55 research outputs found

    Direct and inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves

    Get PDF
    Consider a time-harmonic acoustic plane wave incident onto a doubly periodic (biperiodic) surface from above. The medium above the surface is supposed to be filled with homogeneous compressible inviscid fluid with a constant mass density, whereas the region below is occupied by an isotropic and linearly elastic solid body characterized by the Lam'e constants. This paper is concerned with direct (or forward) and inverse fluid-solid interaction (FSI) problems with unbounded bi-periodic interfaces between acoustic and elastic waves. We present a variational approach to the forward interaction problem with Lipschitz interfaces. Existence of quasi-periodic solutions in Sobolev spaces is established at arbitrary frequency of incidence, while uniqueness is proved only for small frequencies or for all frequencies excluding a discrete set. Concerning the inverse problem, we show that the factorization method by Kirsch (1998) is applicable to the FSI problem in periodic structures. A computational criterion and a uniqueness result are justified for precisely characterizing the elastic body by utilizing the scattered acoustic near field measured in the fluid

    Direct and inverse elastic scattering problems for diffraction gratings

    Get PDF
    This paper is concerned with the direct and inverse scattering of time-harmonic plane elastic waves by unbounded periodic structures (diffraction gratings). We present a variational approach to the forward scattering problems with Lipschitz grating profiles and give a survey of recent uniqueness and existence results. We also report on recent global uniqueness results within the class of piecewise linear grating profiles for the corresponding inverse elastic scattering problems. Moreover, a discrete Galerkin method is presented to efficiently approximate solutions of direct scattering problems via an integral equation approach. Finally, an optimization method for solving the inverse problem of recovering a 2D periodic structure from scattered elastic waves measured above the structure is discussed

    Progress In Electromagnetics Research Symposium (PIERS)

    Get PDF
    The third Progress In Electromagnetics Research Symposium (PIERS) was held 12-16 Jul. 1993, at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. More than 800 presentations were made, and those abstracts are included in this publication
    corecore