23 research outputs found

    Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic

    Get PDF
    SummaryA33853, which shows excellent bioactivity against Leishmania, is a benzoxazole-family compound formed from two moieties of 3-hydroxyanthranilic acid and one 3-hydroxypicolinic acid. In this study, we have identified the gene cluster responsible for the biosynthesis of A33853 in Streptomyces sp. NRRL12068 through genome mining and heterologous expression. Bioinformatics analysis and functional characterization of the orfs contained in the gene cluster revealed that the biosynthesis of A33853 is directed by a group of unusual enzymes. In particular, BomK, annotated as a ketosynthase, was found to catalyze the amide bond formation between 3-hydroxypicolinic and 3-hydroxyanthranilic acid during the assembly of A33853. BomJ, a putative ATP-dependent coenzyme A ligase, and BomN, a putative amidohydrolase, were further proposed to be involved in the benzoxazole formation in A33853 according to gene deletion experiments. Finally, we have successfully utilized mutasynthesis to generate two analogs of A33853, which were reported previously to possess excellent anti-leishmanial activity

    Identification Of Antimalarial Compounds And Their Mode Of Actions

    Get PDF
    Malaria is one of the most significant infectious diseases in the tropics, claiming around half-million lives annually, mainly due to Plasmodium falciparum (P. falciparum) infections. To date, P. falciparum has developed full or partial resistance towards all three classes of antimalarials, including against the artemisinin. Hence, it may jeopardize the efficacy of the current antimalarial treatment regimen, the Artemisinin Combination Therapy (ACT), in the near future. Therefore, there is an utmost need to identify a new antimalarial compound with a novel mode of action (MoA). This study mainly focused on identifying antimalarial compounds from soil microorganisms isolated from Malaysia and Japan. The crude extracts of these strains showed potent antimalarial activity in a preliminary assay against Pf 3D7 (wild type). The crude extracts of Malaysian strains also inhibited the activity of human GSK-3β (75 % similar to P. Falciparum GSK-3 (Pf GSK-3))

    Direct Capture Technologies for Genomics-Guided Discovery of Natural Products

    Get PDF
    Microbes are important producers of natural products, which have played key roles in understanding biology and treating disease. However, the full potential of microbes to produce natural products has yet to be realized; the overwhelming majority of natural product gene clusters encoded in microbial genomes remain “cryptic”, and have not been expressed or characterized. In contrast to the fast-growing number of genomic sequences and bioinformatic tools, methods to connect these genes to natural product molecules are still limited, creating a bottleneck in genome-mining efforts to discover novel natural products. Here we review developing technologies that leverage the power of homologous recombination to directly capture natural product gene clusters and express them in model hosts for isolation and structural characterization. Although direct capture is still in its early stages of development, it has been successfully utilized in several different classes of natural products. These early successes will be reviewed, and the methods will be compared and contrasted with existing traditional technologies. Lastly, we will discuss the opportunities for the development of direct capture in other organisms, and possibilities to integrate direct capture with emerging genome-editing techniques to accelerate future study of natural products

    High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    Get PDF
    The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species' richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3- year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies
    corecore