219 research outputs found

    Assessing the Potential of Classical Q-learning in General Game Playing

    Get PDF
    After the recent groundbreaking results of AlphaGo and AlphaZero, we have seen strong interests in deep reinforcement learning and artificial general intelligence (AGI) in game playing. However, deep learning is resource-intensive and the theory is not yet well developed. For small games, simple classical table-based Q-learning might still be the algorithm of choice. General Game Playing (GGP) provides a good testbed for reinforcement learning to research AGI. Q-learning is one of the canonical reinforcement learning methods, and has been used by (Banerjee &\& Stone, IJCAI 2007) in GGP. In this paper we implement Q-learning in GGP for three small-board games (Tic-Tac-Toe, Connect Four, Hex)\footnote{source code: https://github.com/wh1992v/ggp-rl}, to allow comparison to Banerjee et al.. We find that Q-learning converges to a high win rate in GGP. For the ϵ\epsilon-greedy strategy, we propose a first enhancement, the dynamic ϵ\epsilon algorithm. In addition, inspired by (Gelly &\& Silver, ICML 2007) we combine online search (Monte Carlo Search) to enhance offline learning, and propose QM-learning for GGP. Both enhancements improve the performance of classical Q-learning. In this work, GGP allows us to show, if augmented by appropriate enhancements, that classical table-based Q-learning can perform well in small games.Comment: arXiv admin note: substantial text overlap with arXiv:1802.0594

    Model and Reinforcement Learning for Markov Games with Risk Preferences

    Full text link
    We motivate and propose a new model for non-cooperative Markov game which considers the interactions of risk-aware players. This model characterizes the time-consistent dynamic "risk" from both stochastic state transitions (inherent to the game) and randomized mixed strategies (due to all other players). An appropriate risk-aware equilibrium concept is proposed and the existence of such equilibria is demonstrated in stationary strategies by an application of Kakutani's fixed point theorem. We further propose a simulation-based Q-learning type algorithm for risk-aware equilibrium computation. This algorithm works with a special form of minimax risk measures which can naturally be written as saddle-point stochastic optimization problems, and covers many widely investigated risk measures. Finally, the almost sure convergence of this simulation-based algorithm to an equilibrium is demonstrated under some mild conditions. Our numerical experiments on a two player queuing game validate the properties of our model and algorithm, and demonstrate their worth and applicability in real life competitive decision-making.Comment: 38 pages, 6 tables, 5 figure
    corecore