320 research outputs found

    Bat Algorithm for Multi-objective Optimisation

    Full text link
    Engineering optimization is typically multiobjective and multidisciplinary with complex constraints, and the solution of such complex problems requires efficient optimization algorithms. Recently, Xin-She Yang proposed a bat-inspired algorithm for solving nonlinear, global optimisation problems. In this paper, we extend this algorithm to solve multiobjective optimisation problems. The proposed multiobjective bat algorithm (MOBA) is first validated against a subset of test functions, and then applied to solve multiobjective design problems such as welded beam design. Simulation results suggest that the proposed algorithm works efficiently.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1004.417

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems

    A biologically inspired network design model

    Get PDF
    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach

    Attraction and diffusion in nature-inspired optimization algorithms

    Get PDF
    Nature-inspired algorithms usually use some form of attraction and diffusion as a mechanism for exploitation and exploration. In this paper, we investigate the role of attraction and diffusion in algorithms and their ways in controlling the behaviour and performance of nature-inspired algorithms. We highlight different ways of the implementations of attraction in algorithms such as the firefly algorithm, charged system search, and the gravitational search algorithm. We also analyze diffusion mechanisms such as random walks for exploration in algorithms. It is clear that attraction can be an effective way for enhancing exploitation, while diffusion is a common way for exploration. Furthermore, we also discuss the role of parameter tuning and parameter control in modern metaheuristic algorithms, and then point out some key topics for further research

    Attraction and diffusion in nature-inspired optimization algorithms

    Get PDF
    Nature-inspired algorithms usually use some form of attraction and diffusion as a mechanism for exploitation and exploration. In this paper, we investigate the role of attraction and diffusion in algorithms and their ways in controlling the behaviour and performance of nature-inspired algorithms. We highlight different ways of the implementations of attraction in algorithms such as the firefly algorithm, charged system search, and the gravitational search algorithm. We also analyze diffusion mechanisms such as random walks for exploration in algorithms. It is clear that attraction can be an effective way for enhancing exploitation, while diffusion is a common way for exploration. Furthermore, we also discuss the role of parameter tuning and parameter control in modern metaheuristic algorithms, and then point out some key topics for further research
    • …
    corecore