123 research outputs found

    Architectures and Algorithms for the Signal Processing of Advanced MIMO Radar Systems

    Get PDF
    This thesis focuses on the research, development and implementation of novel concepts, architectures, demonstrator systems and algorithms for the signal processing of advanced Multiple Input Multiple Output (MIMO) radar systems. The key concept is to address compact system, which have high resolutions and are able to perform a fast radar signal processing, three-dimensional (3D), and four-dimensional (4D) beamforming for radar image generation and target estimation. The idea is to obtain a complete sensing of range, Azimuth and elevation (additionally Doppler as the fourth dimension) from the targets in the radar captures. The radar technology investigated, aims at addressing sev- eral civil and military applications, such as surveillance and detection of targets, both air and ground based, and situational awareness, both in cars and in flying platforms, from helicopters, to Unmanned Aerial Vehicles (UAV) and air-taxis. Several major topics have been targeted. The development of complete systems and innovative FPGA, ARM and software based digital architectures for 3D imaging MIMO radars, which operate in both Time Division Multiplexing (TDM) and Frequency Divi- sion Multiplexing (FDM) modes, with Frequency Modulated Continuous Wave (FMCW) and Orthogonal Frequency Division Multiplexing (OFDM) signals, respectively. The de- velopment of real-time radar signal processing, beamforming and Direction-Of-Arrival (DOA) algorithms for target detection, with particular focus on FFT based, hardware implementable techniques. The study and implementation of advanced system concepts, parametrisation and simulation of next generation real-time digital radars (e.g. OFDM based). The design and development of novel constant envelope orthogonal waveforms for real-time 3D OFDM MIMO radar systems. The MIMO architectures presented in this thesis are a collection of system concepts, de- sign and simulations, as well as complete radar demonstrators systems, with indoor and outdoor measurements. Several of the results shown, come in the form of radar images which have been captured in field-test, in different scenarios, which aid in showing the proper functionality of the systems. The research activities for this thesis, have been carried out on the premises of Air- bus, based in Munich (Germany), as part of a Ph.D. candidate joint program between Airbus and the Polytechnic Department of Engineering and Architecture (Dipartimento Politecnico di Ingegneria e Architettura), of the University of Udine, based in Udine (Italy).Questa tesi si concentra sulla ricerca, lo sviluppo e l\u2019implementazione di nuovi concetti, architetture, sistemi dimostrativi e algoritmi per l\u2019elaborazione dei segnali in sistemi radar avanzati, basati su tecnologia Multiple Input Multiple Output (MIMO). Il con- cetto chiave `e quello di ottenere sistemi compatti, dalle elevate risoluzioni e in grado di eseguire un\u2019elaborazione del segnale radar veloce, un beam-forming tri-dimensionale (3D) e quadri-dimensionale (4D) per la generazione di immagini radar e la stima delle informazioni dei bersagli, detti target. L\u2019idea `e di ottenere una stima completa, che includa la distanza, l\u2019Azimuth e l\u2019elevazione (addizionalmente Doppler come quarta di- mensione) dai target nelle acquisizioni radar. La tecnologia radar indagata ha lo scopo di affrontare diverse applicazioni civili e militari, come la sorveglianza e la rilevazione di targets, sia a livello aereo che a terra, e la consapevolezza situazionale, sia nelle auto che nelle piattaforme di volo, dagli elicotteri, ai Unmanned Aerial Vehicels (UAV) e taxi volanti (air-taxis). Le tematiche affrontante sono molte. Lo sviluppo di sistemi completi e di architetture digitali innovative, basate su tecnologia FPGA, ARM e software, per radar 3D MIMO, che operano in modalit`a Multiplexing Time Division Multiplexing (TDM) e Multiplexing Frequency Diversion (FDM), con segnali di tipo FMCW (Frequency Modulated Contin- uous Wave) e Orthogonal Frequency Division Multiplexing (OFDM), rispettivamente. Lo sviluppo di tecniche di elaborazione del segnale radar in tempo reale, algoritmi di beam-forming e di stima della direzione di arrivo, Direction-Of-Arrival (DOA), dei seg- nali radar, per il rilevamento dei target, con particolare attenzione a processi basati su trasformate di Fourier (FFT). Lo studio e l\u2019implementazione di concetti di sistema avan- zati, parametrizzazione e simulazione di radar digitali di prossima generazione, capaci di operare in tempo reale (ad esempio basati su architetture OFDM). Progettazione e sviluppo di nuove forme d\u2019onda ortogonali ad inviluppo costante per sistemi radar 3D di tipo OFDM MIMO, operanti in tempo reale. Le attivit`a di ricerca di questa tesi sono state svolte presso la compagnia Airbus, con sede a Monaco di Baviera (Germania), nell\u2019ambito di un programma di dottorato, svoltosi in maniera congiunta tra Airbus ed il Dipartimento Politecnico di Ingegneria e Architettura dell\u2019Universit`a di Udine, con sede a Udine

    An Experimental Study of Radar-Centric Transmission for Integrated Sensing and Communications

    Get PDF
    This study proposes a dual-function radar and communication (DFRC) system that utilizes radar transmission parameters as modulation indexes to transmit data to the users while performing radar sensing as its primary function. The proposed technique exploits index modulation (IM) using the center frequency of radar chirps, their bandwidths, and polarization states as indexes to modulate the communication data within each radar chirp. By utilizing the combination of these indexes, the proposed DFRC system can reach up to 17 Mb/s throughput, while observing a robust radar performance. Through our experimental study, we also reveal the trade-off between the radar sensing performance and communication data rate, depending on the radar waveform parameters selected in the DFRC system. This study also demonstrates the implementation of the proposed DFRC system and presents its real-time over-the-air experimental measurements. Consequently, the simulation results are verified by real-time over-the-air experiments, where ARESTOR, a high-speed signal processing and experimental radar platform, has been employed

    Discrete Frequency and Phase Coding Waveform for MIMO Radar

    Get PDF
    In multi-input multi-output (MIMO) radar system, good orthogonality between transmitting waveforms will fairly simplify the signal processing, along with improve the targets detection as well as the parameters estimation performance of the system. In this paper, a discrete frequency and phase coding waveform (DFPCW), which attains good orthogonality by varying the carrier frequency and initial phase of each pulse in the pulse train, is designed. The theoretical derivations of ambiguity function (AF) and cross ambiguity function (CAF) of the DFPCW are also given. After then, a generic algorithm (GA) is applied by optimizing the carrier frequency code sequence and initial phase code sequence to minimize both the auto-correlation sidelobe peaks (ASP) and cross-correlation peaks (CP) of the waveforms. The simulation results demonstrate that DFPCW has better orthogonality and sidelobe property compared with the traditional discrete frequency coding waveform and widely employed frequency modulated continuous wave (FMCW), henceforth this new waveform may become to an alternative option for MIMO radar

    MIMO High Frequency Surface Wave Radar Using Sparse Frequency FMCW Signals

    Get PDF
    The heavily congested radio frequency environment severely limits the signal bandwidth of the high frequency surface wave radar (HFSWR). Based on the concept of multiple-input multiple-output (MIMO) radar, we propose a MIMO sparse frequency HFSWR system to synthesize an equivalent large bandwidth waveform in the congested HF band. The utilized spectrum of the proposed system is discontinuous and irregularly distributed between different transmitting sensors. We investigate the sparse frequency modulated continuous wave (FMCW) signal and the corresponding deramping based receiver and signal processor specially. A general processing framework is presented for the proposed system. The crucial step is the range-azimuth processing and the sparsity of the carrier frequency causes the two-dimensional periodogram to fail when applied here. Therefore, we introduce the iterative adaptive approach (IAA) in the range-azimuth imaging. Based on the initial 1D IAA algorithm, we propose a modified 2D IAA which particularly fits the deramping processing based range-azimuth model. The proposed processing framework for MIMO sparse frequency FMCW HFSWR with the modified 2D IAA applied is shown to have a high resolution and be able to provide an accurate and clear range-azimuth image which benefits the following detection process

    Radar Interference Mitigation for Automated Driving: Exploring Proactive Strategies

    Get PDF
    Autonomous driving relies on a variety of sensors, especially on radars, which have unique robustness under heavy rain/fog/snow and poor light conditions. With the rapid increase of the amount of radars used on modern vehicles, where most radars operate in the same frequency band, the risk of radar interference becomes a compelling issue. This article analyses automotive radar interference and proposes several new approaches, which combine industrial and academic expertise, toward the path of interference-free autonomous driving

    Towards Integrated Sensing and Communications for 6G: A Standardization Perspective

    Full text link
    The radio communication division of the International Telecommunication Union (ITU-R) has recently adopted Integrated Sensing and Communication (ISAC) among the key usage scenarios for IMT-2030/6G. ISAC is envisioned to play a vital role in the upcoming wireless generation standards. In this work, we bring together several paramount and innovative aspects of ISAC technology from a global 6G standardization perspective, including both industrial and academic progress. Specifically, this article provides 6G requirements and ISAC-enabled vision, including various aspects of 6G standardization, benefits of ISAC co-existence, and integration challenges. Moreover, we present key enabling technologies, including intelligent metasurface-aided ISAC, as well as Orthogonal Time Frequency Space (OTFS) waveform design and interference management for ISAC. Finally, future aspects are discussed to open various research opportunities and challenges on the ISAC technology towards 6G wireless communications.Comment: 7 pages, 5 figure

    Discrimination of Angle-Doppler Signatures using Arbitrary Phase Center Motion for MIMO Radars

    Get PDF
    A novel Phase Center Motion (PCM) based technique for discriminating angle-Doppler signatures within Multiple-Input-Multiple-Output (MIMO) radars using Frequency Modulated Continuous Wave (FMCW) has been explored in this work. The PCM technique induces angle dependent Doppler shifts in the back-scattered signal, wherein a modified Doppler post processing for FMCW leads to joint angle-Doppler processing. Specifically, we intend to design unique spatialtemporal motion of the phase center on each individual MIMO radar channel in an effort to synthesize nearly orthogonal angle-Doppler signatures. Subsequently, we also develop a MIMO radar receiver design, which would be capable of discriminating between these induced angle-Doppler signatures. The asymptotic investigation provides a Bessel function characteristic. Simulation results demonstrate a significant side-lobe suppression of 8:5 dB for an individual PCM trajectory and 7 dB over distinct PCM trajectories, in an attempt towards realization of nearly orthogonal MIMO radar channels
    corecore