11 research outputs found

    Approximating Nash Equilibria in Tree Polymatrix Games

    Get PDF
    We develop a quasi-polynomial time Las Vegas algorithm for approximating Nash equilibria in polymatrix games over trees, under a mild renormalizing assumption. Our result, in particular, leads to an expected polynomial-time algorithm for computing approximate Nash equilibria of tree polymatrix games in which the number of actions per player is a fixed constant. Further, for trees with constant degree, the running time of the algorithm matches the best known upper bound for approximating Nash equilibria in bimatrix games (Lipton, Markakis, and Mehta 2003). Notably, this work closely complements the hardness result of Rubinstein (2015), which establishes the inapproximability of Nash equilibria in polymatrix games over constant-degree bipartite graphs with two actions per player

    Some Problems on Building Cognitive Robot

    Get PDF
    人类的智力与人类的涉身体验密不可分。因此,许多人工智能学者相信 在迈向更高级的人工智能的道路上,涉身人工智能是合理甚至是唯一的选择。 涉身人工智能与传统的人工智能的重要区别在于;强调了认知和意识的生 成不仅仅是一个“心智”(Mind)问题。同时,也与其所处环境(Environment)、 身体(Body)密切相关,三者同时在认知的形成过程中扮演着重要的角色; 强调“自我”在认知和意识中的重要作用,即以第一人称视角(First-person Perspective)来体验世界并形成相关的概念和知识,以“自我”为出发点运用这 些知识。 秉持这种思想,结合厦门大学智能科学系正在开...Human intelligence and our embodied experience are inseparable. Therefore, many scholars in AI community believe that the road to human-level intelligence, embodied artificial intelligence (EAI) is a reasonable or even the only option. There are two main differences between EAI and traditional AI methods: at first, EAI highlights that the formation of cognition and consciousness is more than ...学位:博士后院系专业:数学科学学院数学与应用数学系_人工智能基础学号:BHBG0005

    Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games

    Full text link
    We show that there is a polynomial-time approximation scheme for computing Nash equilibria in anonymous games with any fixed number of strategies (a very broad and important class of games), extending the two-strategy result of Daskalakis and Papadimitriou 2007. The approximation guarantee follows from a probabilistic result of more general interest: The distribution of the sum of n independent unit vectors with values ranging over {e1, e2, ...,ek}, where ei is the unit vector along dimension i of the k-dimensional Euclidean space, can be approximated by the distribution of the sum of another set of independent unit vectors whose probabilities of obtaining each value are multiples of 1/z for some integer z, and so that the variational distance of the two distributions is at most eps, where eps is bounded by an inverse polynomial in z and a function of k, but with no dependence on n. Our probabilistic result specifies the construction of a surprisingly sparse eps-cover -- under the total variation distance -- of the set of distributions of sums of independent unit vectors, which is of interest on its own right.Comment: In the 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 200

    Correlation decay and decentralized optimization in graphical models

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 213-229) and index.Many models of optimization, statistics, social organizations and machine learning capture local dependencies by means of a network that describes the interconnections and interactions of different components. However, in most cases, optimization or inference on these models is hard due to the dimensionality of the networks. This is so even when using algorithms that take advantage of the underlying graphical structure. Approximate methods are therefore needed. The aim of this thesis is to study such large-scale systems, focusing on the question of how randomness affects the complexity of optimizing in a graph; of particular interest is the study of a phenomenon known as correlation decay, namely, the phenomenon where the influence of a node on another node of the network decreases quickly as the distance between them grows. In the first part of this thesis, we develop a new message-passing algorithm for optimization in graphical models. We formally prove a connection between the correlation decay property and (i) the near-optimality of this algorithm, as well as (ii) the decentralized nature of optimal solutions. In the context of discrete optimization with random costs, we develop a technique for establishing that a system exhibits correlation decay. We illustrate the applicability of the method by giving concrete results for the cases of uniform and Gaussian distributed cost coefficients in networks with bounded connectivity. In the second part, we pursue similar questions in a combinatorial optimization setting: we consider the problem of finding a maximum weight independent set in a bounded degree graph, when the node weights are i.i.d. random variables.(cont.) Surprisingly, we discover that the problem becomes tractable for certain distributions. Specifically, we construct a PTAS for the case of exponentially distributed weights and arbitrary graphs with degree at most 3, and obtain generalizations for higher degrees and different distributions. At the same time we prove that no PTAS exists for the case of exponentially distributed weights for graphs with sufficiently large but bounded degree, unless P=NP. Next, we shift our focus to graphical games, which are a game-theoretic analog of graphical models. We establish a connection between the problem of finding an approximate Nash equilibrium in a graphical game and the problem of optimization in graphical models. We use this connection to re-derive NashProp, a message-passing algorithm which computes Nash equilibria for graphical games on trees; we also suggest several new search algorithms for graphical games in general networks. Finally, we propose a definition of correlation decay in graphical games, and establish that the property holds in a restricted family of graphical games. The last part of the thesis is devoted to a particular application of graphical models and message-passing algorithms to the problem of early prediction of Alzheimer's disease. To this end, we develop a new measure of synchronicity between different parts of the brain, and apply it to electroencephalogram data. We show that the resulting prediction method outperforms a vast number of other EEG-based measures in the task of predicting the onset of Alzheimer's disease.by Théophane Weber.Ph.D
    corecore