741 research outputs found

    Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser

    Get PDF
    On March 2004, Anshel, Anshel, Goldfeld, and Lemieux introduced the \emph{Algebraic Eraser} scheme for key agreement over an insecure channel, using a novel hybrid of infinite and finite noncommutative groups. They also introduced the \emph{Colored Burau Key Agreement Protocol (CBKAP)}, a concrete realization of this scheme. We present general, efficient heuristic algorithms, which extract the shared key out of the public information provided by CBKAP. These algorithms are, according to heuristic reasoning and according to massive experiments, successful for all sizes of the security parameters, assuming that the keys are chosen with standard distributions. Our methods come from probabilistic group theory (permutation group actions and expander graphs). In particular, we provide a simple algorithm for finding short expressions of permutations in SnS_n, as products of given random permutations. Heuristically, our algorithm gives expressions of length O(n2logn)O(n^2\log n), in time and space O(n3)O(n^3). Moreover, this is provable from \emph{the Minimal Cycle Conjecture}, a simply stated hypothesis concerning the uniform distribution on SnS_n. Experiments show that the constants in these estimations are small. This is the first practical algorithm for this problem for n256n\ge 256. Remark: \emph{Algebraic Eraser} is a trademark of SecureRF. The variant of CBKAP actually implemented by SecureRF uses proprietary distributions, and thus our results do not imply its vulnerability. See also arXiv:abs/12020598Comment: Final version, accepted to Advances in Applied Mathematics. Title slightly change

    Commitment and Oblivious Transfer in the Bounded Storage Model with Errors

    Get PDF
    The bounded storage model restricts the memory of an adversary in a cryptographic protocol, rather than restricting its computational power, making information theoretically secure protocols feasible. We present the first protocols for commitment and oblivious transfer in the bounded storage model with errors, i.e., the model where the public random sources available to the two parties are not exactly the same, but instead are only required to have a small Hamming distance between themselves. Commitment and oblivious transfer protocols were known previously only for the error-free variant of the bounded storage model, which is harder to realize
    corecore