89 research outputs found

    Approximation in Lp(μ)L^p(\mu) with deep ReLU neural networks

    Full text link
    We discuss the expressive power of neural networks which use the non-smooth ReLU activation function ϱ(x)=max{0,x}\varrho(x) = \max\{0,x\} by analyzing the approximation theoretic properties of such networks. The existing results mainly fall into two categories: approximation using ReLU networks with a fixed depth, or using ReLU networks whose depth increases with the approximation accuracy. After reviewing these findings, we show that the results concerning networks with fixed depth--- which up to now only consider approximation in Lp(λ)L^p(\lambda) for the Lebesgue measure λ\lambda--- can be generalized to approximation in Lp(μ)L^p(\mu), for any finite Borel measure μ\mu. In particular, the generalized results apply in the usual setting of statistical learning theory, where one is interested in approximation in L2(P)L^2(\mathbb{P}), with the probability measure P\mathbb{P} describing the distribution of the data.Comment: Accepted for presentation at SampTA 201

    Is Stochastic Gradient Descent Near Optimal?

    Full text link
    The success of neural networks over the past decade has established them as effective models for many relevant data generating processes. Statistical theory on neural networks indicates graceful scaling of sample complexity. For example, Joen & Van Roy (arXiv:2203.00246) demonstrate that, when data is generated by a ReLU teacher network with WW parameters, an optimal learner needs only O~(W/ϵ)\tilde{O}(W/\epsilon) samples to attain expected error ϵ\epsilon. However, existing computational theory suggests that, even for single-hidden-layer teacher networks, to attain small error for all such teacher networks, the computation required to achieve this sample complexity is intractable. In this work, we fit single-hidden-layer neural networks to data generated by single-hidden-layer ReLU teacher networks with parameters drawn from a natural distribution. We demonstrate that stochastic gradient descent (SGD) with automated width selection attains small expected error with a number of samples and total number of queries both nearly linear in the input dimension and width. This suggests that SGD nearly achieves the information-theoretic sample complexity bounds of Joen & Van Roy (arXiv:2203.00246) in a computationally efficient manner. An important difference between our positive empirical results and the negative theoretical results is that the latter address worst-case error of deterministic algorithms, while our analysis centers on expected error of a stochastic algorithm.Comment: arXiv admin note: substantial text overlap with arXiv:2203.0024
    corecore