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PENGENALPASTIAN SEBATIAN ANTIMALARIA DAN MOD 

TINDAKANNYA 

 

ABSTRAK 
 

Malaria merupakan salah satu penyakit berjangkit yang paling signifikan di 

kawasan tropika yang telah menyebabkan hampir setengah juta kematian setiap tahun, 

terutamanya disebabkan oleh jangkitan Plasmodium falciparum (P. falciparum). 

Sehingga kini, P. falciparum telah membangunkan rintangan penuh atau separa 

terhadap ketiga-tiga kelas antimalaria, termasuk artemisinin. Maka, ia boleh 

menjejaskan keberkesanan Terapi Gabungan Artemisinin (ART) pada masa hadapan. 

Oleh itu, terdapat keperluan untuk mengenal pasti sebatian antimalaria dengan mod 

tindakan baharu. Matlamat utama kajian ini adalah untuk mengenal pasti sebatian 

antimalaria baharu daripada  mikroorganisma tanah yang diisolasi daripada Malaysia 

dan Jepun. Ekstrak mentah strain-strain ini telah menunjukkan aktiviti antimalaria 

yang poten pada saringan awal terhadap strain Pf 3D7 (jenis liar). Ekstrak mentah 

strain daripada Malaysia juga telah merencatkan aktiviti GSK-3β  manusia (Hs GSK-

3β) (75 % serupa dengan GSK-3 P. falciparum (Pf GSK-3)). Maka, terdapat potensi 

untuk mengenal pasti sebatian antimalaria yang merencatkan aktiviti Pf GSK-3, iaitu 

mod tindakan baharu. Selain itu, tiga sebatian tulen baharu yang disimpan di 
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perpustakaan kimia RIKEN juga telah dinilai dalam ujian kebolehulangan aktiviti 

antimalaria untuk memilih sebatian yang paling poten sebelum penentuan mod 

tindakan. Secara keseluruhannya, 18 sebatian antimalaria telah dikenal 

pasti/dicadangkan antaranya dibutil phthalates (DBP) (IC50 = 14.4 μM), nataxazole 

(agen antimalaria baharu, IC50 = 14.7 μM) dan asid sekalonik F (IC50 = 4.1 μM) 

(daripada strain Malaysia) dan hibarimisin C (agen antimalaria baharu, IC50 = ~0.02 

μM) (daripada strain Jepun). Kajian in silico telah menunjukkan bahawa DBP, 

nataxazole, dan asid sekalonik F telah membentuk ikatan hidrogen dengan residu asid 

amino penting pada Hs GSK-3β (masing-masing dengan Arg87, Lys85, dan Asp200,) 

yang juga terdapat pada Pf GSK-3 (masing-masing sebagai Arg119, Lys108, dan 

Asp225). Oleh itu, aktiviti antimalaria sebatian-sebatian ini berkemungkinan hasil 

daripada perencatan aktiviti Pf GSK-3. Sementara itu, dihydrolucilactaene (DHLC, 

sebatian baharu daripada Fusarium sp. 97-94 yang telah didepositkan ke perpustakaan 

kimia RIKEN) telah menunjukkan aktiviti antimalaria ultrapoten (IC50 = 1.5 nM). 

Untuk memahami mod tindakan DHLC, profil aktiviti DHLC semasa jangkitan sel 

darah merah telah ditentukan berdasarkan ujian pendedahan/pembasuhan DHLC pada 

masa-masa tertentu. DHLC mempunyai profil aktiviti antimalaria yang berbeza 

(tropozoit > skizon > cincin) dengan klorokuin dan artemisinin, maka cara mod 

tindakan yang berbeza. DHLC juga melambatkan perkembangan parasit semasa 
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jangkitan sel darah merah. P. Falciparum yang rentang terhadap DHLC telah berjaya 

dihasilkan melalui pendedahan kepada DHLC secara berterusan. Penjujukan genom 

keseluruhan menunjukkan gen ditandakan sebagai “gen #6” merupakan satu-satunya 

gen yang bermutasi dalam genom strain rentang terhadap DHLC. Gen #6 

mengenkodkan protein transmembran yang belum diketahui. Maka, protein ini 

merupakan sasaran baharu untuk pembangunan agen antimalaria. Hubungan struktur-

aktiviti menunjukkan bahawa pembukaan cincin tetrahydrofuran dan penyingkiran 

kumpulan epoksida bertanggungjawab untuk aktiviti antimalaria DHLC. 

Pengenalpastian DHLC boleh menyediakan agen antimalaria baharu untuk memerangi 

penyebaran strain rentang antimalaria yang meluas. 
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IDENTIFICATION OF ANTIMALARIAL COMPOUNDS AND THEIR 

MODE OF ACTIONS 

 

ABSTRACT 
 

Malaria is one of the most significant infectious diseases in the tropics, 

claiming around half-million lives annually, mainly due to Plasmodium falciparum (P. 

falciparum) infections. To date, P. falciparum has developed full or partial resistance 

towards all three classes of antimalarials, including against the artemisinin. Hence, it 

may jeopardize the efficacy of the current antimalarial treatment regimen, the 

Artemisinin Combination Therapy (ACT), in the near future. Therefore, there is an 

utmost need to identify a new antimalarial compound with a novel mode of action 

(MoA). This study mainly focused on identifying antimalarial compounds from soil 

microorganisms isolated from Malaysia and Japan. The crude extracts of these strains 

showed potent antimalarial activity in a preliminary assay against Pf 3D7 (wild type). 

The crude extracts of Malaysian strains also inhibited the activity of human GSK-3β 

(75 % similar to P. Falciparum GSK-3 (Pf GSK-3)). Therefore, there is a potential to 

identify antimalarial activity mediated by Pf GSK-3 inhibition, which is as a new 

antimalarial MoA. In addition, three new pure compounds deposited in RIKEN 

chemical library were also evaluated in an antimalarial reproducibility test, to select 
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the most potent compound(s) for MoA determination. Overall, 18 antimalarials were 

identified/suggested which includes (DBP) (Pf 3D7 IC50 = 14.4 μM), nataxazole (new 

antimalarial agent, Pf 3D7  IC50 = 14.7 μM) and secalonic acid F (Pf 3D7 IC50 = 4.1 

μM) (from Malaysian strain) and koranimine (IC50 = ~0.01 μM) (from Japanese strain). 

Interestingly, in silico study indicates that these compounds formed hydrogen bonds 

with important amino acid residues on Hs GSK-3β (Arg87, Lys85, and Asp200, 

respectively) that are conserved in Pf GSK-3 (Arg119, Lys108, and Asp225, 

respectively). Hence, DBP, nataxazole, and secalonic acid F may exert antimalarial 

activity by inhibiting Pf GSK-3. Meanwhile, dihydrolucilactaene (DHLC, a new 

compound isolated from Fusarium sp. 97-94 that was deposited in RIKEN chemical 

library) was shown to exert an ultrapotent antimalarial activity (IC50 = 1.5 nM). To 

understand the MoA of DHLC, its erythrocytic stage-specific activity profile was 

investigated based on a time-specific drug exposure/washout assay against a sorbitol-

synchronized Pf 3D7 culture. DHLC was indicated to exert a different stage-specific 

profile (trophozoites > schizont > ring) than chloroquine and artemisinin, hence a 

different MoA. DHLC was also shown to delay parasite egression during RBC stage 

infection. A DHLC-resistant strain was successfully generated via continuous drug 

exposure. Whole-genome sequencing revealed a gene denoted “gene #6” as the only 

mutated gene in the genome of DHLC-resistant strain. Gene #6 was reported to encode 
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an unknown conserved Plasmodium transmembrane protein. This protein was never 

reported as the molecular target of any known antimalarials, hence a novel target for 

antimalarial drug development. Structural-activity relationship revealed that the 

opening of the tetrahydrofuran ring and the absence of the epoxide group in DHLC 

were responsible for its antimalarial activity. The identification of DHLC may provide 

a new drug regimen to combat the widespread of drug-resistant strains. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Malaria: a brief background 

Malaria is a prominent mosquito-borne (Anopheles sp.) disease in the tropics 

(Lee et al., 2020; Li et al., 2020). In 2020, around 241 million malaria cases were 

reported in 85 malaria-endemic countries, with 627,000 deaths, a slight increase from 

the previous year (World Health Organization, 2021). Most deaths were recorded in 

Africa (96 %), especially children under five years old and pregnant women, 

contributed by their more compromised immunological and hormonal responses than 

the general adult population (Chua et al., 2021; World Health Organization, 2021).   

In humans, malaria is caused by 9 Plasmodium parasites species belonging to 

apicomplexan protozoa, that require two hosts to survive, mosquito for transmission 

and sexual stage (in the midgut), and vertebrate (divided into liver and blood asexual 

stage). Plasmodium falciparum (P. falciparum) is the most prevalent and virulent 

species (Ansari et al., 2016) since complications of severe malaria such as cerebral 

malaria, anemia, acute renal failure, pulmonary edema, and bleeding are almost 

entirely caused by this species. These symptoms may rapidly lead to coma and death 

within hours or days after manifestation (World Health Organization, 2000). 
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Over the past decade, P. falciparum continues to be the most prevalent and 

virulent case of malaria, followed by P. vivax (Amambua-Ngwa et al., 2019; World 

Health Organization, 2021). Meanwhile, mild or uncomplicated yet persistent malaria 

cases are caused by P. malariae (Bartoloni & Zammarchi, 2012). P. ovale curtisi and 

P. ovale wallikeri (closely related but distinct malaria parasite species) received the 

least attention as it is considered uncommon and only causes mild infection. Although 

P. ovale infection can be easily treated with chloroquine, it can evolve into a more 

severe or fatal strain (Mueller et al., 2007; Lau et al., 2013). In recent years, P. knowlesi 

(a zoonotic Plasmodium) has been the prominent cause of malaria in Southeast Asia 

(SEA), especially in the east of Malaysia (Zaw & Lin, 2019; Cooper et al., 2020). 

Moreover, possible infection from the other zoonotic Plasmodium species (P. inui, P. 

cynomolgi and P. coatneyi) has been reported in Malaysia (Yap et al., 2021). 

 

1.2  Problem statement  

1.2.1 Drug resistant development 

SEA continues to be the hotspot for the emergence of strains resistant against 

frontline antimalarial starting with CQ (1957) and sulphadoxine-pyrimethamine 

resistance strains (in the 1960s) (Trape, 2001; Roper et al., 2004; Singh & Sharma, 

2016; Bushman et al., 2018). The resistance emergence is mainly driven by poor 

quality antimalarials widely used in SEA (Dondorp et al., 2004; Nayyar et al., 2012). 
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More than 40 % of antimalarials sold in SEA are either did not contain any active 

ingredients or contained <10 % of the active compounds (Dondorp et al., 2004). The 

subtherapeutic dosage increases the risk of resistance emergence (prolonged drug 

exposure), which eventually favors the selection/spreading of the resistance strains 

(Newton et al., 2006). 

As a consequence, the ART-resistant strains have emerged in SEA since 2009 

and recently in Africa (2019) (may also be due high use of counterfeit drugs) (Nayyar 

et al., 2012; Boddey, 2017; Tahghighi et al., 2020; Balikagala et al., 2021). Its 

emergence in Africa will likely cause a malaria outbreak if proactive actions to curb 

the spreading are not taken since ART is the final effective frontline antimalarial drug 

(Ouji et al., 2018; World Health Organization, 2021).  

 
1.2.2 Low antimalarial drug diversity   

Although natural and synthetic antimalarials were introduced in the late 1800 

and 1940s, only a small number of compounds reached the clinical stage (Grimberg & 

Mehlotra, 2011). Moreover, these compounds belong to only three broad classes; aryl 

amino alcohol compounds, antifolate compounds (Luzzatto, 2010), and ART 

compounds (White, 2008; Patrick, 2020). Since P. falciparum has developed 

resistance phenotypes against all classes of antimalarials, new drug classes that exert 
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a different mode of action (MoA) than the existing drug regimen need to be explored 

for effective treatment (Flannery et al., 2013; Burrows et al., 2017). 

 

1.2.3  Antimalarials with unknown MoA  

Determining the exact target of a drug is valuable knowledge as it can prevent 

late-stage failures that increase the chances of drug approval. In general, information 

on the actual target leads to better dosing, monitoring potential side effects of a drug, 

and stratifying better clinical trials on suitable patients. Hence, many promising drugs 

failed at an early stage trial due to cytotoxic activity, considering a wide array of cell 

signaling processes, enzymes, and isoforms functioning in the human system, 

(Medina-Franco et al., 2013; Peters, 2013). 

Similarly, most frontline antimalarials were developed without knowing their 

target since antimalarial therapeutic potency was primarily identified via cell-based 

assay (Fidock et al., 2004; Schlitzer & Ortmann, 2010). As a result, it is difficult to 

establish hit optimization due to pharmacokinetics or toxicological issues (Hallyburton 

et al., 2017). For example, primaquine is the only clinically approved antimalarial that 

can eliminate hypnozoite to date. However, since primaquine’s target is unknown, 

further studies have been limited only to related analogs such as tafenoquine (Vale et 

al., 2009). Therefore, a drug with a known MoA is preferable for the next generation 

of antimalarials.   
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1.3 Strategies to solve malaria-associated problems  

1.3.1  Drug discovery from nature 

Natural products are genetically encoded in the genome of their producer, 

resulting from the evolution via natural selection. The products are usually beneficial 

to the producer as they are produced to engage with their respective biological targets. 

Hence, natural products are naturally equipped with chemical features required for 

biological activity, such as higher counts of chiral centers, sp3-hybridized carbon and 

oxygen content, low nitrogen cod aromatic rings, and larger macrocyclic aliphatic 

rings. These features create complex 3-D structures and are stereochemically superior 

to synthetic compounds to effectively interact with biological components (Rodrigues 

et al., 2016).  

Plant natural products are a rich source of prolific antimalarial compounds 

with unique structures. The first antimalarial was quinine, isolated from cinchona bark 

(Cinchona cordifolia) in 1820 and fully synthesized in 1854. Quinine remained in the 

frontline regimen until replaced by CQ in the 1940s. A few decades later, ART was 

identified from sweet wormwood (Artemisia annua) as another plant-based 

antimalarial. ART bears a sesquiterpene lactone with an endoperoxide group, a unique 

natural product structure that is responsible for ART antimalarial activity (Dagen, 

2020). Although numerous experimental antimalarials were continuously reported 
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from plants such as 34,5-tri-O-caffeoylquinic acid (Nugraha et al., 2022) (Pluchea 

indica) and 8ß,13ß-kaur-15-en-17-al (Podocarpus polystachyus) (Amir Rawa et al., 

2022), in recent years, no plant-based antimalarials even reached preclinical tests 

(Saha et al., 2022).  

One of the significant problems with plant natural products is the low 

production of active compounds (including artemisinin) since external factors such as 

sampling location and environmental factors may influence the recovery rate of the 

natural products. Although synthesis of the active compound could solve the problem, 

unfortunately, not every compound can be produced via total synthesis (Katiyar et al., 

2012). To overcome this problem, larger quantities of samples are needed to acquire 

enough pure compounds, which will increase the production cost (Habibi et al., 2019). 

Often, this problem cause plant-based antimalarials to be economically impractical for 

development and commercialization. It will also provide a market for counterfeit drugs, 

especially in less-developed regions (Karunamoorthi, 2014).  

Since the discovery of microorganisms as a prolific source of active 

compounds in the 1920s, microorganism-derived compounds have been used 

extensively in biopharmaceutical sectors, scientific research, food industry, and 

agriculture (Sanchez-Garcia et al., 2016; Pham et al., 2019). The ability to culture them 

under controlled parameters or to be engineered to activate silent genes in the 



 7 

laboratory gives microorganisms an edge over plants for the mass production of new 

active compounds (Song et al., 2015; Pérez-Moreno et al., 2016; Matsumura et al., 

2018; Wright, 2019). Therefore, microbial natural products are an excellent source to 

search for new antimalarials.  

 

1.3.2 Targeting host enzymes 

Antimalarials targeting host enzymes are an attractive therapeutic strategy to 

prevent resistant development. It is because, unlike viruses, parasites cannot mutate 

enzymes encoded in the host genome since no genome integration occurs between 

Plasmodium and humans during their life cycle (Fidock et al., 2004; Kesely et al., 

2016). For instance, Band 3 (AE1, SLC4A1, anion transporter) and ankyrin are 

predominant erythrocyte membranes. It maintains red blood cell  (RBC) integrity via 

connecting the cell membrane to its cytoskeleton (Anong et al., 2009; van den Akker 

et al., 2010).  

Tyrosine phosphorylation of band 3 causes detachment of ankyrin, 

destabilizing the RBC membrane and leading to hemolysis (Ferru et al., 2011; Pantaleo 

et al., 2011). Interestingly, P. falciparum infection stimulates a significant increase in 

band 3 tyrosine phosphorylation despite the absence of tyrosine kinase in P. 

falciparum kinome (Pantaleo et al., 2010). It indicates that P. falciparum utilizes host 
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tyrosine kinase (activating) to facilitate its egression from ring to trophozoites and 

schizont. The weakened cell membrane finally ruptured towards the end, releasing 

merozoites and infecting new RBC (Kesely et al., 2016).  

Through drug repurposing (a process of finding new medical uses for existing 

drugs/compounds), imatinib (Food and Drug Administration (FDA)-approved tyrosine 

kinase inhibitor to treat cancer) was identified as a potent antimalarial that reached 

phase II in a clinical trial. Imatinib inhibits erythrocyte tyrosine kinase activity that 

causes parasite entrapment and termination (Talevi & Bellera, 2020; Chien et al., 

2021). Hence, targeting host enzymes paired with drug repurposing is a powerful 

approach moving forward in antimalarial development. It offers a lower failure rate as 

the repurposed drug has already been tested for human safety (Pushpakom et al., 2019). 

1.3.3  Targeting essential cell components for Plasmodium survival 

A recent PiggyBac mutagenesis analysis uncovers numerous cell components 

that can be targeted to develop antimalarial agents against P. falciparum. The AT-

richness of the P. falciparum genome was exploited to generate over 35,000 P. 

falciparum mutants. These mutagenesis lead to the identification of essential genes 

(non-mutable genes). Eventually, almost 3,500 essential genes were identified for P. 
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falciparum in vitro asexual blood-stage growth (Zhang et al., 2018). Hence, numerous 

unexplored malarial parasite cell components can be targeted for drug development. 

 
1.4  The rationale of the study 

In this study, antimalarial compounds from microbial sources were explored, 

and the MoA of the most potent compound(s) was determined as an effort to identify 

new malaria treatment that may curb the spreading of drug-resistant P, falciparum. It 

may prevent major malaria breakout and enrich our knowledge of the parasite’s 

biology (Weiwer et al., 2010; World Health Organization, 2021). 

1.4.1  Soil actinomycetes, an inexhaustible source for bioactive compounds 

As of 2020, around 75,000 bioactive compounds originated from natural 

resources were identified, by which microorganisms (actinobacteria/actinomycetes, 

fungi, and eubacteria) are the major contributor with 34,000 (46 %) of bioactive 

compounds, followed by plants (higher and lower plants) (31,000), marine 

invertebrates (10,000) and terrestrial animals (1,000). Soil actinomycetes are known 

as an inexhaustible source of bioactive compounds. Out of ~2000 genera, only 

Streptomyces is well studied (easy to be cultured in the laboratory) for drug discovery 

as 60 % of bioactive compounds from actinobacteria were identified from this genus 
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alone. Hence, more bioactive compounds are to be discovered from the underexplored 

genus or the “rare actinomycetes” (Ding et al., 2019).  

Soil microorganisms, significantly contribute to natural drugs due to their high 

therapeutic index and significant pharmacological activities (Adegboye & Babalola, 

2013). In addition, compounds from soil microorganisms are an excellent natural 

product source of antimalarial agents due to; 1) their sizeable structural diversity, and 

2) they are still not widely explored for the discovery of antimalarial drugs (Pérez-

Moreno et al., 2016). The type of forests was suggested to determine soil 

actinomycetes distribution and the variety of secondary metabolites produced since 

their growth are influenced by organic materials mainly from plants (Hackl et al., 

2005; Ghorbani-Nasrabadi et al., 2013; Tripathi et al., 2016; Law et al., 2019; Mahmud 

et al., 2022). 

Tropical forests are regarded as the best sampling location for drug discovery, 

hence known as the “world’s largest pharmacy” (Guariguata et al., 1998; Temu, 2015). 

As part of Borneo Island, Sabah is one of the twelve mega biodiversity hotspots 

globally. More than ten forest types can be found in Sabah, which covers 

approximately 60 % of its landmass (Kulip et al., 2010; Payne, 2011; Yen et al., 2021). 

In general, 15,000 plant species were recorded in Borneo, of which 34 % are endemic 

species (WWF, 2022). Hence, the existence of diverse species of flora and fauna in 
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Sabah, Malaysia, may lead to the isolation of novel strains and bioactive compounds 

resulting from soil actinomycetes-plant interaction.  

In a previous study, more than 1000 culturable actinomycetes strains were 

isolated from different forest types of Sabah. Some of these strains showed potent 

activities against human glycogen synthase kinase-3 (Hs GSK-3β) and malaria parasite, 

P. falciparum 3D7 strain (Pf 3D7, wild type (WT)) (Mahmud et al., 2022). The most 

potent strains were selected to identify active compounds in this study. To further 

diversify the tested scaffolds, microbial strains isolated from Japanese soils and 

synthesized compounds deposited at the Chemical Biology Research Group (CBRG) 

at Rikagaku Kenkyusho (RIKEN) microbial and chemical libraries were evaluated for 

their antimalarial activities. In addition, a series of new lucilactaene derivatives, a 

biosynthesis product of Fusarium sp. 97-94, was also tested for their activity against 

Pf 3D7. Lucilactaene is an interesting antimalarial drug lead that was previously 

reported with potent antimalarial activity (Kato et al., 2020).  

 

1.4.2 Hs GSK-3β inhibitor may lead to identifying new antimalarial 
compounds, a target-based approach.   

Previously, a yeast-based assay system utilizing a mutant yeast strain 

expressing Hs GSK-3β was applied to screen for Hs GSK-3β inhibitors from soil 

microorganisms and plant extracts of Sabah (Cheenpracha et al., 2009; Ho et al., 2009). 
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It was shown that most of the active extracts also exert potent antimalarial activity with 

no cytotoxic effect against Chang’s liver cells. Notably, these samples also were 

indicated to inhibit host GSK-3 activity of P. berghei infected mice in the liver (Dahari 

et al., 2016). Hence, dual inhibition of host and parasite GSK-3 is an exciting approach 

in malaria treatment.  

Based on these premises, the potential of using mutant yeast expressing Hs 

GSK-3β as a preliminary assay to narrow down the sample for the antimalarial activity 

was further evaluated. The crude extracts that showed potent inhibitory activity against 

Hs GSK-3β and Pf 3D7 were subsequently fractionated to identify the active 

compounds.  

 
1.4.3 Spontaneous drug resistance development, an effective strategy to identify 
the antimalarial molecular target 

 The development of drug resistance ability in Plasmodium has been described 

as unique compared with other infectious diseases. They can induce exact resistance 

in the cellular target of the antimalarial drugs instead of random mutations (Goldberg 

et al., 2012). Although the precise mechanisms are still not clearly defined, resistance 

in Plasmodium has a genetic basis (Sibley, 2015). Hence, the molecular target of 

antimalarials can be identified via generating drug-resistance parasites in the 

laboratory, then comparing the genomes of the resistant clones to the WT (Meister et 

al., 2011). This method has led to the identification of numerous novel targets, 
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including Pf ATP4 and Pf CARL (Crowther et al., 2011). In this study, the spontaneous 

mutation approach was applied via continuous drug exposure; a) to identify the 

MoA/molecular target of compounds identified/deposited in RIKEN and b) to confirm 

if active compounds identified from the target-based approach can be confirmed via 

the generation of mutant Pf GSK-3. 
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1.5 Research objectives  

1.5.1 General objective 

The study aimed to the assess antimalarial potential of soil microorganisms and to 

explore new chemical scaffolds, possibly with a different mode of action than the 

current antimalarial frontline.  

 

1.5.2 Specific objectives 

i) To evaluate the antimalarial activity of crude extracts previously identified as Hs 

GSK-3β inhibitors via in vivo yeast-based assay from Malaysian soil microorganisms. 

ii) To identify antimalarial compounds produced by Malaysian and Japanese soil 

microorganisms. 

iii) To determine the antimalarial MoA of the most potent antimalarial compounds in 

this study. 

iv) To predict the importance of the antimalarial molecular target of the most potent 

antimalarial compound in this study via stage-specific activity evaluation.  

v) To establish the structure-activity relationship of the most potent antimalarials 

identified in this study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Brief historical data on malaria   

Malaria is an ancient infectious disease that remains endemic in the tropics 

until today. The term “malaria” was derived from medieval Italian words “mal (bad)” 

and “aria (air)” due to the connection of this disease with the swamp area in Italy. 

However, the origin of this disease can be traced back to Egyptian papyrus (3,500 BC), 

The Chinese Canon of Medicine, Nei Ching (3,000 BC), ancient Indian sculptures 

(1,000 BC), and Cuneiform tablet in Mesopotamia (500 BC), all describing fever 

associated with rigors and enlarged spleen, certainly attributed to malaria (Bruce-

Chwatt, 1988). Meanwhile, malaria spread into Europe, Scandinavia, and Britain 

during the Neolithic Period (~4,000 BC) via the Nile Valley (Carter & Mendis, 2002; 

Suh et al., 2004; White, et al., 2014; Piperaki & Daikos, 2016; Dagen, 2020).  

A more detailed description of malaria was recorded by Celsus in 1 AD (a 

Roman writer), who described three types of malaria fever in De Medicina as quartan, 

tertian, and lethal semitertian fevers. These malarial fevers are now known to be 

inflicted by P. malariae, P. vivax, and P. falciparum, respectively (Cox, 2002). 

However, the Plasmodium parasites were not identified until almost 2,000 years later. 

Giovanni Lancisi was one of the first to suggest the relation between swamp areas and 
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mosquitoes with malaria in 1716 (Italy) as the draining of the swamp area reduced 

malaria cases and suggested that mosquitoes spread the disease. Lancisi also 

performed a postmortem study on the body of a periodic fever victim and identified a 

dark-colored pigmentation in the tissue (Klaassen et al., 2011). In 1847 Rudolph 

Virchow (Germany) confirmed that the colored pigmentation observed by Lancisi in 

1716 came from the blood (Brabin, 2021). 

Almost 30 years later, the causative candidates of malaria were finally 

proposed. First, in 1878, Corrado Tommasi-Crudell and Theodor Klebs proposed a 

bacterium (named Bacillus malariae (B. malariae)) isolated from Pontine Marshes, a 

former marshland in Italy, as responsible for malaria. This assumption was based on 

symptoms such as fever and spleen enlargement observed in B. malariae-injected 

rabbits (Haas, 1999). At about the same time, Charles Laveran, a French military 

doctor, performed a postmortem of patients who succumbed to malaria in Algeria. At 

first, Laveran observed pigmentation in organs and tissues as previously reported by 

Lancisi but failed to determine the cause. He then examined wet blood film (without 

staining) of leukocytes and erythrocytes and observed pigmented cells. Upon further 

inspection, he also discovered spherical and crescent-shaped (now known as the 

Plasmodium gametocytes) bodies containing pigment in those cells (Tan & Ahana, 

2009; Dagen, 2020).  
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In 1880, Laveran observed pigmented spherical bodies with flagella-like 

structures in the blood of malaria patients that were motile and capable of infecting 

new RBC. He also found that the crescents can be removed when treated with quinine 

(the first antimalarial compound purified from the bark Cinchona cordifolia in 1820). 

Based on his study, two monumental findings were obtained: 1) Laveran reported 

parasite (initially named Oscillaria malariae (O. malariae)) as the causative agent of 

malaria, a remarkable finding on its own as it was the first protozoan parasite ever 

identified in humans, and 2) he proposed possible egression of the parasite in blood 

and its pathological implication. First, a clear spot was observed in RBC upon infection. 

Then, the spot grows and acquires the pigment until the erythrocyte ruptures, which 

causes fever in malaria patients (Cook, 2007; Dagen, 2020).  

Laveran’s finding was met with many oppositions, including from 

distinguished scientists such as Louis Pasteur and Robert Koch, because the “parasite” 

observed by Laveran was possibly the breakdown product of RBC. Hence, the idea of 

B. malariae as a malarial causative remained accepted until 1884. However, in the 

same year, Pasteur was finally convinced and supported Laveran’s proposal once he 

directly observed the motile and flagellated spheres under the microscope (Brey, 1999). 

In 1884, Ettore Marchiafava and Angelo Celli identified a distinct structure to the one 

observed by Laveran, characterized as an active “amoeboid ring” (now known as the 
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ring stage). They thought it was an entirely different microorganism and was named 

Plasmodium, which eventually overrides O. malariae (Garnham, 1988; Dagen, 2020). 

In 1885, Camillo Golgi identified two distinct species of parasite protozoa; P. 

malariae (responsible for quartan fever) and P. vivax (that cause tertian fever) 

(Tognotti, 2007). In 1890, Marchiafava and Golgi made another breakthrough 

discovery as they identified P. falciparum, which also causes tertian fever but is more 

fatal than P. vivax. Hence, P. falciparum is accounted as the cause of malignant tertian 

fever, while P. vivax causes benign tertian fever (Capanna, 2006). In 1894, Laveran 

(now associated with Pasteur Institute) stated that he had failed to find malaria 

parasites in the water, air, or even soil. Hence, he believed that Plasmodium might 

exist in another host outside humans. Laveran suggested the mosquito as another 

Plasmodium host, based on Patrick Manson’s finding in 1877 that the mosquito spread 

filarial worms, acting as its vector (Dagen, 2020).  

Findings made circa 1900 have an unprecedented impact on malaria study 

during the postmodern era that further enriched scientific understanding of 

Plasmodium infection treatment, vector control, and biology (Cox, 2010). In 1934, IG 

Farbenindustrie developed a series of antimalarial based on the structure of quinine, 

including CQ (4-aminoquinolines), a frontline antimalarial drug in the 1950s before 

the emergence of the CQ-resistance strain. Meanwhile, the life cycle of the 
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Plasmodium parasite was finally understood in the early 1980s (Krotoski et al., 1982; 

Josling & Llinás, 2015), which led to a new drug regimen by pairing drugs targeting 

different Plasmodium life stages and MoA (Nosten & White, 2007).  

 

2.2 Plasmodium and its life cycle  

In general, Plasmodium parasites require two hosts to complete their life cycle. 

The first host is Anopheles sp. mosquito, vital for Plasmodium sexual diploid cycle (in 

the midgut) and acts as their transmission vector (haploid sporozoites in salivary 

glands) to infect their second host (vertebrates such as mammals, reptiles, or birds), 

for the haploid asexual cycle (Henriquez, 2020). Almost 40 Anopheles sp. mosquitoes 

are known to transmit Plasmodium parasites to humans (Nicoletti, 2020). Anopheles 

gambiae was identified as the most efficient vector responsible for spreading P. 

falciparum (Koella et al., 1998).  

In humans, Plasmodium asexual life cycle is divided into exoerythrocytic (in 

the liver) (Vaughan & Kappe, 2017) and intraerythrocytic (in the RBC) (Wallqvist et 

al., 2016) stages. Saliva injected by an infected mosquito will transfer sporozoites into 

the bloodstream and enter liver cells. The entry of sporozoites into the hepatocytes is 

highly precise due to the circumsporozoite protein that bears a ligand that only binds 

specifically to the liver basolateral domain (hepatocyte cell membrane). The entry of 

sporozoites will initiate the asexual reproduction, known as the pre-erythrocytic cycle 
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(PE) or primary exoerythrocytic schizogony (EE) stage. Sporozoites then 

metamorphose into trophozoites and transform into schizont and merozoites through 

schizogony (Ménard et al., 2008; Duffy et al., 2012; Texeira et al., 2021).  

The erythrocytic cycle starts once merozoites leave the liver cell to penetrate 

RBC. During the invasion, the merozoites initiate invagination of the RBC membrane 

to form a membrane sack known as parasitophorous vacuole (PV) (Koch & Baum, 

2016). Although the function of PV is not fully understood, it is known to act as an 

intraerythrocytic shelter necessary for nutrient acquisition (Bullen et al., 2012), 

facilitate the export of virulence factors (Pellé et al., 2015) and 

subcompartmentalization (Adisa et al., 2003; Matz et al., 2020).  

Within this capsule, the merozoites transform into trophozoites (early 

trophozoites or ring-stage and late trophozoites). Next, the late trophozoites developed 

into blood-stage schizont. They were released from ruptured RBC together with 

metabolic waste and residual bodies to stimulate the release of macrophages and 

cytokines responsible for synchronous fever, a common malaria pathology. After an 

indeterminate number of asexual cycles, some of the merozoites will enter erythrocytes 

and become macro- and microgamonts to be ingested by the mosquito for sexual 

reproduction, and the cycle is repeated (Henriquez, 2020) (Figure 2.1).  
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Figure 2.1 The life cycle of P. falciparum (Matthews et al., 2018).   

Created with BioRender.com 
 

2.3 Druggable stage of Plasmodium life cycle 

Based on the Plasmodium life cycle, different life stages can be targeted to 

develop antimalarial drugs, such as targeting asexual and sexual stages (Wadi et al., 

2019), hypnozoites (dormant schizont stage)/liver stage (Derbyshire et al., 2011), and 

transmission-blocking (Birkholtz et al., 2022). However, most of the antimalarial act 

during Plasmodium’s RBC life cycle since the screening requires the least labor and 

specialized material. Besides, an extensive compound library can be tested 

simultaneously. Hence, the RBC stage will continue to be the main target in drug 

development. (Gamo et al., 2010; Meister et al., 2011; Baragaña et al., 2015; Vos et 
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al., 2015; Swann et al., 2016). Antimalarial agents known to inhibit Plasmodium at the 

RBC stage are CQ, amodiaquine, quinine, sulfadoxine-pyrimethamine, ART and its 

derivatives, and lumefantrine (Zarchin et al., 1986; Loria et al., 1999; Joof et al., 2021; 

Famin & Ginsburg, 2002; Krishna et al., 2004). 

CQ and ART are the most effective antimalarial compounds identified so far. 

Both compounds exert a unique MoA and can target a broad range of essential 

biochemical functions in Plasmodium. CQ is a weak diprotic base found in three forms 

in cells (un-protonated, mono-protonated, and di-protonated). The un-protonated form 

of CQ is a membrane-permeable form that can diffuse into the infected erythrocyte 

and digestive vacuole (DV) (lysosomal isolated acidic compartment formed by P. 

falciparum in erythrocytes) (Slater et al., 1991; Ehlgen et al., 2012).  

In RBC, Plasmodium continues to multiply by ingesting the host cell cytosol 

into peptides and heme. Heme is a toxic material to Plasmodium and must be converted 

into an inert and harmless crystalline polymer hemozoin (malaria pigmentation) and 

deposited in the DV (Slater et al., 1991; Ehlgen et al., 2012). Once inside the DV un-

protonated CQ become protonated (not permeable) and trapped in the DV (Homewood 

et al., 1972; Yayon et al., 1984). Protonated CQ binds with haematin (oxidized heme), 

preventing its further conversion into hemozoin crystal which eventually damages the 

Plasmodium membrane (Sugioka et al., 1987; Bray et al., 1998; Pagola et al., 2000).  
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Meanwhile, ART is a highly effective antimalarial agent as it affects 

Plasmodium at all stages of growth and acts on multiple targets (Ismail et al., 2016). 

In the infected RBC, ART become activated from the bond cleavage of its 

endoperoxide bridge by Fe2+-heme (originated from hemoglobin degradation by 

Plasmodium). In this form, ART is lethal to the parasite due to biomolecules alkylation 

(heme, protein, and lipids) that cause oxidative stress and cellular damage (Tilley et 

al., 2016). It now becomes clear that the activity of ART is directly proportional to the 

amount of Fe2+-heme. It makes ART unique compared with most antimalarial as it also 

can kill Plasmodium at the early ring stage (hemoglobin degradation begins with 

several hours of RBC invasion) (Portugaliza et al., 2020).   

ART antimalarial activity is at its peak during trophozoites as hemoglobin 

catabolism at the highest rate (Klonis et al., 2013; Xie et al., 2016). It can also reduce 

10,000-fold Plasmodium every 48-72 hours, providing rapid clearance but having a 

short half-life (thus requiring the second drug for complete Plasmodium elimination). 

Moreover, ART has a consistent antimalarial activity that is reproducible, wide 

therapeutic index, and low toxic effect on human cells (Dondorp et al., 2009; Maude 

et al., 2010; White et al., 2014).  
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2.4 Malaria: an ongoing battle 

Despite numerous efforts to eradicate the Plasmodium parasite, malaria 

remains one of the most widely spread and fatal diseases today. More than 200 million 

new clinical cases with half a million death have been reported annually over the past 

two decades (Cibulskis et al., 2016; World Health Organization, 2021). Overall, 

malaria cases were reported to be increasing in 2020 (World Health Organization, 

2021). Modeling analysis suggested that the increase was contributed by COVID-19. 

The pandemic indirectly disrupts malaria treatment and prevention worldwide (Weiss 

et al., 2021). In addition, a more worrying development was reported in certain regions, 

such as Laos, by which malaria cases have been steadily increasing since 2012, 

possibly linked to the emergence of drug resistance malaria (Imwong et al., 2015).  

Moreover, only three broad classes of chemicals were identified as the 

antimalarial agent in clinical use. They are arylamino alcohol compounds, antifolate 

compounds, and ART compounds. The MoA exerted by these drugs can be divided 

into three mechanisms which are tissue schizonticides (primaquine), blood 

schizonticides (CQ, ART, quinine), and sporonticides (proguanil, pyrimethamine) 

(Cui et al., 2015).  

 


