794 research outputs found

    A distributed algorithm for wireless resource allocation using coalitions and the Nash bargaining solution

    Get PDF

    A game theoretic approach to distributed resource allocation for OFDMA-based relaying networks

    Get PDF

    Joint Head Selection and Airtime Allocation for Data Dissemination in Mobile Social Networks

    Full text link
    Mobile social networks (MSNs) enable people with similar interests to interact without Internet access. By forming a temporary group, users can disseminate their data to other interested users in proximity with short-range communication technologies. However, due to user mobility, airtime available for users in the same group to disseminate data is limited. In addition, for practical consideration, a star network topology among users in the group is expected. For the former, unfair airtime allocation among the users will undermine their willingness to participate in MSNs. For the latter, a group head is required to connect other users. These two problems have to be properly addressed to enable real implementation and adoption of MSNs. To this aim, we propose a Nash bargaining-based joint head selection and airtime allocation scheme for data dissemination within the group. Specifically, the bargaining game of joint head selection and airtime allocation is first formulated. Then, Nash bargaining solution (NBS) based optimization problems are proposed for a homogeneous case and a more general heterogeneous case. For both cases, the existence of solution to the optimization problem is proved, which guarantees Pareto optimality and proportional fairness. Next, an algorithm, allowing distributed implementation, for join head selection and airtime allocation is introduced. Finally, numerical results are presented to evaluate the performance, validate intuitions and derive insights of the proposed scheme

    Optimal Power Control for Multiuser CDMA Channels

    Full text link
    In this paper, we define the power region as the set of power allocations for K users such that everybody meets a minimum signal-to-interference ratio (SIR). The SIR is modeled in a multiuser CDMA system with fixed linear receiver and signature sequences. We show that the power region is convex in linear and logarithmic scale. It furthermore has a componentwise minimal element. Power constraints are included by the intersection with the set of all viable power adjustments. In this framework, we aim at minimizing the total expended power by minimizing a componentwise monotone functional. If the feasible power region is nonempty, the minimum is attained. Otherwise, as a solution to balance conflicting interests, we suggest the projection of the minimum point in the power region onto the set of viable power settings. Finally, with an appropriate utility function, the problem of minimizing the total expended power can be seen as finding the Nash bargaining solution, which sheds light on power assignment from a game theoretic point of view. Convexity and componentwise monotonicity are essential prerequisites for this result.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Weighted Max-Min Resource Allocation for Frequency Selective Channels

    Full text link
    In this paper, we discuss the computation of weighted max-min rate allocation using joint TDM/FDM strategies under a PSD mask constraint. We show that the weighted max-min solution allocates the rates according to a predetermined rate ratio defined by the weights, a fact that is very valuable for telecommunication service providers. Furthermore, we show that the problem can be efficiently solved using linear programming. We also discuss the resource allocation problem in the mixed services scenario where certain users have a required rate, while the others have flexible rate requirements. The solution is relevant to many communication systems that are limited by a power spectral density mask constraint such as WiMax, Wi-Fi and UWB
    corecore