1,143 research outputs found

    Near-optimal labeling schemes for nearest common ancestors

    Full text link
    We consider NCA labeling schemes: given a rooted tree TT, label the nodes of TT with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the label of their nearest common ancestor. For trees with nn nodes we present upper and lower bounds establishing that labels of size (2±ϵ)logn(2\pm \epsilon)\log n, ϵ<1\epsilon<1 are both sufficient and necessary. (All logarithms in this paper are in base 2.) Alstrup, Bille, and Rauhe (SIDMA'05) showed that ancestor and NCA labeling schemes have labels of size logn+Ω(loglogn)\log n +\Omega(\log \log n). Our lower bound increases this to logn+Ω(logn)\log n + \Omega(\log n) for NCA labeling schemes. Since Fraigniaud and Korman (STOC'10) established that labels in ancestor labeling schemes have size logn+Θ(loglogn)\log n +\Theta(\log \log n), our new lower bound separates ancestor and NCA labeling schemes. Our upper bound improves the 10logn10 \log n upper bound by Alstrup, Gavoille, Kaplan and Rauhe (TOCS'04), and our theoretical result even outperforms some recent experimental studies by Fischer (ESA'09) where variants of the same NCA labeling scheme are shown to all have labels of size approximately 8logn8 \log n

    Distance labeling schemes for trees

    Get PDF
    We consider distance labeling schemes for trees: given a tree with nn nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et. al. (J. Alg. 2004) and an upper bound by Peleg (J. Graph Theory 2000) establish that labels must use Θ(log2n)\Theta(\log^2 n) bits\footnote{Throughout this paper we use log\log for log2\log_2.}. Gavoille et. al. (ESA 2001) show that for very small approximate stretch, labels use Θ(lognloglogn)\Theta(\log n \log \log n) bits. Several other papers investigate various variants such as, for example, small distances in trees (Alstrup et. al., SODA'03). We improve the known upper and lower bounds of exact distance labeling by showing that 14log2n\frac{1}{4} \log^2 n bits are needed and that 12log2n\frac{1}{2} \log^2 n bits are sufficient. We also give (1+ϵ1+\epsilon)-stretch labeling schemes using Θ(logn)\Theta(\log n) bits for constant ϵ>0\epsilon>0. (1+ϵ1+\epsilon)-stretch labeling schemes with polylogarithmic label size have previously been established for doubling dimension graphs by Talwar (STOC 2004). In addition, we present matching upper and lower bounds for distance labeling for caterpillars, showing that labels must have size 2lognΘ(loglogn)2\log n - \Theta(\log\log n). For simple paths with kk nodes and edge weights in [1,n][1,n], we show that labels must have size k1klogn+Θ(logk)\frac{k-1}{k}\log n+\Theta(\log k)

    Labeling Schemes with Queries

    Full text link
    We study the question of ``how robust are the known lower bounds of labeling schemes when one increases the number of consulted labels''. Let ff be a function on pairs of vertices. An ff-labeling scheme for a family of graphs \cF labels the vertices of all graphs in \cF such that for every graph G\in\cF and every two vertices u,vGu,v\in G, the value f(u,v)f(u,v) can be inferred by merely inspecting the labels of uu and vv. This paper introduces a natural generalization: the notion of ff-labeling schemes with queries, in which the value f(u,v)f(u,v) can be inferred by inspecting not only the labels of uu and vv but possibly the labels of some additional vertices. We show that inspecting the label of a single additional vertex (one {\em query}) enables us to reduce the label size of many labeling schemes significantly

    A simple and optimal ancestry labeling scheme for trees

    Full text link
    We present a lgn+2lglgn+3\lg n + 2 \lg \lg n+3 ancestry labeling scheme for trees. The problem was first presented by Kannan et al. [STOC 88'] along with a simple 2lgn2 \lg n solution. Motivated by applications to XML files, the label size was improved incrementally over the course of more than 20 years by a series of papers. The last, due to Fraigniaud and Korman [STOC 10'], presented an asymptotically optimal lgn+4lglgn+O(1)\lg n + 4 \lg \lg n+O(1) labeling scheme using non-trivial tree-decomposition techniques. By providing a framework generalizing interval based labeling schemes, we obtain a simple, yet asymptotically optimal solution to the problem. Furthermore, our labeling scheme is attained by a small modification of the original 2lgn2 \lg n solution.Comment: 12 pages, 1 figure. To appear at ICALP'1

    Polynomial-Time Space-Optimal Silent Self-Stabilizing Minimum-Degree Spanning Tree Construction

    Full text link
    Motivated by applications to sensor networks, as well as to many other areas, this paper studies the construction of minimum-degree spanning trees. We consider the classical node-register state model, with a weakly fair scheduler, and we present a space-optimal \emph{silent} self-stabilizing construction of minimum-degree spanning trees in this model. Computing a spanning tree with minimum degree is NP-hard. Therefore, we actually focus on constructing a spanning tree whose degree is within one from the optimal. Our algorithm uses registers on O(logn)O(\log n) bits, converges in a polynomial number of rounds, and performs polynomial-time computation at each node. Specifically, the algorithm constructs and stabilizes on a special class of spanning trees, with degree at most OPT+1OPT+1. Indeed, we prove that, unless NP == coNP, there are no proof-labeling schemes involving polynomial-time computation at each node for the whole family of spanning trees with degree at most OPT+1OPT+1. Up to our knowledge, this is the first example of the design of a compact silent self-stabilizing algorithm constructing, and stabilizing on a subset of optimal solutions to a natural problem for which there are no time-efficient proof-labeling schemes. On our way to design our algorithm, we establish a set of independent results that may have interest on their own. In particular, we describe a new space-optimal silent self-stabilizing spanning tree construction, stabilizing on \emph{any} spanning tree, in O(n)O(n) rounds, and using just \emph{one} additional bit compared to the size of the labels used to certify trees. We also design a silent loop-free self-stabilizing algorithm for transforming a tree into another tree. Last but not least, we provide a silent self-stabilizing algorithm for computing and certifying the labels of a NCA-labeling scheme

    Near-optimal adjacency labeling scheme for power-law graphs

    Get PDF
    An adjacency labeling scheme is a method that assigns labels to the vertices of a graph such that adjacency between vertices can be inferred directly from the assigned label, without using a centralized data structure. We devise adjacency labeling schemes for the family of power-law graphs. This family that has been used to model many types of networks, e.g. the Internet AS-level graph. Furthermore, we prove an almost matching lower bound for this family. We also provide an asymptotically near- optimal labeling scheme for sparse graphs. Finally, we validate the efficiency of our labeling scheme by an experimental evaluation using both synthetic data and real-world networks of up to hundreds of thousands of vertices

    Simpler, faster and shorter labels for distances in graphs

    Full text link
    We consider how to assign labels to any undirected graph with n nodes such that, given the labels of two nodes and no other information regarding the graph, it is possible to determine the distance between the two nodes. The challenge in such a distance labeling scheme is primarily to minimize the maximum label lenght and secondarily to minimize the time needed to answer distance queries (decoding). Previous schemes have offered different trade-offs between label lengths and query time. This paper presents a simple algorithm with shorter labels and shorter query time than any previous solution, thereby improving the state-of-the-art with respect to both label length and query time in one single algorithm. Our solution addresses several open problems concerning label length and decoding time and is the first improvement of label length for more than three decades. More specifically, we present a distance labeling scheme with label size (log 3)/2 + o(n) (logarithms are in base 2) and O(1) decoding time. This outperforms all existing results with respect to both size and decoding time, including Winkler's (Combinatorica 1983) decade-old result, which uses labels of size (log 3)n and O(n/log n) decoding time, and Gavoille et al. (SODA'01), which uses labels of size 11n + o(n) and O(loglog n) decoding time. In addition, our algorithm is simpler than the previous ones. In the case of integral edge weights of size at most W, we present almost matching upper and lower bounds for label sizes. For r-additive approximation schemes, where distances can be off by an additive constant r, we give both upper and lower bounds. In particular, we present an upper bound for 1-additive approximation schemes which, in the unweighted case, has the same size (ignoring second order terms) as an adjacency scheme: n/2. We also give results for bipartite graphs and for exact and 1-additive distance oracles

    Adjacency labeling schemes and induced-universal graphs

    Full text link
    We describe a way of assigning labels to the vertices of any undirected graph on up to nn vertices, each composed of n/2+O(1)n/2+O(1) bits, such that given the labels of two vertices, and no other information regarding the graph, it is possible to decide whether or not the vertices are adjacent in the graph. This is optimal, up to an additive constant, and constitutes the first improvement in almost 50 years of an n/2+O(logn)n/2+O(\log n) bound of Moon. As a consequence, we obtain an induced-universal graph for nn-vertex graphs containing only O(2n/2)O(2^{n/2}) vertices, which is optimal up to a multiplicative constant, solving an open problem of Vizing from 1968. We obtain similar tight results for directed graphs, tournaments and bipartite graphs
    corecore