341 research outputs found

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update

    Sparse geometric graphs with small dilation

    Get PDF
    Given a set S of n points in R^D, and an integer k such that 0 <= k < n, we show that a geometric graph with vertex set S, at most n - 1 + k edges, maximum degree five, and dilation O(n / (k+1)) can be computed in time O(n log n). For any k, we also construct planar n-point sets for which any geometric graph with n-1+k edges has dilation Omega(n/(k+1)); a slightly weaker statement holds if the points of S are required to be in convex position

    Balancing Degree, Diameter and Weight in Euclidean Spanners

    Full text link
    In this paper we devise a novel \emph{unified} construction of Euclidean spanners that trades between the maximum degree, diameter and weight gracefully. For a positive integer k, our construction provides a (1+eps)-spanner with maximum degree O(k), diameter O(log_k n + alpha(k)), weight O(k \cdot log_k n \cdot log n) \cdot w(MST(S)), and O(n) edges. Note that for k= n^{1/alpha(n)} this gives rise to diameter O(alpha(n)), weight O(n^{1/alpha(n)} \cdot log n \cdot alpha(n)) \cdot w(MST(S)) and maximum degree O(n^{1/alpha(n)}), which improves upon a classical result of Arya et al. \cite{ADMSS95}; in the corresponding result from \cite{ADMSS95} the spanner has the same number of edges and diameter, but its weight and degree may be arbitrarily large. Also, for k = O(1) this gives rise to maximum degree O(1), diameter O(log n) and weight O(log^2 n) \cdot w(MST(S)), which reproves another classical result of Arya et al. \cite{ADMSS95}. Our bound of O(log_k n + alpha(k)) on the diameter is optimal under the constraints that the maximum degree is O(k) and the number of edges is O(n). Our bound on the weight is optimal up to a factor of log n. Our construction also provides a similar tradeoff in the complementary range of parameters, i.e., when the weight should be smaller than log^2 n, but the diameter is allowed to grow beyond log n. For random point sets in the d-dimensional unit cube, we "shave" a factor of log n from the weight bound. Specifically, in this case our construction achieves maximum degree O(k), diameter O(log_k n + alpha(k)) and weight that is with high probability O(k \cdot log_k n) \cdot w(MST(S)). Finally, en route to these results we devise optimal constructions of 1-spanners for general tree metrics, which are of independent interest.Comment: 27 pages, 7 figures; a preliminary version of this paper appeared in ESA'1

    Computing the Greedy Spanner in Linear Space

    Full text link
    The greedy spanner is a high-quality spanner: its total weight, edge count and maximal degree are asymptotically optimal and in practice significantly better than for any other spanner with reasonable construction time. Unfortunately, all known algorithms that compute the greedy spanner of n points use Omega(n^2) space, which is impractical on large instances. To the best of our knowledge, the largest instance for which the greedy spanner was computed so far has about 13,000 vertices. We present a O(n)-space algorithm that computes the same spanner for points in R^d running in O(n^2 log^2 n) time for any fixed stretch factor and dimension. We discuss and evaluate a number of optimizations to its running time, which allowed us to compute the greedy spanner on a graph with a million vertices. To our knowledge, this is also the first algorithm for the greedy spanner with a near-quadratic running time guarantee that has actually been implemented

    Massively Parallel Algorithms for Distance Approximation and Spanners

    Full text link
    Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms -- usually sublogarithmic-time and often poly(loglogn)poly(\log\log n)-time, or even faster -- for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present poly(logk)poly(loglogn)poly(\log k) \in poly(\log\log n) round MPC algorithms for computing O(k1+o(1))O(k^{1+{o(1)}})-spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an O(log2logn)O(\log^2\log n)-round algorithm for O(log1+o(1)n)O(\log^{1+o(1)} n) approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model
    corecore