12 research outputs found

    Nash Equilibria in Discrete Routing Games with Convex Latency Functions

    Get PDF
    In a discrete routing game, each of n selfish users employs a mixed strategy to ship her (unsplittable) traffic over m parallel links. The (expected) latency on a link is determined by an arbitrary non-decreasing, non-constant and convex latency function φ. In a Nash equilibrium, each user alone is minimizing her (Expected) Individual Cost, which is the (expected) latency on the link she chooses. To evaluate Nash equilibria, we formulate Social Cost as the sum of the users ’ (Expected) Individual Costs. The Price of Anarchy is the worst-case ratio of Social Cost for a Nash equilibrium over the least possible Social Cost. A Nash equilibrium is pure if each user deterministically chooses a single link; a Nash equilibrium is fully mixed if each user chooses each link with non-zero probability. We obtain: For the case of identical users, the Social Cost of any Nash equilibrium is no more than the Social Cost of the fully mixed Nash equilibrium, which may exist only uniquely. Moreover, instances admitting a fully mixed Nash equilibrium enjoy an efficient characterization. For the case of identical users, we derive two upper bounds on the Price of Anarchy: For the case of identical links with a monomial latency function φ(x) = x d, the Price of Anarchy is the Bell number of order d + 1. For pure Nash equilibria, a generic upper bound from the Wardrop model can be transfered to discrete routing games. For polynomial latency functions with non-negative coefficients and degree d, this yields an upper bound of d + 1. For th

    Contents

    Get PDF

    Resource allocation games of various social objectives

    Get PDF
    In this paper, we study resource allocation games of two different cost components for individual game players and various social costs. The total cost of each individual player consists of the congestion cost, which is the same for all players sharing the same resource, and resource activation cost, which is proportional to the individual usage of the resource. The social costs we consider are, respectively, the total of costs of all players and the maximum congestion cost plus total resource activation cost. Using the social costs we assess the quality of Nash equilibria in terms of the price of anarchy (PoA) and the price of stability (PoS). For each problem, we identify one or two problem parameters and provide parametric bounds on the PoA and PoS. We show that they are unbounded in general if the parameter involved are not restricted

    Mixed Nash equilibria in selfish routing problems with dynamic constraints

    Get PDF
    AbstractWe study the problem of routing traffic through a congested network consisting of m parallel links, each having a certain speed. Moreover, we are given n selfish (non-cooperative) agents, each of them willing to route her own piece of traffic on exactly one link. Agents are selfish in that they only pick a link which minimize the delay of their own piece of traffic. In this context much effort has been lavished in the framework of mixed Nash equilibria where the agent’s routing choices are regulated by probability distributions, one for each agent, which let the system thus enter a steady state from which no agent is willing to unilaterally deviate. In this work we consider situations in which some agents have constraints on the routing choice: in a sense they are forbidden to route their traffic on some links. We show that at most one Nash equilibrium may exist and, in some cases with equal speed links and where each agent is forbidden to route on at most one link, we give necessary and sufficient conditions on its existence; these conditions correlate the traffic load of the agents. We consider also a dynamic behaviour of the network when the constraints may vary, in particular when a constraint is removed: we establish under which conditions the network is still in equilibrium. These conditions are all effective in the sense that, given a set of yes/no routing constraints on each link for each agent, we provide the probability distributions corresponding to the unique Nash equilibrium associated to the constraints (if it exists). Moreover these conditions and the possible Nash equilibrium are computed in time O(mn)

    A new model for selfish routing

    Get PDF
    AbstractIn this work, we introduce and study a new, potentially rich model for selfish routing over non-cooperative networks, as an interesting hybridization of the two prevailing such models, namely the KPmodel [E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413] and the Wmodel [J.G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the of the Institute of Civil Engineers 1 (Pt. II) (1952) 325–378].In the hybrid model, each of n users is using a mixed strategy to ship its unsplittable traffic over a network consisting of m parallel links. In a Nash equilibrium, no user can unilaterally improve its Expected Individual Cost. To evaluate Nash equilibria, we introduce Quadratic Social Cost as the sum of the expectations of the latencies, incurred by the squares of the accumulated traffic. This modeling is unlike the KP model, where Social Cost [E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413] is the expectation of the maximum latency incurred by the accumulated traffic; but it is like the W model since the Quadratic Social Cost can be expressed as a weighted sum of Expected Individual Costs. We use the Quadratic Social Cost to define Quadratic Coordination Ratio. Here are our main findings: •Quadratic Social Cost can be computed in polynomial time. This is unlike the #P-completeness [D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis, The structure and complexity of Nash equilibria for a selfish routing game, in: P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, R. Conejo (Eds.), Proceedings of the 29th International Colloquium on Automata, Languages and Programming, in: Lecture Notes in Computer Science, vol. 2380, Springer-Verlag, 2002, pp. 123–134] of computing Social Cost for the KP model.•For the case of identical users and identical links, the fully mixed Nash equilibrium [M. Mavronicolas, P. Spirakis, The price of selfish routing, Algorithmica 48 (1) (2007) 91–126], where each user assigns positive probability to every link, maximizes Quadratic Social Cost.•As our main result, we present a comprehensive collection of tight, constant (that is, independent of m and n), strictly less than 2, lower and upper bounds on the Quadratic Coordination Ratio for several, interesting special cases. Some of the bounds stand in contrast to corresponding super-constant bounds on the Coordination Ratio previously shown in [A. Czumaj, B. Vöcking, Tight bounds for worst-case equilibria, ACM Transactions on Algorithms 3 (1) (2007); E. Koutsoupias, M. Mavronicolas, P. Spirakis, Approximate equilibria and ball fusion, Theory of Computing Systems 36 (6) (2003) 683–693; E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413; M. Mavronicolas, P. Spirakis, The price of selfish routing, Algorithmica 48 (1) (2007) 91–126] for the KP model

    Atomic Routing Games on Maximum Congestion

    Full text link
    We study atomic routing congestion games in which each player chooses a path in the network from its strategy set (a collection of paths) with the objective to minimize the maximum congestion along any edge on its selected path. The social cost is the global maximum congestion on any edge in the network. We show that for arbitrary routing games, the price of stability is 1, and the price of anarchy, PoA, is bounded by κ − 1 ≤ PoA ≤ c(κ 2 + log 2 n), where κ is the length of the longest cycle in the network, n is the size of the network and c is a constant. Further, any best response dynamic converges to a Nash equilibrium. Our bounds show that for maximum congestion games, the topology of the network, in particular the length of cycles, plays an important role in determining the quality of the Nash equilibria. A fundamental issue in the management of large scale communication networks is to route the packet traffic so as to optimize the network performance. Our measure of network performance is the worst bottleneck (most used link) in the system. The model we use for network traffic is that of finite, unsplittable packets (atomic flow), and each packet’s path is controlled independentl

    Facets of the Fully Mixed Nash Equilibrium Conjecture

    Full text link
    In this work, we continue the study of the many facets of the Fully Mixed Nash Equilibrium Conjecture, henceforth abbreviated as the FMNE Conjecture, in selfish routing for the special case of n identical users over two (identical) parallel links. We introduce a new measure of Social Cost, defined to be the expectation of the square of the maximum congestion on a link; we call it Quadratic Maximum Social Cost. A Nash equilibrium is a stable state where no user can improve her (expected) latency by switching her mixed strategy; a worst-case Nash equilibrium is one that maximizes Quadratic Maximum Social Cost. In the fully mixed Nash equilibrium, allmixed strategies achieve full support. Formulated within this framework is yet another facet of the FMNE Conjecture, which states that the fully mixed Nash equilibrium is the worst-case Nash equilibrium. We present an extensive proof of the FMNE Conjecture; the proof employs a mixture of combinatorial arguments and ana-lytical estimations. Some of these analytical estimations are derived through some new bounds on generalized medians of the binomial distribution [22] we obtain, which are of independent interest.
    corecore