2,761 research outputs found

    Near-Optimally Teaching the Crowd to Classify

    Get PDF
    How should we present training examples to learners to teach them classification rules? This is a natural problem when training workers for crowdsourcing labeling tasks, and is also motivated by challenges in data-driven online education. We propose a natural stochastic model of the learners, modeling them as randomly switching among hypotheses based on observed feedback. We then develop STRICT, an efficient algorithm for selecting examples to teach to workers. Our solution greedily maximizes a submodular surrogate objective function in order to select examples to show to the learners. We prove that our strategy is competitive with the optimal teaching policy. Moreover, for the special case of linear separators, we prove that an exponential reduction in error probability can be achieved. Our experiments on simulated workers as well as three real image annotation tasks on Amazon Mechanical Turk show the effectiveness of our teaching algorithm

    Teaching Categories to Human Learners with Visual Explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods

    Becoming the Expert - Interactive Multi-Class Machine Teaching

    Full text link
    Compared to machines, humans are extremely good at classifying images into categories, especially when they possess prior knowledge of the categories at hand. If this prior information is not available, supervision in the form of teaching images is required. To learn categories more quickly, people should see important and representative images first, followed by less important images later - or not at all. However, image-importance is individual-specific, i.e. a teaching image is important to a student if it changes their overall ability to discriminate between classes. Further, students keep learning, so while image-importance depends on their current knowledge, it also varies with time. In this work we propose an Interactive Machine Teaching algorithm that enables a computer to teach challenging visual concepts to a human. Our adaptive algorithm chooses, online, which labeled images from a teaching set should be shown to the student as they learn. We show that a teaching strategy that probabilistically models the student's ability and progress, based on their correct and incorrect answers, produces better 'experts'. We present results using real human participants across several varied and challenging real-world datasets.Comment: CVPR 201

    Teaching Inverse Reinforcement Learners via Features and Demonstrations

    Get PDF
    Learning near-optimal behaviour from an expert's demonstrations typically relies on the assumption that the learner knows the features that the true reward function depends on. In this paper, we study the problem of learning from demonstrations in the setting where this is not the case, i.e., where there is a mismatch between the worldviews of the learner and the expert. We introduce a natural quantity, the teaching risk, which measures the potential suboptimality of policies that look optimal to the learner in this setting. We show that bounds on the teaching risk guarantee that the learner is able to find a near-optimal policy using standard algorithms based on inverse reinforcement learning. Based on these findings, we suggest a teaching scheme in which the expert can decrease the teaching risk by updating the learner's worldview, and thus ultimately enable her to find a near-optimal policy.Comment: NeurIPS'2018 (extended version

    Iterative Classroom Teaching

    Full text link
    We consider the machine teaching problem in a classroom-like setting wherein the teacher has to deliver the same examples to a diverse group of students. Their diversity stems from differences in their initial internal states as well as their learning rates. We prove that a teacher with full knowledge about the learning dynamics of the students can teach a target concept to the entire classroom using O(min{d,N} log(1/eps)) examples, where d is the ambient dimension of the problem, N is the number of learners, and eps is the accuracy parameter. We show the robustness of our teaching strategy when the teacher has limited knowledge of the learners' internal dynamics as provided by a noisy oracle. Further, we study the trade-off between the learners' workload and the teacher's cost in teaching the target concept. Our experiments validate our theoretical results and suggest that appropriately partitioning the classroom into homogenous groups provides a balance between these two objectives.Comment: AAAI'19 (extended version

    Enabling Robots to Communicate their Objectives

    Full text link
    The overarching goal of this work is to efficiently enable end-users to correctly anticipate a robot's behavior in novel situations. Since a robot's behavior is often a direct result of its underlying objective function, our insight is that end-users need to have an accurate mental model of this objective function in order to understand and predict what the robot will do. While people naturally develop such a mental model over time through observing the robot act, this familiarization process may be lengthy. Our approach reduces this time by having the robot model how people infer objectives from observed behavior, and then it selects those behaviors that are maximally informative. The problem of computing a posterior over objectives from observed behavior is known as Inverse Reinforcement Learning (IRL), and has been applied to robots learning human objectives. We consider the problem where the roles of human and robot are swapped. Our main contribution is to recognize that unlike robots, humans will not be exact in their IRL inference. We thus introduce two factors to define candidate approximate-inference models for human learning in this setting, and analyze them in a user study in the autonomous driving domain. We show that certain approximate-inference models lead to the robot generating example behaviors that better enable users to anticipate what it will do in novel situations. Our results also suggest, however, that additional research is needed in modeling how humans extrapolate from examples of robot behavior.Comment: RSS 201

    Interactive Teaching Algorithms for Inverse Reinforcement Learning

    Full text link
    We study the problem of inverse reinforcement learning (IRL) with the added twist that the learner is assisted by a helpful teacher. More formally, we tackle the following algorithmic question: How could a teacher provide an informative sequence of demonstrations to an IRL learner to speed up the learning process? We present an interactive teaching framework where a teacher adaptively chooses the next demonstration based on learner's current policy. In particular, we design teaching algorithms for two concrete settings: an omniscient setting where a teacher has full knowledge about the learner's dynamics and a blackbox setting where the teacher has minimal knowledge. Then, we study a sequential variant of the popular MCE-IRL learner and prove convergence guarantees of our teaching algorithm in the omniscient setting. Extensive experiments with a car driving simulator environment show that the learning progress can be speeded up drastically as compared to an uninformative teacher.Comment: IJCAI'19 paper (extended version
    • …
    corecore