more insight into the details of the ANPs formalization and the graphical representation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Computing Preferred Answer Sets by Meta-Interpretation in Answer Set Programming

    Full text link
    Most recently, Answer Set Programming (ASP) is attracting interest as a new paradigm for problem solving. An important aspect which needs to be supported is the handling of preferences between rules, for which several approaches have been presented. In this paper, we consider the problem of implementing preference handling approaches by means of meta-interpreters in Answer Set Programming. In particular, we consider the preferred answer set approaches by Brewka and Eiter, by Delgrande, Schaub and Tompits, and by Wang, Zhou and Lin. We present suitable meta-interpreters for these semantics using DLV, which is an efficient engine for ASP. Moreover, we also present a meta-interpreter for the weakly preferred answer set approach by Brewka and Eiter, which uses the weak constraint feature of DLV as a tool for expressing and solving an underlying optimization problem. We also consider advanced meta-interpreters, which make use of graph-based characterizations and often allow for more efficient computations. Our approach shows the suitability of ASP in general and of DLV in particular for fast prototyping. This can be fruitfully exploited for experimenting with new languages and knowledge-representation formalisms.Comment: 34 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    Encoding Higher Level Extensions of Petri Nets in Answer Set Programming

    Full text link
    Answering realistic questions about biological systems and pathways similar to the ones used by text books to test understanding of students about biological systems is one of our long term research goals. Often these questions require simulation based reasoning. To answer such questions, we need formalisms to build pathway models, add extensions, simulate, and reason with them. We chose Petri Nets and Answer Set Programming (ASP) as suitable formalisms, since Petri Net models are similar to biological pathway diagrams; and ASP provides easy extension and strong reasoning abilities. We found that certain aspects of biological pathways, such as locations and substance types, cannot be represented succinctly using regular Petri Nets. As a result, we need higher level constructs like colored tokens. In this paper, we show how Petri Nets with colored tokens can be encoded in ASP in an intuitive manner, how additional Petri Net extensions can be added by making small code changes, and how this work furthers our long term research goals. Our approach can be adapted to other domains with similar modeling needs
    • …
    corecore