117,815 research outputs found

    Piscataqua Region Environmental Planning Assessment

    Get PDF
    The Piscataqua Region Environmental Planning Assessment (PREPA) was conducted to document the current status of environmental planning efforts and land use regulations for each of the 42 New Hampshire municipalities and 10 Maine municipalities (city and town governments) in the Piscataqua Region. The assessment involved analysis of over 80 questions associated with municipal regulatory and non-regulatory approaches to resource management. The assessment theme areas include land protection, wildlife habitat, stormwater management, erosion/sediment control, wetland and shoreland protections, floodplain management, and drinking water source protection, among others. Piscataqua Region Estuaries Partnership (PREP) staff and Land Use Team worked closely with a variety of stakeholders and the four regional planning commissions that service the Piscataqua Region on the development of the PREPA assessment form. For each of the 52 towns in the region, staff from the regional planning commissions reviewed municipal planning documents and interviewed key municipal representatives to complete an assessment form for each municipality. Data were collected in early 2009. This data was compiled by PREP into a database and analyzed for regional trends. Results for individual towns as well as regional trends are presented in this final project report. Differences between New Hampshire and Maine environmental policies are also evaluated for select issues pertaining to water quality and habitat protection

    Rapid recreation assessment: a tool to assess visitor use and associated impacts at coastal and marine protected areas

    Get PDF
    As more people discover coastal and marine protected areas as destinations for leisure-time pursuits, the task of managing coastal resources while providing opportunities for high quality visitor experiences becomes more challenging. Many human impacts occur at these sites; some are caused by recreation and leisure activities on-site, and others by activities such as agriculture, aquaculture, or residential and economic development in surrounding areas. Coastal management professionals are continually looking for effective ways to prevent or mitigate negative impacts of visitor use. (PDF contains 8 pages) Most coastal and marine protected area managers are challenged with balancing two competing goals—protection of natural and cultural resources and provision of opportunities for public use. In most cases, some level of compromise between the goals is necessary, where one goal constrains or “outweighs” the other. Often there is a lack of clear agreement about the priority of these competing goals. Consequently, while natural resource decisions should ultimately be science-based and objective, such decisions are frequently made under uncertainty, relying heavily upon professional judgment. These decisions are subject to a complex array of formal and informal drivers and constraints—data availability, timing, legal mandate, political will, diverse public opinion, and physical, human, and social capital. This paper highlights assessment, monitoring, and planning approaches useful to gauge existing resource and social conditions, determine feasibility of management actions, and record decision process steps to enhance defensibility. Examples are presented from pilot efforts conducted at the Rookery Bay National Estuarine Research Reserve (NERR) and Ten Thousand Islands National Wildlife Refuge (NWR) in South Florida

    Ocean governance: the New Zealand dimension

    Get PDF
      The Oceans Governance project was funded by the Emerging Issues Programme, overseen by the Institute of Policy Studies at Victoria University of Wellington. Its primary goal is to provide interested members of the public and policymakers with a general overview and a description of the types of principles, planning tools and policy instruments that can be used to strengthen and improve marine governance in New Zealand. The major findings of this study are that the existing marine governance framework in New Zealand emphasises a traditional sector-by-sector approach to management and planning and that this fragmented governance framework contributes to a number of institutional challenges. In addition, the study identifies a number of factors that influence marine planning and decision-making in the country, including but not limited to; the relationships between economic use of marine resources and the maintenance of marine ecosystem services and goods; Māori interests, perspectives and treaty obligations; the role of international treaties and conventions; the synergistic and cumulative impacts of multiple use and climate disturbance on marine ecosystems, and the role of scientists and science in marine planning and decision-making.The report makes two general recommendations.  First, with respect to the territorial sea (which includes the marine area out to 12 nautical miles) the report recommends that regional councils develop integrative marine plans where conflict between users and users-ecosystems is likely to develop in the future.  Second, the report recommends the adoption of new role for central government to support an ecosystem-based approach to integrative marine planning and decision-making

    IMPLICATIONS OF A MARKET FOR CARBON ON TIMBER AND NON-TIMBER VALUES IN AN UNCERTAIN WORLD

    Get PDF
    Despite considerable interest in the potential for forests to sequester carbon, the impact of carbon management on the provision of timber and non-timber resources has received relatively little attention in the literature. The introduction of value for stored carbon may result in modifications to traditional forest management objectives, generating trade-offs with other forest resources depending on the incentives provided by carbon markets. This paper investigates these issues by examining the impact of a particular form of carbon market on timber and non-timber values in a managed forest. An integrated modeling framework, developed for the incorporation of carbon management into operational timber management modeling tools, is also described. There is still substantial debate over how to properly credit carbon sequestered in forests. To date, there has been little research on how the form of a carbon market will impact the operations and objectives of forestry firms. Alternative market structures could produce very different responses in terms of rotation age, net present value and harvest policy. Here, a specific form of carbon market, the specified level contract, is investigated. Forestry firms are assumed to reach contracts with carbon-seeking agents which "guarantee" that a specified level of carbon stock will be maintained over a defined time period. Optimal forest management decisions are examined by implementing an optimization model for a specific land base in Alberta. The Woodstock forest modeling package is used for optimization. Analysis of trade-offs is based on the work of Armstrong et al. (1999, 2003) which assess non-timber resources using the natural disturbance approach to forest management. The analysis is then expanded to include a more rigorous, and realistic, depiction of carbon and carbon stock changes. Using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), carbon yield curves are developed which are integrated directly into the Woodstock forest management ii model. These carbon yields capture dynamics specific to separate biomass and dead organic matter (DOM) carbon pools and are represented for individual forest cover types. Interestingly, the inclusion of DOM carbon generates unexpected relationships between non-timber resources and incentives to sequester carbon. Results show that the presence of co-benefits will depend upon forest cover type, the harvest flow regulation faced by the managing firm and the incentives for timber supply provided by the market. Furthermore, firms that agree to enter contracts for carbon sequestration appear to do so at the expense of a decline in timber supply, with estimates of the opportunity cost of carbon management falling within the range of those found in recent literature.Resource /Energy Economics and Policy,

    Social-ecological soundscapes: examining aircraft-harvester-caribou conflict in Arctic Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2017As human development expands across the Arctic, it is crucial to carefully assess the impacts to remote natural ecosystems and to indigenous communities that rely on wild resources for nutritional and cultural wellbeing. Because indigenous communities and wildlife populations are interdependent, assessing how human activities impact traditional harvest practices can advance our understanding of the human dimensions of wildlife management. Indigenous communities across Arctic Alaska have expressed concern over the last four decades that low-flying aircraft interfere with their traditional harvest practices. For example, communities often have testified that aircraft disturb caribou (Rangifer tarandus) and thereby reduce harvest opportunities. Despite this longstanding concern, little research exists on the extent of aircraft activity in Arctic Alaska and on how aircraft affect the behavior and perceptions of harvesters. Therefore, the overarching goal of my research was to highlight the importance of aircraft-harvester conflict in Arctic Alaska and begin to address the issue using a scientific and community-driven approach. In Chapter 1, I demonstrated that conflict between aircraft and indigenous harvesters in Arctic Alaska is a widespread, understudied, and complex issue. By conducting a meta-analysis of the available literature, I quantified the deficiency of scientific knowledge about the impacts of aircraft on rural communities and traditional harvest practices in the Arctic. My results indicated that no peer-reviewed literature has addressed the conflict between low-flying aircraft and traditional harvesters in Arctic Alaska. I speculated that the scale over which aircraft, rural communities, and wildlife interact limits scientists' ability to determine causal relationships and therefore detracts from their interest in researching the human dimension of this social-ecological system. Innovative research approaches like soundscape ecology could begin to quantify interactions and provide baseline data that may foster mitigation discourses among stakeholders. In Chapter 2, I employed a soundscape-ecology approach to address concerns about aircraft activity expressed by the Alaska Native community of Nuiqsut. Nuiqsut faces the greatest volume of aircraft activity of any community in Arctic Alaska because of its proximity to intensive oil and gas activity. However, information on when and where these aircraft are flying is unavailable to residents, managers, and researchers. I worked closely with Nuiqsut residents to deploy acoustic monitoring systems along important caribou harvest corridors during the peak of caribou harvest, from early June through late August 2016. This method successfully captured aircraft sound and the community embraced my science for addressing local priorities. I found aircraft activity levels near Nuiqsut and surrounding oil developments (12 daily events) to be approximately six times greater than in areas over 30 km from the village (two daily events). Aircraft sound disturbance was 26 times lower in undeveloped areas (Noise Free Interval =13 hrs) than near human development (NFI = 0.5 hrs). My study provided baseline data on aircraft activity and noise levels. My research could be used by stakeholders and managers to develop conflict avoidance agreements and minimize interference with traditional harvest practices. Soundscape methods could be adapted to rural regions across Alaska that may be experiencing conflict with aircraft or other sources of noise that disrupt human-wildlife interactions. By quantifying aircraft activity using a soundscape approach, I demonstrated a novel application of an emerging field in ecology and provided the first scientific data on one dimension of a larger social-ecological system. Future soundscape studies should be integrated with research on both harvester and caribou behaviors to understand how the components within this system are interacting over space and time. Understanding the long-term impacts to traditional harvest practices will require integrated, cross-disciplinary efforts that collaborate with communities and other relevant stakeholders. Finally, my research will likely spark efforts to monitor and mitigate aircraft impacts to wildlife populations and traditional harvest practices across Alaska, helping to inform a decision-making process currently hindered by an absence of objective data

    A review of landscape rehabilitation frameworks in ecosystem engineering for mine closure

    Get PDF
    Mining causes changes to the environment and rehabilitation is necessary at mine closure. There is a lack of appropriate frameworks for mine site rehabilitation. In most cases, restoring the mine to previous conditions is challenging. Alternatively, mining companies can engineer ecosystems to suit new site conditions and aim for a self-sustaining and resilient ecosystem. In ecosystem design there should be consideration of the four key dimensions of any ecosystem; landscape, function, structure and composition (LFSC). Alcoa’s Bauxite mines and Barrick (Cowal) Limited’s Gold Mine have considered LFSC in their rehabilitation practices. From this, a framework based on LFSC is proposed as a means of planning, undertaking and monitoring mine rehabilitation, which together aim for a self-sustaining and resilient ecosystem. Elements of this framework are being utilised in the industry, and are supported by research. The framework could be used as an industry standard, utilised by regulatory bodies and potentially used in conjunction with other models and in other rehabilitation environments

    Tools for Assessing Climate Impacts on Fish and Wildlife

    Get PDF
    Climate change is already affecting many fish and wildlife populations. Managing these populations requires an understanding of the nature, magnitude, and distribution of current and future climate impacts. Scientists and managers have at their disposal a wide array of models for projecting climate impacts that can be used to build such an understanding. Here, we provide a broad overview of the types of models available for forecasting the effects of climate change on key processes that affect fish and wildlife habitat (hydrology, fire, and vegetation), as well as on individual species distributions and populations. We present a framework for how climate-impacts modeling can be used to address management concerns, providing examples of model-based assessments of climate impacts on salmon populations in the Pacific Northwest, fire regimes in the boreal region of Canada, prairies and savannas in the Willamette Valley-Puget Sound Trough-Georgia Basin ecoregion, and marten Martes americana populations in the northeastern United States and southeastern Canada. We also highlight some key limitations of these models and discuss how such limitations should be managed. We conclude with a general discussion of how these models can be integrated into fish and wildlife management

    Exploring the applicability of biological and socioeconomic tools in developing EAFM plans for data absent areas : Spinner dolphin EAFM for Kalpitiya, Sri Lanka

    Get PDF
    Acknowledgements University of Aberdeen, UK and Bay of Bengal Large Marine Ecosystems (BOBLME) project are acknowledged for partial funding of this research.Peer reviewedPostprin

    Conservation science in NOAA’s National Marine Sanctuaries: description and recent accomplishments

    Get PDF
    This report describes cases relating to the management of national marine sanctuaries in which certain scientific information was required so managers could make decisions that effectively protected trust resources. The cases presented represent only a fraction of difficult issues that marine sanctuary managers deal with daily. They include, among others, problems related to wildlife disturbance, vessel routing, marine reserve placement, watershed management, oil spill response, and habitat restoration. Scientific approaches to address these problems vary significantly, and include literature surveys, data mining, field studies (monitoring, mapping, observations, and measurement), geospatial and biogeographic analysis, and modeling. In most cases there is also an element of expert consultation and collaboration among multiple partners, agencies with resource protection responsibilities, and other users and stakeholders. The resulting management responses may involve direct intervention (e.g., for spill response or habitat restoration issues), proposal of boundary alternatives for marine sanctuaries or reserves, changes in agency policy or regulations, making recommendations to other agencies with resource protection responsibilities, proposing changes to international or domestic shipping rules, or development of new education or outreach programs. (PDF contains 37 pages.
    • 

    corecore