20,481 research outputs found

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    Carnap: an Open Framework for Formal Reasoning in the Browser

    Get PDF
    This paper presents an overview of Carnap, a free and open framework for the development of formal reasoning applications. Carnap’s design emphasizes flexibility, extensibility, and rapid prototyping. Carnap-based applications are written in Haskell, but can be compiled to JavaScript to run in standard web browsers. This combination of features makes Carnap ideally suited for educational applications, where ease-of-use is crucial for students and adaptability to different teaching strategies and classroom needs is crucial for instructors. The paper describes Carnap’s implementation, along with its current and projected pedagogical applications

    Automatic Verification of Transactions on an Object-Oriented Database

    Get PDF
    In the context of the object-oriented data model, a compiletime approach is given that provides for a significant reduction of the amount of run-time transaction overhead due to integrity constraint checking. The higher-order logic Isabelle theorem prover is used to automatically prove which constraints might, or might not be violated by a given transaction in a manner analogous to the one used by Sheard and Stemple (1989) for the relational data model. A prototype transaction verification tool has been implemented, which automates the semantic mappings and generates proof goals for Isabelle. Test results are discussed to illustrate the effectiveness of our approach

    Equations for Hereditary Substitution in Leivant's Predicative System F: A Case Study

    Full text link
    This paper presents a case study of formalizing a normalization proof for Leivant's Predicative System F using the Equations package. Leivant's Predicative System F is a stratified version of System F, where type quantification is annotated with kinds representing universe levels. A weaker variant of this system was studied by Stump & Eades, employing the hereditary substitution method to show normalization. We improve on this result by showing normalization for Leivant's original system using hereditary substitutions and a novel multiset ordering on types. Our development is done in the Coq proof assistant using the Equations package, which provides an interface to define dependently-typed programs with well-founded recursion and full dependent pattern- matching. Equations allows us to define explicitly the hereditary substitution function, clarifying its algorithmic behavior in presence of term and type substitutions. From this definition, consistency can easily be derived. The algorithmic nature of our development is crucial to reflect languages with type quantification, enlarging the class of languages on which reflection methods can be used in the proof assistant.Comment: In Proceedings LFMTP 2015, arXiv:1507.07597. www: http://equations-fpred.gforge.inria.fr

    Combining k-Induction with Continuously-Refined Invariants

    Full text link
    Bounded model checking (BMC) is a well-known and successful technique for finding bugs in software. k-induction is an approach to extend BMC-based approaches from falsification to verification. Automatically generated auxiliary invariants can be used to strengthen the induction hypothesis. We improve this approach and further increase effectiveness and efficiency in the following way: we start with light-weight invariants and refine these invariants continuously during the analysis. We present and evaluate an implementation of our approach in the open-source verification-framework CPAchecker. Our experiments show that combining k-induction with continuously-refined invariants significantly increases effectiveness and efficiency, and outperforms all existing implementations of k-induction-based software verification in terms of successful verification results.Comment: 12 pages, 5 figures, 2 tables, 2 algorithm

    A Logic-based Approach for Recognizing Textual Entailment Supported by Ontological Background Knowledge

    Full text link
    We present the architecture and the evaluation of a new system for recognizing textual entailment (RTE). In RTE we want to identify automatically the type of a logical relation between two input texts. In particular, we are interested in proving the existence of an entailment between them. We conceive our system as a modular environment allowing for a high-coverage syntactic and semantic text analysis combined with logical inference. For the syntactic and semantic analysis we combine a deep semantic analysis with a shallow one supported by statistical models in order to increase the quality and the accuracy of results. For RTE we use logical inference of first-order employing model-theoretic techniques and automated reasoning tools. The inference is supported with problem-relevant background knowledge extracted automatically and on demand from external sources like, e.g., WordNet, YAGO, and OpenCyc, or other, more experimental sources with, e.g., manually defined presupposition resolutions, or with axiomatized general and common sense knowledge. The results show that fine-grained and consistent knowledge coming from diverse sources is a necessary condition determining the correctness and traceability of results.Comment: 25 pages, 10 figure
    • 

    corecore