
Wayne State University

Mathematics Research Reports Mathematics

1-1-2004

Discrete Approximations and Necessary
Optimality Conditions for Functional-Differential
Inclusions of Neutral Type
Boris S. Mordukhovich
Wayne State University, boris@math.wayne.edu

Lianwen Wang
Wayne State University

This Technical Report is brought to you for free and open access by the Mathematics at DigitalCommons@WayneState. It has been accepted for
inclusion in Mathematics Research Reports by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Mordukhovich, Boris S. and Wang, Lianwen, "Discrete Approximations and Necessary Optimality Conditions for Functional-
Differential Inclusions of Neutral Type" (2004). Mathematics Research Reports. Paper 22.
http://digitalcommons.wayne.edu/math_reports/22

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/math_reports
http://digitalcommons.wayne.edu/math


DISCRETE APPROXIMATIONS AND NECESSARY 
OPTIMALITY CONDITIONS FOR FUNCTIONAL~ 

DIFFERENTIAL INCLUSIONS OF NEUTRAL TYPE 

' ' '. . - . . - : -, '--. ' 

. BORIS 5. MORDUKHOVICH and UANWEN WANG ·.· 

WAYNESTArE· · 
UNIVERSITY 

Detroit, Ml 48202 

Department of Mathematics 
Research Report · 

2004Series 
#1 

. . 

· · Thisresearch was supported by the Nationa/ScienceFoundlltion. . 
. I . . . . .. · ... 

li . • . . .··. 
~:-:-:::.-:-:-::::·-~=-:...~-...:..-_-=---..:C.....W.. - _:__ mr:z 



Discrete Approximations and Necessary Optimality Conditions for 
Functional-Differential Inclusions of Neutral Type 

Boris Mordukhovich and Lianwen Wang 

Abstract- This paper deals with necessary optimality con­
ditions for optimal control systems governed by constrained 
functional-differential inclusions of neutral type. While some 
results are available for smooth control systems governed by 
neutral functional-differential equations, we are not familiar 
with any results for neutral functional-differential inclusions, 
even with smooth cost functionals in the absence of endpoint 
constraints. Developing the method of discrete approximations 
and employing advanced tools of generalized differentiation, 
we conduct a variational analysis of neutral functional­
differential inclusions and obtain new necessary optimality 
conditions of both Euler-Lagrange and Hamiltonian types. 

I. INTRODUCTION 

This paper concerns the study of optimal control prob­
lems for the so-called neutral functional-differential inclu­
sions, which contain time-delays in both state and velocity 
variables. Such inclusions belong to the broad class of 
hereditary systems known also as systems with memory 
or aftereffect. They have been investigated in the form of 
controlled functional-differential equations being important 
for various practical applications, particularly to problems 
of automatic control, economic dynamics, modeling of 
ecological, biological, and chemical processes, etc.; see 
examples and discussions in [2], [3], [8], [II], [12], [IS] 
and their references. 

In this paper we consider the following dynamic opti­
mization (generalized optimal control) problem (P), which 
is to minimize 

J[x] := cp(x(a),x(b)) + J.b f(x(t),x(t- t:.),t)dt (I) 

over feasible arcs x : [a - ~. b] -+ mn, which are 
continuous on [a-!:., a) and [a, b] (with a possible jump at 
t = a) and such that the combination x(t)- Ax(t- !:.) 
is absolutely continuous on [a, b], satisfying the neutral 
functional-differential inclusion 

{

/,[x(t)- Ax(t- !:.)] 
E F(x(t),x(t- t:.),t) 

x(t) = c(t), t E [a- D., a), 

with the endpoint constraints 

a.e. t E [a, b], 

(x(a), x(b)) E l1 c JR.2". 

(2) 

(3) 

This work was supported by National Science Foundation under grant 
DMS-0304989 

Boris Mordukhovich, Department of Mathematics, Wayne State Univer­
sity, Detroit, Ml 48201, USA, boris®math. wayne. edu 

Lianwen Wang, Department of Mathematics and Computer Scienr.e, 
Central Missouri State University, Warrensburg, MO 64093, USA, 
lwang®cmsul.cmsu.edu 

We always assume that F : mn X mn X [a, b] =* IRn is a set­
valued mapping of closed graph, l1 is a closed set, !:,. > 0 
is a constant delay, and A is a constant n x n matrix. Note 
that the neutral-type operator in the left-hand side of (2) is 
given in the Hale form [8] 

For nondelayed systems governed by differential inclu­
sions (.6. = 0, A = 0) necessary optimality conditions have 
been studied intensively during recent years; see [4], [9], 
[17], [25], [26], [27], [29] and the references therein. Some 
results are known for delay-differential (or differential­
difference) inclusions corresponding to A = 0 in (2); see 
[5], [6], [13], [19], [20]. 

Observe that neutral-type systems are essentially different 
from their counterparts with A = 0. In particular, it is well 
known that an analog of the Pontryagin maximum principle 
does not generally hold for neutral systems, even in the 
classical smooth framework with no convexity assumptions. 
In a sense, neutral-type systems combine properties of 
continuous-time and discrete-time control systems; indeed, 
. they can be treated as discrete-time systems regarding 
velocity variables. On the other hand, neutral systems have 
some similarities with the so-called hybrid and algebraic­
differential equations important in engineering control ap­
plications. 

In this paper we derive necessary optimality conditions 
for the neutral-type control problem (P) under natural 
assumptions on its initial data involving nonsmooth func­
tions and nonconvex sets. These conditions are obtained in 
extended Euler-Lagrange and Hamiltonian forms involving 
advanced generalized differential constructions of varia­
tional analysis. 

Our approach is based on the method of discrete approx­
imations, in the line developed in [15], [17] for nonde­
layed differential inclusions and in [ 19], [20] for delay­
differential systems with A = 0. This method, which 
is certainly of independent interest from both qualitative 
and numerical viewpoints, allows us to construct a well­
posed parametric family of optimal control problems for 
approximating systems governed by discrete-time analogs 
of neutral functional-differential inclusions. A crucial issue 
is to establish stability of such approximations that ensures 
an appropriate strong convergence of optimal solutions. 
Convergence analysis of this method and its application 
to necessary optimality conditions for neutral systems are 
essentially more involved in comparison with the cases of 
differential and delay-differential inclusions. 

The approximating discrete-time control problems can be 
reduced to special problems of nonsmooth programming 



with an increasing number of geometric constraints that 
may have empty interiors. To handle such problems, we use 
suitable generalized differential tools of variational analysis 
satisfying a comprehensive calculus that allows us to derive 
general necessary optimality conditions for finite-difference 
analogs of neutral functional-differential inclusions. Then 
passing to the limit from well-posed discrete approxima­
tions with the strong convergence of optimal solutions 
and employing generalized differential calculus, we obtain 
necessary optimality conditions for (P). 

The rest of the paper is organized as follows. In Sec­
tion II we show that some combination built upon a given 
admissible trajectory of the neutral inclusion (2) can be 
strongly approximated by the corresponding combination 
built upon admissible trajectories of discrete-time systems. 
The convergence analysis is conducted in Section III for 
a sequence of well-posed discrete approximations to (P) 
involving an appropriate perturbation of the endpoint con­
straints (3) that is consistent with the step of discretization. 
The required strong convergence of optimal solutions is 
established under an intrinsic property of ( P) called relax­
ation stability. Section IV contains the basic constructions 
and required material on generalized differentiation needed 
for performing a variational analysis of discrete-time and 
continuous-time optimal control problems in the subsequent 
sections. These constructions and calculus rules are used 
in Section V for deriving general necessary optimality 
conditions for nonconvex discrete-time inclusions arising 
in discrete approximations of (P). The main results on 
the extended Euler-Lagrange and Hamiltonian conditions 
for neutral functional-differential inclusions are derived in 
Section VI via passing to the limit from discrete approxi­
mations. 

Our notation is basically standard. The transposed matrix 
of A is denoted by A'. D3 is always the closed unit ball 
of IR". haus(!1,, !12) is denoted the Hausdorff distance 
between two compact sets 0 1 and D:2 in !Rn. Given 
a multifunction F: X ::::t Y between finite-dimensional 
spaces, the Painlevf:-Kuratowski upper/outer limit of F(x) 
as x -+ X is defined by 

Limsupx-• F(x) := {y E Yl 3 Xk ~X, 3 Yk ~ y 

with Yk E F(xk) for all k E IN}, 

where IN stands for the collection of all natural numbers. 
We refer the reader to [17] and [24} for additional material. 
The full version of this paper appears in [21]. 

II. DISCRETE APPROXIMATIONS OF NEUTRAL 

INCLUSIONS 

This section concerns the study of discrete approxima­
tions of an arbitrary admissible trajectory to the neutral 
functional-differential inclusion (2). Let x(t) be an admis­
sible trajectory in (P), i.e., it is continuous on [a - Ll., a) 
and [a,bJ (with a possible jump at t =a), the combination 
x ( t) - .4x ( t - Ll.) is absolutely continuous on [a, b I, and (2) 
is satisfied. Note that the endpoint constraints (3) may not 

hold for :t(t); if they do hold, :t(t) is feasible to (P). The 
following standing assumptions are imposed throughout the 
paper: 
(Hl) There are an open set U c !Rn and two positive 
numbers (p and mp such that x(t) E U for all t E 
[a-Ll., bl, the sets F(x, y, t) are closed, and 

F(x,y,t) C mpD3, 

F(x,, y,, t) c F(x2, Y2, t) + fp(lx, - x,l + IY1 - Y21)D3 

for all (x,y), (x1 ,y1 ), (x2 , y,) E U xU and t E [a, bJ. 
(H2) F(x, y, t) is Hausdorff continuous for a. e. t E [a, bl 
uniformly in (x,y) E U xU. 
(H3) The function c(t) is continuous on [a- Ll.,aJ. 

Following [7], we consider the so-called averaged mod­
ulus of continuity for the multifunction F(x,y,t) with 
(x, y) E U x U and t E [a, bl that is defined by 

r(F; h):= 1' a(F; t, h) dt, 

where a(F; t, h) :=sup { ti(F; x,y, t, h)\ (x, y) E U xU} 
with 

ti(F; x, y, t, h) := sup {haus(F(x, y, t,), F(x, y, t2)) : 

(t, t2) E [t - h/2, t + h/21 n [a, bl}. 

It is proved in [7} that r(F; h) ~ 0 as h ~ 0 under the 
assumption (H2). 

To construct a sequence of discrete approximations of the 
given neutral-differential inclusion, we replace the deriva­
tive in (2) by the Euler finite difference 

d[x(t)- Ax(t- Ll.)l/dt 

""[x(t +h)- Ax(t + h- Ll.)- x(t) + Ax(t- Ll.)l/h. 

For any N E IN we consider the step of discretization 
hN := Ll./N and define the discrete partition t; :=a+ jhN 
as j = -N, ... , k and tk+I := b, where k is a natural num­
ber determined from a+ khN S b <a+ (k + l)hN. Then 
the corresponding neutral functional-difference inclusions 
associated with (2) are given by 

l
XN(t;+l)- AxN(tj+l- Ll.) E XN(t;) 

-AxN(t;- Ll.) + hNF(xN(t;),xN(t;- Ll.),t;) 

for J = 0, ... , k; 

xN(t;) = c(t;) for j = -N, ... , -I. 

(4) 

A collection of vectors {xN(t;)l j = -N, ... ,k + I} 
satisfying (4) is a discrete trajectory and the correspond­
ing collection {[xN(t;+,)- AxN(t;+, - Ll.)- XN(t;) + 
AxN(t;- Ll.)l/hN : j = 0, ... , k} is a combined discrete 
velocity for (4). We consider extensions XN(t) of discrete 
trajectories to the continuous-time interval [a - ~. b] de­
fined piecewise-linearly on [a, b] and piecewise-constantly, 
continuously from the right on [a-Ll., a). We also define 
piecewise-constant extensions of combined discrete veloci­
ties on [a,bl by vN(t) := [xN(t;+,)- AxN(t;+l- Ll.)­
XN(t;)+AXN(t; -Ll.)l/hN, t E (t;, I;+,), j = 0, ... , k. 



Let W 1•2 [a, b] be a standard Sobolev space of absolutely 
continuous functions x: [a, b] --+ JRn with the norm 

(l b )1/2 
]]x(·)llw•., := max ]x(t)] + [:i:(t)] 2 dt . 

tE[a,b] a . 

The following theorem establishes a strong approximation 
of any admissible trajectory for the given neutral functional~ 
differential inclusion by corresponding solutions to discrete 
approximations (4). 

Theorem 1: Let x(t) be an admissible trajectory for (2) 
under hypotheses (Hl)-(H3). Then there is a sequence 
{zN(t;) I j = -N, ... , k + 1 }. of solutions to (4) such 
that ZN(to) = x(a) for all N E IN, the extended discrete 
trajectories z N ( t), a - ~ ~ t ~ b, converge uniformly 
to x(t) on [a- .:;,b], and their extended combinations 
ZN(t) - AzN(t - ,;) converge to x(t) - Ax(t - ,;) in 
the W 1•2-norm on [a, b] as N ___. oo. In particular, some 
subsequence of {d[zN(t) - AzN(t- ,;)]/dt) converges 
pointwisely to d[x(t)- Ax(t- ,;)jjdt for a.e. t E [a, b]. 

Proof Following [17], we first find a sequence {wN(t)) 
such that WN(t) is constant in the interval [tj, ti+I) and 
WN(t) ~ d[x(t)-Ax(t-,;)]/dt strongly in L 1 [a,b]. Using 
this sequence, we construct the desired discrete trajectories 
{ ZN} via the proximal algorithm. Finally we show that the 
extended discrete trajectories ZN(t), a- 6. :S t::; b, have 
all the properties listed in the theorem. 

Ill. STRONG CONVERGENCE OF DISCRETE OPTIMAL 

SOLUTIONS 

In this section we construct a sequence of well-posed 
discrete approximations of the problem (P) such that opti­
mal solutions to discrete approximation problems strongly 
converge, in the sense described below, to a given opti~al 
solution x(t) to (P). 

Given x(t), a-,; s t s b, take its approximation ZN(t) 
from Theorem land denote ~N := ]zN(tk+d- x(b)]. For 
any natural number N we consider the following discrete­
time dynamic optimization problem (PN ), which is to 
minimize 

JN[XN] = <P(XN(to),xN(tk+I)) + ]xN(to)- x(aJI2 
k 

+hN Lf(xN(t;),xN(t;- ,;),t;) 
j=O 

k ftj+l I d 
+ L . dt [x(t)- Ax(t- ,;)]- [xN(t;+1) 

]=0 t] 

-AxN(t;+I-N)- xN(t;) + AxN(t;-N)]/hNI
2 

dt 

subject to the dynamic constraints governed by neutral 
functional-difference inclusions ( 4), the endpoint constraints 

which are fiN-perturbations of the original endpoint con­
straints (3), and the auxiliary constraints 

]xN(t;) -x(t;)[ S e, j = l, ... ,k + 1, (6) 

with some c > 0. The latter auxiliary constraints are needed 
to guarantee the existence of optimal solutions in ( PN) and 
can be ignored in the derivation of necessary optimality 
conditions; see below. 

In what follows we select' e > 0 in (6) such that x(t) + 
e!B c U for all t E [a - ,;, b] and take sufficiently large 
N ensuring that ~N < e. Note that problems (PN) have 
feasible solutions, since the trajectories z N from Theorem I 
satisfY all the constraints (4), (5), and (6). Therefore, by 
the classical Weierstrass theorem in finite dimensions, each 
(PN) admits an optimal solution XN(t) under the following 
assumption imposed in addition to (HI)-(H3). 
(H4) <Pis continuous on U xU, f(x, y, t) is continuous for 
a.e. t E [a,b] uniformly in (x,y) E U xU and continuous 
on U x U uniformly in t E [a, b], and rl is locally closed 
around (x(a),x(b)). 

To prove the strong_ convergence of optimal solutions to 
(PN ), we need to involve an important intrinsic property 
of (P) called the relaxation stability. Following lhe line 
originated by Jack Warga in optimal control theory (see 
[28] and its references), we consider the relaxed problem 
(R) of minimizing the cost functional (I) on admissible 
trajectories of the convexified neutral functional-differential 
inclusion 

{ 

f,[x(t)- Ax(t- ,;)] 

E coF(x(t),x(t- ,;),t), a.e. t E [a,b], 

x(t) = c(t), t E [a-,;, a) 

(7) 

with the endpoint constraints (3). Any admissible trajectory 
for (7) is called a relaxed trajectory for (2). 

Definition 2: Problem (P) is said to be stable with 
respect to relaxation if 

inf (P) = inf (R). 

This property, which obviously holds under the convexity 
assumption on the sets F(x, y, t), goes far beyond the 
convexity. General sUfficient conditions for the relaxation 
stability of the neutral-type problem (P) follows from 
[II]. We also refer the reader to [1], [17], [19], [28] for 
more detailed discussions on the validity of the relaxation 
stability. 

Now we are ready to establish the following strong 
convergence. theorem for optimal solutions to discrete 
approximations, which makes a bridge between optimal 
control problems governed by neutral functional-differential 
and functional-difference inclusions. 

Theorem 3: Let X(t) be an optimal solution to problem 
(P), which is assumed to be stable with respect to 

relaxation. Suppose also that hypotheses (Hl)-(H4) hold. 
Then any sequence { xN(t) ), N E IN, of optimal solutions 
to (PN) extended to to the continuous interval [a - ,;, b[ 
converges uniformly to x(t) on [a-,;, b], and the sequence 
of their combinations XN(t) - AxN(t - ,;) converges 



to x(t)-Ax(t-t.) in the W 1·2-norm on [a, b) as N ~ oo. 

Proof Since the trajectories ZN built in Theorem I are 
feasible solutions to (PN), one has JN[XN) :S JN[zN)· 
Noting that JN[zN) ~ J[x) as N ~ oo, we conclude that 

lim sup JN[XN) :S J[x). 
N-oo 

Then we show, following the line in [17] and employing 
the relaxation stability of (P), that 

2 j' d \XN(a)-x(a)\ + \-[XN(t)-AXN(t-t.)) 
a dt 

-~[x(t)- Ax(t- t.))\ 2
dt ~ o 

dt 

as N ---> oo, which completes the proof of the theorem. 

IV. TOOLS OF GENERALIZED DIFFERENTIATION 

Observe that problems (PN) are essentially nonsmooth, 
even in the case of smooth functions tp and f in the cost 
functional and the absence of endpoint constraints. The 
main source of nonsmoothness comes from the increasing 
number of geometric constraints in (4), which reflect the 
discrete dynamics and may have empty interiors. To conduct 
a variational analysis of such problems, we use appropriate 
tools of generalized differentiation introduced in [14] and 
then developed and applied in many publications; see, in 
particular, the books [15], [24] for detailed treatments and 
further references. 

Recall the the basic/limiting normal cone to the set 0 C 
JRn at the point X E f! is 

N(x;!1) :=Lim sup N(x;\1), (8) 
x--+X, xen 

and where 

N(x;!1):={x'EIRn\limsup (x',x-x) :=;o} (9) 
x-x,xen lx- xl 

is the cone of FrCchet (or regular) normals to 0 at X. For 
convex sets !1 both cones N(x; !1) and N(x; !1) reduce to 
the normal cone of convex analysis. Note that the basic 
normal cone (8) is often nonconvex while satisfying a 
comprehensive calculus, in contrast to (9). 

Given an extended-real-valued function c.p: JRn ___,. 1R := 
[-oo, oo) finite at X, the subdifferential of <p at x is defined 
geometrically 

&<p(x) := {x' E IRn\ (x', -1) E N((x,<p(x));epi<p)} (10) 

via basic normals to the epigraph epi <p := {(x, !') E 
JRn+lll' 2: <p(x)}. 

Given a set-valued mapping F: !Rn .:4 JRm with the 
graph gphF := {(x,y) E IRn x IRml y E F(x)), the 
coderivative D' F(x, y): IRm =l IRn of F at (x, y) E 
gph F is defined by 

D' F(x, y)(y') 

:= {x' E IRn\ (x', -y') E N((x, y); gph F)}. (II) 

The following two results are crucial in what follows. The 
first one gives a complete coderivative characterization of 
the classical local Lipschitzian property of multifunctions 
imposed in our standing assumption (HI); cf. [16, 
Theorem 5.11] and [24, Theorem 9.40). 

Proposition 4: Let F: !Rn .:4 JRm be a closed-graph 
multifunction locally bounded around X. Then the following 
conditions are equivalent: 
(i) F is locally Lipschitzian around X. 
(ii) There exist a neighborhood U of X and a number .f. > 0 
such that 

sup{lx'l: x' E D'F(x,y)(y')) 

:S fly' I, 'I x E U, y E F(x), y' E IRm. 

The next result taken from [15, Corollary 7.5) pro­
vides necessary optirriality conditions for a general problem 
( M P) ofnonsmooth mathematical programming with many 
geometric constraints: 

l 
minimize¢. o(z)_ subject to 
¢,(z) :S 0, J -l, ... ,r, 

g;(z)=O, j=O, ... ,m, 

ZEAj, j=O, ... ,l, 

Proposition 5: Let Z be an optimal solution to (MP). 
Assume that all ¢i are Lipschitz continuous, that 9j are 
continuously differentiable, and that Aj are locally closed 
near Z. Then there exist real numbers {p.j I j = 0, ... , r} 
as well as vectors {1/>; E IRnl j = O, ... ,m} and {z; E 
JRdl j = 0, ... , I}, n tall zero, such that 

I'; 2:0 f(ff j = O, .... r. (12) 

1';</J;(z) =0 f(l/" j = I, .... r, (13) 

zjEN(z;A,) f(l/" j=O, ... ,l, (14) 

I ' m 

- 2::>; E a(I>,<P,)(.z) + L'Vu;(z)'..P;. (15) 
j=O j=O J=O 

For applications in this paper we need the following 
modifications of the basic constructions (8), (I 0), and (II) 
for sets, functions, and set-valued mappings depending on 
a parameter t from a topological space T (in our case 
T =[a, b)). 

Given !1 : T =l IRn and x E !1 ( l), we define the extended 
normal cone to !1(i) at x by 

N(x; !1(i)) .- Limsup N(x; !1(t)). (16) 
(t,x) g~ (l,:I:) 

For <p: IRn x T ~ 1R finite at (x, l) and for F: IRn x 
T =liRm with y E F(x, l), the extended subdifferential of 
<p at (x, l) and the extended coderivative of F at (x, y, l) 



with respect to x are given, respectively, by 

&x<p(x,[) := {x• E lll"l (x",-1) 

E N((x, <p(x, [)); epi <p(-, [))} 

and, whenever y* E JRm, by 

i5;F(x, y, [)(y") := { x• E lll" I (x", -y") 

(17) 

E N((x,fi);gphF(-,[))} (18) 

Note that the sets (16)-(18) may be bigger in some sit­
uations than the corresponding sets N(x; !1([)), 8x<p(x, [), 
and D;F(x, fj, [)(y"), where the latter two sets stand for 
the subdifferential (10) of <p(·, [) at x and the coderivative 
(11) ofF(-,[) at (x, f),[), respectively. Efficient conditions 
ensuring equalities for these sets are discussed in [17], [18], 
[20]. 

It is not hard to check that the extended constructions 
( 16)-(18) are robust with respect to their variables, which 
is important for performing limiting procedures in what 
follows. In particular, 

N(x;O([)) = Limsup N(x;O(t)). 
(t,x) 8~0 (i,X) 

V. NECESSARY OPTIMALITY CONDITIONS FOR 

DISCRETE APPROXIMATIONS 

This section concerns necessary optimality conditions 
for discrete approximation problems (PN ). We derive such 
conditions in the extended Euler-Lagrange form by reducing 
(PN) to nonsmooth mathematical programs and employing 
generalized differential calculus for the basic constructions 
(8), (10), and (ll). 

Let us reduce the dynamic optimization problem (PN) 
for each N E IN to the mathematical programming problem 
( M P) considered in Section IV with the decision vector 

·- ( N N N N N N) JRn(2k+3) z.- x 0 ,x1 , ... ,xk+l•v0 ,v1 , ... ,vk E 

and the following data: 

¢o(z) := <p(x{/,xf:'+t) + lx!/- x(a)i 2 

k 

+hN Lf(xj',xj'_N,tj) 
j=O 

k Jtj+1 
+ L lvf- d[x(t)- Ax(t- t.)]/dtl 2 dt, 

j=O t, 

<Pi(z) := 1'1- x(ti)l- <, j = 1, ... ,k + 1, 
Aj := { (x0 , ... ,vf:) I vf E F(xj', xj'_N,tj) ), 

j=O, ... ,k, 
Ak+t := {(x{/, ... ,vf:') I (x{/,xf:'+ 1 ) E 11N), 
9J(z) := xf+ 1 - Axf+l-N- xf + Axf-N- hNvf, 

j = 0, ... ,k. 

where xj' := c(tj) for j < 0. 
L t -N _ (-N -N -N -N) b ' l l e z - x 0 1 ••• 1 xk+l, v0 , ... , vk e an opt1ma sou-
tion to (M P). Applying Proposition 5, we find real numbers 
1/j and vectors zj E JRn(2k+3l for j = 0 1 ••• 1 k + 1 as well 

as vectors 1/Jf E mn for j = 0, ... , k, not all zero, such 
that conditions (12)-{15) are satisfied. 

Taking zj = (xQ,j 1 ... ,xk+I,J•vQ,J1"'1vk,J) E 
N(zN;Aj) for j = O, ... ,k, we observe that all but one 
components of zj are zero and the remaining one satisfies 

(xj,i,xj-N,J•vJ,J) E N((xf,xf-N,vj');gphF(·, ·,tJ)) 

for j = 0 1 ••• 1 k. Similarly, the condition zk+ 1 E 
N(zN;Ak+tl is equivalent to 

(xo,k+t•Xk+l,k+l) E N((x{/,xf:'+t);ON) 

with all the other components of z,i;+1 equal to zero. 
Employing Theorem 2 on the convergence of discrete 
approximations, we have ¢j('i.N) < 0 for j = 1, ... , k +I 
whenever N is sufficiently large. Thus J.Lf = 0 for these 
indexes due to the complementary slackness conditions 
(13). Let >,N := 1'1/ ~ 0. Therefore, Proposition 5 is 
equivalent to the following relationships: 

-xO,o - xO,N - xO,k+l 

=ANu{/ +ANhNi!!/ +>.NhNK!/ 

+2>-N(x{/- x(a))- <Pf:- A'(,Pfi_t -1/Ji)), 

-x;,J - xj,J+N 
= ).NhNKN + ANhN{)N + ,t.N _ ,,,N 

J J 'f'J-1 'PJ 

-A"(V;J"cN-t-</Jf'cN), j = 1, ... ,k -N, 

-Xk-N+l,k-N+l 

= >.NhNvf:_N+l + <Pf:-N- <Pf:-N+1 + A"1/;f:, 
-X~.= ),NhN1JN 

J,J J 

+<Pf_t - ¢)', j = k - N + 2, ... , k, 

• _ 'N N +'''N -xk+I,k+I -A uk+l '~-'k • 

-vj,i = ),N 8§' - hN'¢;', j = 0, .... k 

with the notation 

( N N ) {) (-N -N ) u0 ,Uk+l E <p Xo ,Xk+l , 

(i!j',~<f-N) E af(xj',xf-N,tj), 

J
tj+l 

ej' := -2 (d[x(t)- Ax(t- t.)]/dt- vf) dt. ,, 
Based on the above relationships, we arrive at the 

following necessary optimality conditions for discrete­
time problems (PN), where fih·) := JC,·,tj) and 
Fj(-,·) := F(·,·,tj). 

Theorem 6: Let zN be an optimal solution to problem 
(PN ). Assume that the sets 11 and gph Fj are closed and 
that the functions <p and fi are Lipschitz continuous around 
the points (x:, xf+1) and (Xf, xf-N ), respectively, for all 
j = 0, ... , k. Then there exist >,N ~ 0, pf (j = 0, ... , k + 
N + 1), and qj' (j = -N, ... , k + 1), not all zero, such 
that 

pj' =0, j=k+2, ... ,k+N+1, (19) 



qf=O, j=k-N+1, ... ,k+1, (20) VI. OPTIMALITY CONDITIONS FOR 

FUNCTIONAL-DIFFERENTIAL INCLUSIONS 

(p{i +q{i,-pf:+,) E AN&<p(x{i,xi;'+1 ) 

+N((x{i, xi;'+>); nN ), 
(21) In this section we obtain the main results of the paper 

providing necessary optimality conditions for the original 
dynamic optimization problem (P) in both extended Euler­
Lagrange and Hamiltonian forms involving generalized 
differential constructions of Section IV. Our major theorem 

([Pj';.,- Ptl/hN, [Qf-N+l- Qj'_N[/hN, 

-ANe; /hN + pf+l + qft_,) 
E A (&f;(xj',xf_N),O) 

+N((xf, xf-N>uf); gphF;), j = 0, ... , k, 

with the notation 

(22) establishes the following conditions of the Euler-Lagrange 
type derived by the limiting procedure from discrete 
approximations. 

P N ·- N A' N i ·-Pi - PJ+N• Q N. N A' N 
j .= Qj - Qj+N' 

Proof Most of the proof has been actually done above, 
and we just need to change notation in the relationships 
formulated right before the theorem. Let first 

-N {'1/Jf_, forj=1, ... ,k+1, 

P; := 0 for j = k + 2, ... , k + N + 1. 

iff := {AN ~<f +x~J+:/hN, for j = 0, ... , k- N, 
0, for J - k N + 1 .... , k + 1, 

and then define qf for j = - N, ... , k + 1 by the recurrent 
formula 

N N A'( N N ) h -N qj := qj+l - %+N+l + qj+N - NQj • 

and let 

N. \N N + • N Po .= A uo xo,k+l - Qo ' 
N-NNc· kN P; := P; - Q; <Of J = 1, ... , + + 1, 

It is easy to check that all the relationships ( 19}-(22) hold. 

Corollary 7: In addition to the assumptions of Theo­
rem 3, suppose that the mapping FJ is bounded and 
Lipschitz continuous around (X)', xf-N) for each j = 
0, ... , k. Then conditions AN ?. 0 and (19)-(22) hold with 
(,\N ,pf;'+ 1) =f:. 0, i.e., one can let 

(AN)2 + jpf:+,i2 = 1. 

Proof If AN = 0, then (22) together with (19) and (20) 
imply that 

N N N 

(
Pk+l - Pk -qk-N) D' (-N -N -N)( N ) 

hN ·~ E Fk xk ,xk-N•vk -pk+l. 

Assuming now that p~+l = 0, we get 

N N 

( -pk -qk-N) E D' F (-N -N -N)(O) 
hN' hN kXk,Xk-N•Vk ' 

which implies pf: = qf:_N = 0. Repeating the above 
procedure, we arrive at contradiction with the nontriviality 
assertion in Theorem 6. 

Theorem 8: Let X(t) be an optimal solution to problem 
(P) under hypotheses (HJ)-(H4), where <p and f(·, ·, t) are 
assumed to be Lipschitz continuous instead of the plain 
continuity. Suppose also that (P) is stable with respect to 
relaxation. Then there exist a number A 2:: 0 and continuous 
JUnctions p: [a, b+,:,.j ~ JRn and q: [a-,:,., b] ~ JRn such 
that p(t)- A'p(t+,:,.) and q(t- ,:,.) - A'q(t) are absolutely 
continuous on [a, b] and the following conditions hold: 

A+ jp(b)l = 1, 

p(t) = 0 for t E (b,b+ ,:,.j, 

q(t) = 0 for t E (b- ,:,.,b], 

(p(a) + q(a), -p(b)) E A&<p(x(a), x(b)) 

+N((x(a), x(b)); D), 

(d[p(t)- A'p(t + ,:,.)]/dt, 
d[q(t- ,:,.) - A'q(t)Jjdt) E co{(u, w, 

p(t) + q(t)) E A(i:iJ(x(t), x(t- ,:,.), t), OJ+ 
fii((x(t),x(t- ,:,.),d[x(t)- Ax(t- ,:,.)]/dt); 

gphF(t))l a.e. t E [a,b]. 

(23) 

(24) 

(25) 

(26) 

(27) 

Proof In what follows we use the notation ;;;N ( t ), pN ( t ), 
qN (t- ,:,.), pN (t), and QN (t- ,:,.) for piecewise linear 
extensions of the corresponding discrete functions on [a, b]; 
PN (t) and (JN (t- ,:,.) are the piecewise constant deriva­
tives. First we estimate (PN (t), QN (t - 6)) when N is 
sufficient large. Using (19) and (20), we derive from (22) 
that 

N N N N 

(
Pj+l- Pj - ).Nf)N qj-N+l- qj-N >.N N 

hN J ' hN 1'\.J-N• 

-AN8fjhN +pf+1) E N((xf,xf-N,vj');gphF,) 

with some (f!j',~<f-N) E &f,(xf,xf_Nl· 
For j = k- N + 2, ... , k + N + 1, by definition of the 

coderivative (11) and Proposition 4, we have 



Since I ({)If, "f-N) I :<; C 1 due to the Lipschitz continuity of 
f with modulus C fo we derive from the above that 

l(pf,qf_N)I :<; CFIOfl + (CF + l)hNCt 

+(CFhN + l)l(pf+l•qf-N+l)l 

:<; exp[RF(b- a)j(l + Rt(RF + 1)/RF + RFVN), 

which implies the uniform boundedness of { (pf, qf-N ): 
j = k-N +2, ... , k +N +I} and hence of (pN (t), qN (t­
Il.)) on [b- Ll., bj. 

Next we consider j = k- 2N + 2, ... , k + 1 and derive 
from (22) that 

N N N N 

I(Pi+I-Pi ->..NiJf:l qi-N+l-qi-N -AN""fo! )I 
hN J ' hN J-N 

:,; cFI>.Ner /hN- pf+l- qf+,l 

I (
A*pf+N+l- A*pf+N A*qf+l- A*qf) I 

+ hN ' hN . 

This implies due to Proposition 4 and the uniform bound­
edness of pf+N and qf by some constant a > 0 for such 
j that 

Therefore 

l(pf,qf_N)I :<; RFIBfl + (RF + l)hNCt 

+(RFhN + l)I(Pfw qf-_N+l)l + (RFhN + l)a 

:<; exp[fF(b- a)j(l + (Rt + a)(CF + 1)/CF + CFVN) 

for j = k - 2N + 2, ... , k + I. This shows that pf and 
qf'-N are uniformly bounded for j = k- 2N + 2, ... , k +I, 
and hence the sequence{pN(t),qN(t- Ll.)} is uniformly 
bounded on [b- 2/l., b- Ll.j. Repeating the above procedure, 
we conclude that both sequences {pN (t), qN (t- Ll.)} and 
{PN (t), QN (t- Ll.)} are uniformly bounded on the whole 
interval [a, bj. 

Next we estimate (PN (t), QN (t- Ll.)) on [o, bj. (22) and 
Proposition 4 yield, for t; :<; t < t1+1 with j = 0, ... , k, 
that 

I(FN(t),QN(t- Ll.))l 

= I ( Pf"t.~: Pf' Qlf-N+~: Qlf-N) I 
:<; RFIOfl + RFIPf+,l + CFiqf+,j + c,. 

Thus the sequence {PN (t), QN (t- Ll.)} is weakly com­
pact in L1 [a,bj. We find two absolutely continuous time­
lions P(t) and Q(t - Ll.) on [a, bj such that PN (t) ~ 
P(t),QN(t- Ll.) ~ Q(t- Ll.) weakly in L1 [a,bj and 
pN (t) ~ P(t), QN (t - Ll.) ~ Q(t - 1\.) uniformly 
on [a, bj as N ~ oo. Since pN (t) and qN (t - Ll.) are 
uniformly bounded on [a, b + Ll.j, they surely converge to 

some functions p(t) and q(t- Ll.) weakly in £ 1 [a, b + Ll.j. 
Thus, p(t), q(t) satisfy (24) and 

P(t) = p(t)- A•p(t + Ll.), 

Q(t- Ll.) = q(t- Ll.)- A•q(t). 

Note that p(t) and q(t) are continuous on [a, b + Ll.J and 
[a-Ll., bj, respectively. Conditions (23) and (26) follow by 
passing to the limit from (7) and (21), respectively, taking 
into account the robustness of the basic subdifferential (1 0) 
and the normal cone (8). 

To justify the Euler-Lagrange inclusion (27), we rewrite 
the discrete Euler-Lagrange inclusion (22) in the form 

(FN (t), QN (t- Ll.)) 

E {(u,w)l (u,w,pN(tj+!) +qN(tj+l)- >,NOf/hN) 

E >,N(!Jf(x(t,),x(t;- Ll.),t;),O) 

+(N(xlf,xf-N• vf); gphF;)} 

fortE [t;,t;+,J with j = O, ... ,k. By the classical 
Mazur theorem there is a sequence of convex combinations 
of the functions (PN(t),QN(t- Ll.)) that converges to 
(F(t), Q(t- Ll.)) for a.e. t E [a, bj. Passing the limit in 
above inclusion, we arrive at (27) and complete the proof 
of the theorem. 

Observe that for the Mayer problem (PM), which is (1)­
(3) with f = 0, the generalized Euler-Lagrange inclusions 
(27) is equivalently expressed in terms of the extended 
coderivative (18) with respect to the first two variables of 
F = F(x, y, t), i.e., in the form 

d d 
( -d [p(t)- A•p(t + Ll.)J. -d [q(t- Ll.)- A•q(t)j) 

t - t 
E co D;,yF(x(t), x(t- Ll.), (28) 

d[x(t)- Ax(t- Ll.)J/dt, t)( -p(t)- q(t)) 

for a.e. t E [a, bj. 
It turns out that the extended Euler-Lagrange inclusion 

obtained above implies, under the relaxation stability of the 
original problems, two other principal optimality conditions 
expressed in terms of the Hamiltonian function built upon 
the mapping F in (2). The first condition called the extended 
Hamiltonian inclusion is given below in terms of a partial 
convexification of the basic subdifferential ( 1 0) for the 
Hamiltonian function. The second one is an analog of 
the classical Pontryagin maximum principle for neutral 
functional-differential inclusions. Recall that an analog of 
the maximum principle does not generally hold even in 
the case of optimal control problems governed by smooth 
functional-differential equations of neutral type. 

The following relationships between the extended Euler­
Lagrange and Hamiltonian inclusions are based on Rock­
afellar's dualization theorem [23] that concerns sub gradients 
of abstract Lagrangian and Hamiltonian associated with 
set-valued mappings regardless the dynamics in (2). For 
simplicity we consider the case of the Mayer problem (PM) 
for autonomous functional-differential inclusions of neutral 



type. Then the Hamiltonian function for F in (2) is defined 
by 

H(x,y,p) :~sup { (p, v)l v E F(x,y) }. 

Corollary 9: Let X(·) be an optimal solution to 
the Mayer problem (PM) for the autonomous neutral 
functional-differential inclusion (2) under the assumptions 
of Theorem 4. Then there exist a number A 2: 0 and contin­
uous functions p: [a,b+Ll.J ~ JR" andq: [a-Ll., b)~ JR" 
such that p(t)- A'p(t + Ll.) and q(t- Ll.) - A'q(t) are 
absolutely continuous on [a, b) and, besides (23)-(27), we 
have the following: 
the extended Hamiltonian inclusion 

(:t [p(t) - A'p(t + Ll.)], ~ [q(t - Ll.) -A' q(t)]) 

E co {(u, w) 1 ( -u, -w, d[x(t) - Ax(t- Ll.)J/dt) (29) 
e 8H(x(t),x(t- Ll.),p(t) + q(t))) 

and the maximum condition 

(p(t) + q(t), f,[x(t)- Ax(t- Ll.)]) 

~ H(x(t),x(t- Ll.),p(t) + q(t)) (30) 

for a.e. t E [a, b]. Moreover, ifF is convex-valued around 
(x(t), x(t - Ll.)), then (29) is equivalent to the Euler­
Lagrange inclusion 

(:t[p(t) -A'p(t+Ll.)], :t[q(t-Ll.) -A'q(t)J) 

E coD'F(x(t),x(t- Ll.), 
d[x(t)- Ax(t- Ll.)]/dt)( -p(t)- q(t)) 

(31) 

for a. e. t E [a, b], which automatically implies the maximum 
condition (30) in this case. 

Proof Since (PM) is stable with respect to relaxation, x(t) 
is an optimal solution to the relaxed problem ( RM) whose 
only difference from (PM) is that the neutral functional­
differential inclusion (2) is replaced by its convexification 
(7). By Theorem 8 the optimal solution x(t) satisfies 
conditions (23)-(27) and the relaxed counterpart of (28), 
which is the same as (31) in this case with F replaced by 
co F, According to [23, Theorem 3 J] one has 

co{(u,v)l (u,w,p) E N((x,y,v);gph(coF)} 

~co {(u,w)i (-u, -w,v) E 8Hn(x,y,p)}, 

where Hn stands for the Hamiltonian (29) of the relaxed 
system. It is easy to check that H R = H. Thus the extended 
Euler-Lagrange inclusion for the relaxed system implies the 
extended Hamiltonian inclusion (29), which surely yields 
the maximum condition (30). When F is convex-valued, 
(29) and (31) are equivalent due to the mentioned result of 
[23]. This completes the proof of the corollary. 
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