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Abstract

Many models of optimization, statistics, social organizations and machine learning cap-
ture local dependencies by means of a network that describes the interconnections and
interactions of different components. However, in most cases, optimization or inference
on these models is hard due to the dimensionality of the networks. This is so even when
using algorithms that take advantage of the underlying graphical structure. Approximate
methods are therefore needed. The aim of this thesis is to study such large-scale systems,
focusing on the question of how randomness affects the complexity of optimizing in a graph;
of particular interest is the study of a phenomenon known as correlation decay, namely,
the phenomenon where the influence of a node on another node of the network decreases
quickly as the distance between them grows.

In the first part of this thesis, we develop a new message-passing algorithm for op-
timization in graphical models. We formally prove a connection between the correlation
decay property and (i) the near-optimality of this algorithm, as well as (ii) the decentralized
nature of optimal solutions. In the context of discrete optimization with random costs, we
develop a technique for establishing that a system exhibits correlation decay. We illustrate
the applicability of the method by giving concrete results for the cases of uniform and
Gaussian distributed cost coefficients in networks with bounded connectivity.

In the second part, we pursue similar questions in a combinatorial optimization setting:
we consider the problem of finding a maximum weight independent set in a bounded degree
graph, when the node weights are i.i.d. random variables. Surprisingly, we discover that
the problem becomes tractable for certain distributions. Specifically, we construct a PTAS
for the case of exponentially distributed weights and arbitrary graphs with degree at most
3, and obtain generalizations for higher degrees and different distributions. At the same
time we prove that no PTAS exists for the case of exponentially distributed weights for
graphs with sufficiently large but bounded degree, unless P=NP.

Next, we shift our focus to graphical games, which are a game-theoretic analog of
graphical models. We establish a connection between the problem of finding an approxi-
mate Nash equilibrium in a graphical game and the problem of optimization in graphical



models. We use this connection to re-derive NashProp, a message-passing algorithm which
computes Nash equilibria for graphical games on trees; we also suggest several new search
algorithms for graphical games in general networks. Finally, we propose a definition of
correlation decay in graphical games, and establish that the property holds in a restricted
family of graphical games.

The last part of the thesis is devoted to a particular application of graphical models
and message-passing algorithms to the problem of early prediction of Alzheimer's disease.
To this end, we develop a new measure of synchronicity between different parts of the
brain, and apply it to electroencephalogram data. We show that the resulting prediction
method outperforms a vast number of other EEG-based measures in the task of predicting
the onset of Alzheimer's disease.
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Title: J. Spencer Standish Associate Professor of Operations Research

Thesis Supervisor: John Tsitsiklis

Title: Clarence J. Lebel Professor of Electrical Engineering
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Definitions

We use the following conventions and notations in this thesis: key concepts, when they

are first introduced, are italicized. We will use the symbol = for equations which define

symbols. The notation of single elements v of a set V uses a regular typeface, while the

bold typeface v denotes vectors or arrays. For any set V, 2v denotes the set of all subsets

of V.

A graph 9 = (V, E) is an object composed of a finite set of nodes or vertices V and a

set E of unordered pairs of elements of V. E denotes the set of oriented edges of (V, E)

whose unoriented version belongs to E. More generally, a hypergraph (V, C) is composed

of a set of nodes V and a set of hyperedges C C 2v, where each hyperedge C E C is a

nonempty subset of V. Finally, a network consists of a graph or hypergraph, along with a

collection of functions indexed by the elements (nodes, edges, or hyperedges) of the graph

or hypergraph.

Hypergraphs can be seen as being equivalent to factor graphs. A factor graph is a

bipartite graph 9 = (G, E), with G = V U A, and where the vertices of V are called

variable nodes and the vertices of A are called factor nodes. There is a trivial bijection

between hypergraphs and graphs, where for any hypergraph (V, C), we create a factor

graph (V, A, E), where each hyperedge C is mapped to a single factor node a(C) E A, and

we create edges in the factor graph according to the rule v E C if and only if (v, a(C)) E E.

Given a graph (V, E) (resp. hypergraph (V, A)) and a subset U of V, the graph (resp.

hypergraph) induced by U is the graph (U, E') (resp. (U, C')), where E' = {(u, v) E E :

u, v E U} (C' = {C E C : C c U}. Induced networks, which we call subnetworks, are

defined similarly.

For any graph 9 = (V, E), and any two nodes (u, v) in V, let d(u, v) be the length of



C* C3

a 2

a1 a3

Figure 0-1: Equivalence between hypergraphs and factor graphs

a shortest path (in number of edges) between u and v. Given a node u and integer r > 0,
let Bg(u, r) = {v E V : d(u, v) <; r}. Let also Ag(u) = B(u, 1)\{u}. The extended set of

neighbors Af(u)e is Bg (u, 1) = K(u) U {u}. For any r > 0, let NA/ (v) be the subnetwork

induced by Bg(u, r). For any node u, Ag(u) A |Ng(u)I is the number of neighbors of u in

g. Let Ag be the maximum degree of graph (V, E); namely, Ag = max, jg(v)|. Often

we will omit the reference to the network g when obvious from context.

We will often consider sets and sequences (i.e., ordered sets) of elements indexed by the

vertices of a network (V, E). For any set or sequence of elements x = (x,)vey indexed by

the elements of a set V, and any subset U = (v 1,v 2, . ,ViUi) of V, xU = (XVI, XV2, --. , oVV )
denotes the sequence of corresponding elements. For any set or sequence x and element

u E V, we denote xu = xv\{u} = (XV),ev,vsu the set of elements for all nodes other than

u. Finally, for any set or sequence x, and element u E V, we denote x, A XvEK(u) the set

of elements that are neighbors of u.

We will assume an underlying probability space, denoted as (Q, B, P). For a set of

discrete random variables X = (X1,..., Xa) and possible outcome x = (x1,..., zX), we



denote P(X = x) the probability that the random vector X takes the value x. If the Xi

are jointly continuous, we denote by dP(X = x) the density of X. Finally, for any random

variable X, E[X] denotes the expected value of X, and for any sub-- algebra A of B,
E[X I A] is the conditional expectation of X given A.

For any finite set X, we denote S(x) the simplex over x, or alternatively, the set

of probability distributions over elements of X: S(x) = {x E [0, 1]X Va E X, x(a) >

0, and Eaex x(a) = 1}. Elements a of x can be viewed as elements of S(x) (with unit

mass at a). For any 6 = 1/n > 0 for some positive integer n, let S6(X) be the set of prob-

ability distributions over x whose components are integer multiples of 3 (Vs E S6(x), ]k =

(ki,..., k1)j) E NIXI such that s = 6k and Ti ki = 1/6).
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Introduction

Graphical Models

Many models of optimization, statistics, control, and learning capture local interactions

and sparse dependencies by means of a network in which different components are con-

nected and interacting. Originating in statistical physics under the name Ising model

in the first half of the 20th century (see [Isi24, Ons39, Ons44]), these classes of mod-

els have since flourished in a number of different fields, most prominently, statistics and

artificial intelligence [Lau96, Jor98, WJ08], theoretical computer science and combinato-

rial optimization [ASO4, BSS05, GNS06, BG06, BGK+07, GG09], coding theory [BGT93,
MU07, RU08], game theory [KLS01a, OK03, DP06], and decentralized optimization and

control [KPOO, GDKV03, RR03, CRVRL06]. While the problems these different commu-

nities consider and the questions they aim to answer are at first glance different, research

in recent years has uncovered previously unknown connections between these fields. At a

high level, research in graphical models has aimed to understand how macroscopic phenom-

ena of interest arise from local properties, and efforts to answer this question have led to

the fast development of new classes of distributed algorithms designed to compute critical

physical parameters of the system, perform optimization, or carry statistical inference on

the network.

The basic model

The basic model we will be considering throughout this thesis is the following: we consider

a team of agents working in a networked structure given as a hypergraph (V, A), where V

is the set of agents, and where each hyperedge a E A represents local interaction within a

subteam of agents. Each agent u E V makes a decision xu in a finite set X L {0, 1, ... , T -



1}. For every v E V (resp. every hyperedge a), a function #: x :X3 R (resp. #a : X al a R)

is given. Functions #v and Oa will be called potential functions and interaction functions

respectively. Let <1 = ((#v)vEV, (#a)aEA). A vector x = (x 1 , x 2,- . . , XlV) of actions is called

a solutions for the decision network (individual components x, will be called decisions).

The set g = (V, A, <D, X) is called a decision network or graphical model. The set of potential

and interaction functions <D defines a network function (often called the energy function)

Fg which associates with each solution x the value

Fg (x) = S #a(xa) + # (O ) (1)
aeA V

In an optimization context, the goal is to find a decision vector x* which minimizes or

maximizes the function Fg (x): x* E argmaxxFg (x).

In the context of statistics, the function Fg defines a family of probability distributions

on decision vectors x. These distributions are called exponential family distributions, and

are indexed by real parameters 6 = (6 a)aCA called exponential parameters or canonical

parameters; the exponential family distribution with parameters 0 assigns to each solution

x a probability

P(x) = Z(6) exp OaEa(xa)) (2)

where

Z(0) A exp ( a9a(Xa)) (3)
X acA

The quantity Z(9) is called the partition function of the network g, and F(O) = log(Z(6))

is called the log-partition function or cumulant function.

An important special case is when Oa = -# for all a E A. The resulting distribution is

called the Gibbs distribution (also known as Boltzmann distribution) and the parameter #
is then called inverse temperature, in analogy with the Boltzmann equation from statistical

physics. For a Gibbs distribution, the log-partition function F(#) is also called the free

energy of the system.



Frameworks, examples, and applications

Let us mention a few example of models from different fields which can be cast as special

cases of graphical models, and consider the key problems each field focuses on.

As an example, common models in the area of statistical inference are Bayesian net-

works and Markov Random Fields (MRF) (see [Lau96, WJ08] for a more in-depth presen-

tation of these topics). A Markov Random Field is a probability distribution on a set of
random variables (X1 , X 2 , ... , Xn) E x" such that the joint probability distribution takes

the form

P(X) =0 c(Xc) (4)
CEcl(V,E)

where (V, E) is a graph, cl(V, E) is the set of cliques (complete subgraphs) of (V, E),
and for each clique C, 'bc is a nonnegative function. Markov Random Fields constitute a

generalization of Markov chains, which can be seen as one-dimensional, directed MRFs. In a

similar fashion to Markov chains, Markov Random Fields satisfy a collection of conditional

independence relations, and can be proven to model any set of consistent independence

relations, explaining their power as modeling tools. A Bayesian network is defined on a

directed acyclic graph (DAG) (V, E) and defines a joint probability distribution

P(X) = P(Xv I Xp(V)) (5)
vEV

where V is the set of nodes of the DAG (V, E), and for each V, P(v) denotes the set of par-

ents of v in V, E. Morever, for any assignment of variables XP(v), p(xv I £p(v)) is a discrete

probability distribution on x,. Because they are defined on a directed graph, Bayesian
networks are extensively used in systems where causality links between variables are of
interest. As mentioned, one can easily show [WJ08] that both Markov Random Fields and
Bayesian nets can be modeled as graphical models. The main research problems pertaining

to MRFs and Bayesian nets are as follows. In many cases, the variables of an MRF or
Bayesian net can be divided in three categories: variables which are observed (observed

variables), variables which are unobserved and which are not of direct interest (structural

variables), and variables which we would like to predict given the information provided

by the observed variables (target variables). The key mathematical step then consists in

marginalizing the structural variables in the models described by equations (4) and (5),



in order to obtain the conditional distribution of the target variables given the observed

variables. Another key object in such a model is the state which achieves the mode of the

density, namely, the state which maximizes the a priori likelihood.

Other examples can be found in the field of combinatorial optimization, where the

problem of interest can often be described as that of finding subsets of nodes or edges

which satisfy various constraints supported by the underlying graphs. Examples include

independent sets, matchings, k-SAT, graph coloring problems, and many others. Often, the

goal is to identify which of these objects minimizes or maximizes some objective function.

The search space is typically exponentially large, and so is the number of local minima,
making such an optimization task hard. Again, it can be shown that many such optimiza-

tion problems can be converted into an optimization problem in a graphical model (see

Chapter 4 for the concrete example of Maximum Independent Set). Other problems of

interest involve counting the number of solutions which satisfy the constraints, or at least

estimating the rate at which this number grows when the size of some structured graph

grows as well. Both of these problems can be directly related to the issue of computing

the partition function of a graphical model.

Finally, in statistical physics, the Ising model [Tal03] with interaction energy J is

described by set of particles s positioned on a lattice (V, E), each of which can be in one

of two spin states (s E {-1, +1}). In this case, the total energy of the system is given by

Fg(s) = - (uv)EE Jss, and the corresponding Boltzmann distribution is

P(s) = exp (0 Jsis3) (6)
(u,v)EE

where # is the inverse temperature. An important object of interest in this model is the

ground state - a state which achieves the minimum possible energy, i.e., corresponds to

the minimum of Fg(s). For J < 0, this is equivalent to the problem of finding the so-called

max-cut of a graph.



Computational complexity and randomness

Looking at all the examples above, research in graphical models can be seen as trying to

address two categories of problems.

The first category includes counting and sampling problems. Counting involves com-

puting (exactly or approximately) the partition function Z(0), or equivalently, the free

energy F(0). Sampling involves sampling a set of variables according to the Gibbs dis-

tribution for a given i. A related task include computing or sampling from the marginal

Gibbs distribution for a given variable (or a small number of variables). In a wide num-

ber of frameworks, counting and sampling can be shown to be problems of equivalent

computational complexity [JVV86].

The second category regards optimization. Here the objective is to identify a vector x

which minimizes or maximizes the energy function Fg(x). Many hard constraints can be

modeled by making infeasible configurations have infinite positive (or negative) energy.

In many cases of interest, the combinatorial nature of the problems considered im-

plies that optimization or inference on these models is hard, even when using algorithms

that take advantage of the underlying graphical structure [Coo90, Rot96, CSH08]. Ex-

act inference in most graphical models is NP-hard, counting the number of solutions of

many combinatorial problems on a graph is P-hard [Jer03], and finding an optimal policy

for a Markov Decision Process takes exponential time and space in the dimension of the

state-space, even for very simple factored Markov Decision Processes [PT87, BTOO]. Thus,
approximate methods to find solutions that theoretically or empirically achieve proximity

to optimality are needed.

Optimization methods and message-passing schemes

The search for approximate methods typically differs from field to field. In combinatorial

optimization the focus has been on developing methods that achieve some provably guar-

anteed approximation level using a variety of approaches, including linear programming,
semi-definite relaxations and purely combinatorial methods [Hoc97]. In the area of graph-
ical models, researchers have been developing new families of inference algorithms, one of

the most prominent being message-passing algorithms.

At a high level, message-passing schemes function as follows. For each directed edge
e = (u - v) of the graph, a message yu is defined, usually a real number, a vector of



real numbers, or a function. Each node of the graph receives messages from its neighbors,
combines them in some particular way, and computes new messages that it sends back to

its neighbors. The passing of messages in the network is either performed synchronously or

asynchronously, and upon convergence (if the scheme converges), all incoming messages to

a node u are combined in order to compute either a decision x or a marginal distribution

P(XU).

One of the most studied message-passing algorithms is the Belief Propagation (BP)

algorithm, [Lau96, Jor04, YFWOO]. The BP algorithm is designed both for solving the

problem of finding the optimal state using the max-product version, as well as for the prob-

lem of computing the partition function, using the sum-product version. The BP algorithm

is known to find an optimal solution x* when the underlying graph is a tree, but may fail to

converge, let alone produce optimal solutions, when the underlying graph contains cycles.

Despite this fact, it often has excellent empirical performance [FM98, YMW06, WYM07].
Moreover, it is a distributed algorithm and easy to implement. This justifies the wide

applicability of BP in practice and the intense focus on it by the researchers in the signal

processing and artificial intelligence communities. Nevertheless, a major research effort has

been devoted to developing corrected version of Belief Propagation, and to understanding

the performance of message-passing schemes.

This thesis focuses on developing a new message-passing style algorithm, the cavity

expansion algorithm, and to understand and study its performance in the context of large-

scale graphical models, with emphasis on the question of how randomness affects the com-

plexity of optimizing in a graph. In particular, we put ourselves in a framework where the

potential and edge functions are randomly generated, and try to understand under which

conditions a problem is computationally hard or easy. These conditions typically relate to

the structure of the graph considered, along with the distribution of the cost functions. The

connections which have been uncovered between statistical physics and optimization can

be of much help in this respect. Of particular interest is the study of a statistical physics

phenomenon known as the correlation decay property. At a high level, correlation decay

indicates a situation in which the "influence" of a node on another node of the network

decreases quickly as the distance between them grows. We show that, in many cases, the

onset of correlation decay often implies that the optimization problem becomes easy on

average.



Organization of the thesis and contributions

Chapter 1: Message-passing schemes and Belief Propagation

In the first chapter, we present our general optimization framework, and give a short

introduction to message-passing algorithms, Belief Propagation, and some of the most

prominent message-passing variations that were designed to address issues of correctness

or convergence of BP.

Chapter 2: The Cavity Expansion algorithm

In the second chapter, we propose a new message-passing-like algorithm for the problem

of finding x* E argmax Fg(x), which we call the Cavity Expansion (CE) algorithm. Our

algorithm draws upon several recent ideas, and relies on a technique used in recent de-

terministic approximate counting algorithms. It was recently recently shown in [Wei06]

and [BG06] that a counting problem on a general graph can be reduced to a counting

problem on a related self-avoiding exponential size tree. Following a generalization of this

technique later developed in [GK07b, BGK+07], we extend the approach to general opti-

mization problems. We do not explicitly use the self-avoiding tree construction, and opt

instead for a simpler notion of recursive cavity approximation. The description of the CE

algorithm begins by introducing a cavity Bv(x) for each node/decision pair (v, x). B,(x)

is defined as the difference between the optimal reward for the entire network when the

action in v is x versus the optimal reward when the action in the same node is 0. It is

easily shown that knowing Bv(x) is equivalent to solving the original decision problem.

Our main contribution is to obtain a recursion expressing the cavity Bv(x) in terms of

cavities of the neighbors of v in suitably modified sub-networks of the underlying network.

From this recursion, we develop the CE algorithm, which proceeds by expanding this

recursion in the breadth-first search manner for some designed number of steps t, thus

constructing an associated computation tree with depth t. We analyze the computational

effort and prove it is exponential in t. We therefore need conditions which guarantee that

using the cavity recursion for small t results in near-optimal decisions, which is the object

of the following chapters.



Chapter 3: Correlation decay and efficient decentralized optimization in

decision networks with random objective functions

In the third chapter, we investigate the connection between a property of random systems,
called the correlation decay property, and the existence of polynomial-time, decentralized

algorithms for optimization in graphical models with discrete variables and random cost

functions.

A key insight of this thesis is that in many cases, the dependence of the cavity B,(x)
on cavities associated with other nodes in the computation tree dies out exponentially fast

as a function of the distance between the nodes. This phenomenon is generally called

correlation decay and was studied for regular, locally tree-like graphs in [GNS06].

It is then reasonable to expect that the Cavity Expansion algorithm and the correlation

decay analysis can be merged in some way. Namely, optimization problems with general

graphs and random costs can be solved approximately by constructing a computation tree

and proving the correlation decay property on it. This is precisely our approach: we show

that the correlation decay property is a sufficient condition which guarantees the near

optimality of the CE algorithm. Thus, the main associated technical goal is establishing

the correlation decay property for the associated computation tree.

We indeed establish that the correlation decay property holds for several classes of

decision networks associated with random reward functions <D =( #&, #5,). We provide

a general technique to compute conditions on the parameters of families of distribution

that ensure that the system exhibits the correlation decay property. We illustrate the

applicability of the method by giving concrete results for the cases of uniform and Gaussian

distributed functions in networks with bounded connectivity (i.e., bounded graph degree).

Chapter 4: Connections between correlation decay and computational
hardness of probabilistic combinatorial optimization

In the fourth chapter, we look at similar questions for a specific combinatorial optimiza-

tion problem, namely, the Maximum Weight Independent Set (MWIS). We show how the

CE algorithm applies to the MWIS problem and provides conditions under which the CE

algorithm finds an approximately optimal solution. The application of CE in a randomized

setting has a particularly interesting implication for the theory of average case analysis of

combinatorial optimization. Unlike some other NP-complete problems, finding a MWIS

of a graph does not admit a constant factor approximation algorithm for general graphs.



We show that when the graph has maximum degree 3 and when the nodes are weighted

independently with exponentially distributed weights, the problem of finding the maxi-

mum weighted independent set admits a polynomial time algorithm for approximating the

optimal solution within 1 + e for every constant E > 0. We also provide a generalization

for higher degrees, and detail a framework for analyzing the correlation decay property

for arbitrary distributions, via a phase-type distribution approximation. Thus, surpris-

ingly, introducing random weights translates a combinatorially intractable problem into a

tractable one. We note that the sufficient condition pertains only to the weight distribution

and the degree of the graph. As such, CE does not suffer from the loopiness of the graph

being considered, a very uncommon feature for a message-passing style algorithm. We also

provide partial converse results, showing that even under a random cost assumption, it is

NP-hard to compute the MWIS of a graph with sufficiently large degree.

Chapter 5: Correlation Decay in graphical games

Graphical games [KLS01a] are a natural extension of the discrete optimization graphical

models of Chapter 1, where each agent is assigned her own family of cost functions which

she tries to optimize while taking into account other agents' potentially conflicting ob-

jectives. It is well known that computing the Nash equilibrium of a game is hard, (see

Daskalakis et al. [DGP09]), even when considering sparse networks. These facts arguably

make NE an unlikely explanation for people's or markets' behaviors. Thus, there has thus

been an interest in adapting message-passing algorithms to the computation of Nash Equi-

libria, under the reasoning that simple distributed schemes might better represent social

computation. In [KLS01a), and then [0K03], Kearns et al. develop Nash Propagation, an

analog of Belief Propagation for the setting of graphical games. Like BP, NP is optimal or

near-optimal for tree-structured games.

Our objective is two-fold. First, we develop a general framework for designing message-

passing algorithms for graphical games. These message-passing algorithms aim to compute

so-called Nash cavity functions, which are local constraints encoding as much of the global

Nash equilibrium constraints as possible. With the help of this framework, we develop the

Nash Cavity Algorithm, a general message-passing heuristic which aims to try to compute

Nash cavity functions for general graphical games. In particular, we show that TreeProp

is a special case of the Nash Cavity algorithm for graphical games on tree.

Second, we appropriately define the correlation decay property for particular graphical



games on trees, and show that, under appropriate conditions, the Nash cavity functions of

games exhibiting the correlation decay property can be computed locally.

Chapter 6: Application of graphical models and message-passing tech-

niques to the early diagnosis of Alzheimer's disease

In the last chapter, we consider a particular application of graphical models and message-

passing algorithms. The problem in question is a statistical signal processing problem,
specifically, measuring the similarity of a collection of N point processes in RA. The

work is motivated by the following application: developing a new measure of synchronicity

between different parts of the brain, as recorded by electroencephalogram electrodes, and

using said measure to give an early prediction of Alzheimer's disease. We show that the

resulting measure of synchronicity outperforms a vast number of other EEG-based measures

in the task of predicting the onset of Alzheimer's disease.



Chapter 1

Message-passing schemes and

Belief Propagation

1.1 Introduction and literature review

Foundations of message-passing algorithms

In this chapter, we present the Belief Propagation (BP) algorithm, arguably the first,
simplest, and most commonly used form of message-passing algorithms. Introduced by

Pearl in the context of inference in probabilistic Al [Pea82, PS88, PeaOO], the sum-product

algorithm enabled distributed computation of marginal probabilities in belief networks, and

its success encouraged the shift from classical to probabilistic Al. BP was later extended

to max-product (min-sum in the log domain), a version of BP which computes the mode

of the distribution underlying a Bayesian Network. Belief Propagation was then proven

to output the correct solution when the graph is a tree (or a forest), and initially, most

research effort in message-passing for Al focused on algebraic, exact generalizations of BP

to graphs with cycles [Lau96].

Eventually, it was discovered that Belief Propagation, even when applied to graphs with

cycles (the idea is referred to as "loopy Belief Propagation"), often had excellent empirical

performance [FM98]. This surprising discovery fostered much research activity in the do-

main of message-passing algorithms, leading to the development of several new distributed

computation techniques, and revealing connections between classical optimization (most

prominently convex optimization and linear programming relaxations) and message-passing



methods [BBCZ07, WYM07, YMW06, WJ08, SSW08].
Much earlier, Gallager, in his 1960 PhD thesis [Gal60, Gal63], invented a new class

of error-correcting techniques called Low Density Parity Check (LDPC) codes, along with

an iterative algorithm to perform decoding of LDPC codes. This early algorithm was

later found to be an early version of Belief Propagation. Similar iterative algorithms

performing on graphs were later investigated by researchers in coding theory, in particu-

lar Forney [FJ70], Tanner [Tan8l], Battail [Bat89], Hagenauer and Hoeher [HH89], and

finally Berrou and Glavieux [BGT93], whose BP-like turbocodes nearly attained the Shan-

non capacity. The performance of turbocodes sparked great interest in message-passing

algorithms in the coding theory community, see for instance later work by Kschischang,
Frey, Loeliger, Vontobel, Richardson, Urbanke, and many others [DMU04, LETB04, VK05,
LDH-07, MU07, RU08].

Finally, a new class of models for magnetized particles with frustrated interations, spin

glasses, generated a lot of interest in the statistical physics community in the late 1980s,
especially after Parisi solved a particular Ising model proposed by Sherrington and Kirk-

patrick [SK75] a decade before. Parisi's technique (see [MPV87]), the cavity method, bore

a lot of similarities to Belief Propagation, and was found to have connections to combinato-

rial optimization problems such as k-SAT or graph coloring. This result was one example

of the convergence of interests between statistical physics, mathematics (combinatorics

especially), computer science (computational complexity) and Al.

On the one hand, physicists started to study combinatorial optimization problem in

order to both understand better the relations between computational hardness and ran-

domness (in particular, through the study of phase transitions), and to develop stronger

algorithms for solving constraint satisfaction problems. Some of the algorithms developed,
such as survey propagation, proved to solve very efficiently large instances of hard problems

(see for instance [BMZ05]).

On the other hand, mathematicians investigated, formalized, and made rigorous tech-

niques and problems from statistical physics. Of particular interest is the solution of the

((2) Parisi conjecture for the random minimal assignment problem (see [Ald92, Ald0l,
AS03]). One of the key ideas was the study of fixed points of recursive distributional equa-

tions (RDE) (see Chapter 4). Again, the existence and convergence to a fixed point of a

RDE can also be understood in terms of asymptotic convergence of the Belief Propagation

algorithm in an infinite random graph.

Research on graphical models, message-passing algorithms, and Belief Propagation in



particular, can therefore truly be seen to be at the intersection of many different fields:

Al, coding and information theory, statistical physics, probabilistic combinatorics, and

computational complexity (see [WJ08) for an overview of inference techniques in graphical

models and [HW05, MM08] for comprehensive studies of the relations between statistical

physics, statistical inference, and combinatorial optimization).

Each of these brings a different point of view on the mechanics and performance of Belief

Propagation, and, based on those particular insights, offers particular generalizations or

corrections of Belief Propagation.

Modern work on Belief Propagation

The empirical success of Belief Propagation, despite the fact that BP is a nonexact recur-

sion, prompts the following two questions. First, can one identify problems and conditions

under which BP is provably optimal, and second, can one design a "corrected" version of
BP, which will achieve greater theoretical and practical performance, specifically for the

cases where BP is proven not to work?

Regarding the first question, researchers have recently identified a number of frame-

works in which BP converges to the optimal solution, even if the underlying graph is not

a tree. In a framework similar to ours, Moallemi and Van Roy [MR09] show that BP con-

verges and produces an optimal solution when the action space is continuous and the cost

functions are quadratic, convex. More generally, when these functions are simply convex,
the authors exhibit in [MR07] a sufficient condition (more specifically, a certain diagonal

dominance condition) for the convergence and optimality of BP. Other cases where BP pro-

duces optimal solutions include Maximum Weighted Matchings [San07, BBCZ08, BSSO8],
Maximum Weighted Independent Sets if the LP relaxation is tight [SSW08], network

flows [GSW09], and, more generally, optimization problems with totally unimodular con-

straint matrices [Che08]. Furthermore, in the case of Gaussian Markov Random Fields,
sufficient conditions for convergence and correctness of Belief Propagation were studied
in [RR01, CJW08, JMW06, MJW06]. Finally, a number of researchers have investigated

sufficient conditions for BP to converge (to potentially suboptimal solutions), and then
tried to quantify the resulting error of the solution obtained; see for instance [Wei00, TJ02,
MK05, IFW06).



Regarding the second question, over the last few years, many corrected or improved ver-

sions of BP have been proposed, most notably the junction tree algorithm [Lau96], survey

propagation [MMW07], Kikuchi approximation-based BP and generalized Belief Propa-

gation (GBP) [YFWOO], tree-reweighted Belief Propagation [WJW03b, WJW05a, KW05,

Kol06], loop-corrected Belief Propagation [MWKR07), loop calculus [CC06a, CC06b], and

dual LP-based Belief Propagation algorithms [SMG+08b, SGJ08, SJ09]. Each of these

algorithms differs in its conditions for convergence or optimality, running time, or the type

of bounds provided on the free energy of the system considered.

In this chapter, we present the Belief Propagation algorithm (optimization version),

along with some of the most prominent message-passing algorithms which aim to correct

BP for the problems in which it performs poorly.

1.2 Message-passing schemes and framework

Let us for convenience restate the model we previously introduced. We consider a pairwise

decision network g = (V, E, <b, X). Here (V, E) is an undirected graph without repeated

edges, in which each node u E V represents an agent, and edges e E E represent a possible

interaction between two agents. Each agent makes a decision xu E X - {0, 1,... , T - 1).

For every v E V, a function #, : X -+ R is given. Also for every edge e = (u, v) a

function #e : X2 -+ R is given. Functions #v and #e will be called potential functions and

interaction functions respectively. Note that in general, we don't require the presence of

potential functions, as these can be absorbed into the interaction functions as follows: for

any potential function #,, corresponding to a node u E V, choose an arbitrary neighbor

v of u, and update #u and #uv into #' and #$, as follows: #'(x) = 0 for all x, and

#,V(XU, X) = #2,x(u, zV) + #U(XU) for all xu, x. Let <D = ((#v)VE, (#e)eEE). The object

9 = (V, E, D, x) will be called a pairwise decision network, or pairwise graphical model.

A vector x = (XI, x2 ,..., XIVi) of actions is called a solution for the decision network.

The value of solution x is defined to be Fg(x) = E(u,v)EE #UV u, IXV) + ov Ov (xo). The

quantity Jg A maxx Fg(x) is called the (optimal) value of the network g. A decision x is

optimal if Fg(x) = Jg. Our objective is to compute an optimal (or near-optimal) solution

for the network:

Problem (Maximization in decision network).



Given a network G = (V, E, (#v)veV, (#U,V)(U,v)EE), X), find x* E xV such that

x* E argmaxx- EOV(xv) + OU'( Xz))
\V u,v

Message-passing schemes are a simple, naturally distributed, and modular class of algo-

rithms for performing optimization in graphical models. They function as follows: we

define a vector of messages M E SE, where S is the space of messages (often, S = R).

Given some understanding of the optimization problem at hand, we design for each ori-

ented edge e = (u -+ v) a function Fusv : S -+u S, and we iteratively update the vector

M by the following operation:

V(u -+ v) E E, Mu-e = Fu_,v(My,-2) (1.1)

In other words, messages outgoing from u are functions of message incoming to u (see

Fig. 1.2). Assuming the scheme converges, we set the variable xu to gu(Mgru) for some

carefully chosen function gu: the decision xu of u is a function of messages incoming to u

in steady state.

Because of the recursions we consider have their root in dynamic programming, in the

following, it will be more natural for us to denote pLav, the message sent from u to v, by

pv<u, message received by v from u (these two notions being identical in our context).

U

V -

Figure 1-1: A message-passing scheme

..- ............



1.3 The Belief Propagation algorithm

In this section, we derive the Belief Propagation equations by proceeding in two steps.

First, we develop a recursion where variables are located on the nodes of our network g.
This recursion is natural and based on a simple dynamic optimization principle, but is

not easily parallelizable, nor easily applied to general (non tree) graphs. In the second

step, we show how the dynamic optimization equations can be converted into a new set of

recursive equations, where this time variables dwell on the edges of the graph. This new

set of equations constituting the Belief Propagation equations, are naturally parallelizable,
and are easily applied to arbitrary graphs (albeit non optimally). We begin by introducing

useful notations.

Given a subset of nodes v = (v1,... O), and x = (x1,... xk) E yk, let Jg,v(x) be the

optimal value when the actions of nodes vi, ... , V are fixed to be x 1,... , Xk respectively:

Jg,v(x) = maXx:xv=x,1<i<k Fg(x). Given v E V and x c x, the quantity Bg,v(x) =

Jg,v(x) - Jg,v(0) is called the cavity of action x at node v. Namely it is the difference of

optimal values when the decision at node v is set to x and 0 respectively (the choice of 0

is arbitrary). The cavity function of v is Bg,v = (Bg,v(x))XEX. Since Bg,v(O) = 0, Bg,v

can be thought of as element of RT-1. In the important special case x = {0, 1}, the cavity

function is a scalar Bg,v = Jg,v(1) - Jg,v(0). In this case, if Bg,v > 0 (resp. Bg,v < 0) then

Jg,v(1) > Jg,v(0) and action 1 (resp. action 0) is optimal for v. When Bg,v = 0 there are

optimal decisions consistent both with xv = 0 and x, = 1. When g is obvious from the

context, it will be omitted from the notation.

Vertex-based dynamic optimization

Given a decision network G = (V, E, <, X) suppose that (V, E) is a tree T, and arbitrarily

root the tree at a given node u. Using the graph orientation induced by the choice of u as

a root (i.e., children of a node v are further from u than v is), let Ca(v) denote the set of

children of any node v in (V, E), and let Tu(v) be defined as the subtree rooted in node

v. In particular, G = T (u). Given any two neighbors v, w E V, and an arbitrary vector

B = (B(x), x E X), define

Pv<-w(x, B) = max(#v,,(x, y) + B(y)) - max(#v,w(0, y) + B(y)) (1.2)
Y y
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Figure 1-2: Dynamic optimization recursion on a tree

for every action x E X. p is called the partial cavity function.

Proposition 1 (Cavity recursion for trees). For every v E V and x E x,

BT (v),v(x) = #v(x) - #v(0) + (v (1.3)

Proof. Suppose KIC(v) = {wi, ... , wd}. Observe that the subtrees T(wi), 1 < i < d, are

disconnected (see Fig. 1.3). Thus,

d

Bziv),v(x) = 4(x) + ax v,wj (x, xj) + JrTu(w),w,(xj )
j=1

d

- #v (0) - max #: 0Vw, (0, xy) + JT (w,),w (xj))}

+ max (#v,ax (x, y) + JT(w),w, (y)) - max (#v,wj (0,
j=1

y) + JT (w,),w,(y))}

p-v<-w (x , BT.,(w),w)



For every j,

max (#eWj (x, y) + JT(w),w, (y)) - max (#,wj (0, y) + JT(wj),wj (y))

max (#v,wi (x, y) + JKT(wj),wj () - JT (w),wj (0)) - max (#uvi (0, y) + JET (wm),w (Y) - JTU (w),wj (0))

The quantity above is exactly pvWj (x, BT,(wj),w,). E

By analogy with the algorithm we develop in the next chapter, Equation 1.3 will be

called the cavity recursion for trees. It is based on nonserial dynamic optimization [BB72],
which computes value functions of subtrees of the original graph. In the equations above,
the variables of interest are cavities, and they are computed at the nodes of the graph.

Edge-based Belief Propagation

We now transform equation 1.3 into an equivalent system of equations where the variables

are computed on oriented edges of the graph. Recall that since g is a tree, for any two

nodes v, w, removing the edge (v, w) from the graph (V, E) separates it into two trees, one

containing v, the other containing w. We denote the one which contains v (resp. w) T,<_,
(resp. T<,). For any edge (v, w), let g, be the network induced by v-_w U {v, w}, with

the additional modification that the potential #v is removed from that network. Finally,
let Mvew(xz) denote Bgv,,(xv). Since v has a unique neighbor w in gv , it is easy to

check that we have

Mv, (xv) = pv_(xv, BTv,.,v) (1.4)

Proposition 2 (Belief Propagation). For all u E 9,

Bg,u(xu) = #U(xU) - #(0) + E3 M<_V(X) (1.5)
vc~K(u)

For all (u, v) E E,

Mw<_V(xU) = p><_3 x (#v + Mv<_.W) (1.6)
weN1(e)\{u}



Figure 1-3: Tree splitting
Tree T split into , and T__

Proof. For the first equation, consider Equation (1.3) for v = u, and note that K(u) =

Af(u), and as noted previously, Tu(u) = g. We obtain

Bg,u(xU) = U(x) - #2(0) + Z /W<_v(x, BT(v),v)

vEK(u)

Since clearly T<_v = Tu(v), Equation (1.4) implies that Bg,u(x) = #U(x) - #k(O) +

ZVEN(U) Mu<_V(z.), and thus finishes the proof of the first equation. The second equation

follows from the exact same principles and the observation that for a node v with neighbors

(u,i, .-. , wd}, T(wi) is equal to <,, for all i. l

Equations (1.5) and (1.6) are called belief propagation equations, and make the prac-

ticality of the BP algorithm apparent. Indeed, Equation (1.6) can be seen to be iterative

in nature, since it writes the set of all messages (Muz_) - as a function of itself.
(U<-V)E E

This naturally suggests the following iterative scheme to compute the Muv: for any

(u +- v) E E, xu E X, and r > 0

M +(xu) = Azu+-V wU Mviw (XV) (1.7)
WENr(v)\{u}

where the values MUO+_, are initialized to arbitrary values. While it is not necessarily obvious

that this scheme converges for trees, it can easily be shown by induction that for r greater



than the depth of tree, the messages M[', are in fact stationary and equal to their correct

values Muz_. This subsequently allows the use of Equation (1.5) to compute the cavities,

and therefore the optimal solution. In that sense, Proposition 2 is the restatement of the

well-known fact that BP finds an optimal solution on a tree [MM08]. More importantly,

unlike Equation (1.3), the algebraic structure of Equation (1.7) does not require that the

graph be a tree, and can therefore be applied to any general graph. The resulting algorithm

is called loopy Belief Propagation. As mentioned previously, it may now not converge,

and even if it does, plugging the obtained messages into Equation (1.5) may result in an

arbitrarily poor solution.

Generalization to factor graphs

We now generalize the Belief Propagation equations to hypergraphs. As for the pairwise

case, we will first derive dynamic optimization equations, and then rewrite them as message-

passing equations in a factor graph. Consider a factor graph (V, A, E, <D, x), for which the

underlying network (V, A, E) is a tree T, and arbitrarily root the tree at a given node

u E V. Again, denote 'T(v) the subtree rooted at v E V U A when using the orientation

induced by u as root, and Ku(v) the children of v. Note that for any v E V, K2u(v) C A,

and for any a E A, K(a) C V. Finally, consider any v E V and a E Eu (v), and denote

ka = Ku(a) the number of children of a; for any x, E x, and an arbitrary function M from

xka to R, define the partial cavity function (for factor graphs) pu<a as

pv<-a(X, B) = max (a(X, Yi, Y2, Yka) + M(yi, ... yka))

The analog of the recursion (1.3) for factor graphs is as follows (the proof is essentially

identical to that of Proposition 1):

Proposition 3. For every v E V and x E X,

BT (,),v(x) = #v(x) - #$ (O) + / pv<-a(x, ( BT(w),w) (1.9)
aeJC(v) weKu(a)

We now proceed to convert Equation (1.9) to a set of recursive equations on messages

in the factor graphs. Once again, we use similar notations to the bipartite case: for any

two neighbors v E V, a E A, removing the edge (v, a) separates T into two trees. _



will denote the one containing v, and Tv<-a the one containing a. Let ga,- be the network

induced by 'Ta<_, and 9u<_a U (u, a) be the one induced by Tua, with again potential

#u removed from that network. Note that (u, a) is not included in gu<a). Finally, let

Mv+-a(xv) be Bg,,(,v(xv) and Ma-u(xv) be Bg,,(,v(xv). The Belief Propagation algorithm

for factor graphs is given by the following proposition:

Proposition 4. For all u E 9

Bg,u(Xu) = u(x) - #u (0) + 7 Mu<-a(Xu) (1.10)
aeA(u)

For all (u, a) E E,

Mu<-a(xu) = pu<-a (Xu, (Ma<-w)wCN(a)\{u}) (1.11)

and

Ma<-u(Xu) =u(xu) + Mu-a'(Xu) (1.12)
a'E.A(u)\{a}

1.4 Variations of Belief Propagation

In this section, we present just a few generalizations of the BP algorithm, drawing our

examples from a variety of different fields, and intending to illustrate the fact that Belief

Propagation, as a technique developed independently in different research areas, may be

understood from many different points of view. Each of these points of view provides some

understanding of why Belief Propagation may fail to give an optimal solution, and suggest

an appropriate modification to help improve the message-passing algorithm.

Junction tree algorithm

The junction tree algorithm is probably the oldest improvement to the BP algorithm,
and actually predates the use of loopy BP on general graphical models. Its development

stemmed from the study of Belief Propagation as an algebraic operation aimed at operating

a marginalization of variables of a probability distribution factored through a graphical

structure. Using tools of graph theory, Pearl [PeaOO] proposed a more complex algorithm

for computing marginals of the random variables defined through a graphical model (the



optimization version of the junction tree algorithm was only later developed, see [Daw92]).

At a high level, the junction tree algorithm consists of converting our graphical model

g = (V, A, E, D, x) into a new graphical model G' = (V', A', E', V, x') with the following

properties:

* For each v' E V', v' is a subset of V

* For each v' E V', the set of decisions for x', is the product space Xv

* (V', A', E') is a tree for which each a' E A' has at most two neighbors v' and v'.

" For any a' E A' with neighbors (vi, v2), #a' is a function which depends only on the

variables in vI n v'. Any node in vI n vI will be said to belong to a'.

" For any two v', w' in V', and any factor a' on the unique path between v' and w',

v' n w' must be a subset of a'.

* G and G' have the same optimal value function

Such a g' will be called a junction tree; the proof of its existence relies on tools in graph

theory. The junction tree algorithm simply consists in running Belief Propagation on

the junction tree. The complexity of doing so is exponential in the size of the largest

subset v' (since the corresponding decision space for that node is Xv'). There may exist

many junction trees G' for a given graphical model G; the minimum of maxv' Iv'| over all

such transformations is called the treewidth of the hypergraph. However, computing the

treewidth of a graph is in general a hard problem [Bod06], and for a large number of graphs,
the treewidth grows linearly with the size of the graph, limiting the applicability of the

junction tree to fairly simple structures.

Variational inference and convex relaxations

The next class of algorithms we consider are message-passing algorithms derived from

linear and convex relaxations of the optimization problems we consider. Consider a pair-

wise graphical model G = (V, E7 D, x), and for simplicity assume there are only inter-

action functions # For any family 0 = (Ou,v)(u,v)EE E R of nonnegative real num-

bers, we define a new graphical model G(0) = (V, E, I) -0, x), such that for any (u, v) E

E, the interaction function for edge (u, v) in G(0) is equal to 6uv#uv. Since Jg(O) -



max G v (Eu, Ou,v9u,v(Xu, Xe)) is the maximum of linear function of 0, it is therefore con-
vex in 9. Consider a set (01,92, ...2 ,k) of 0 functions, along with a probability distribution

p on the elements of {1, 2, ... , k}). Suppose that

V(u, v) E E, p(i) 6, 1

In other words, for each u, v, we have Ep[92,U] = 1 (u,v)EE. By applying Jensen's inequality,
we obtain that

J9 = J9g(EP[0]) Ap Jg (0i) (1.13)

Therefore, if for each i, Jg(oi) is easy to compute, we readily obtain an upper bound for

the value function of g. One possible idea is to consider a distribution p on spanning

trees of E, and choose each 02 such that g(0i) is a tree, in which case each Jg(oi) is easy

to compute through Belief Propagation. This idea is the basis of tree-reweighted belief

propagation (TRBP), introduced by Wainwright, Jaakkola and Willsky in [WJW03a], and

later extended in [KW05, WJW05b, Kol06]. For instance, for any distribution p on a

collection of trees (T, T2 ... , T), denote Pu,V = E, p(i)1(u,v)Ei, and consider the function

0 -, =(UV). It is easy to check that this set of 9 functions satisfies the conditionsUV Pu,v

EZ p(i)6' = 1 and g(02) is a tree for each i. It happens that the BP iterations for each tree

can be combined into one global iteration, given by the following TRBP equations:

MUz~v(x) = max (X ) + E pu,WM (xv) - (1 - pA)Mean(zv) (1.14)
XV PUMv weN(v)\{ u}

Upon convergence, the final step consists of combining the messages in order to properly

upper bound the value function Jg (see [WJW03a] for more details).

A similar idea is explored in [GJ07], where the authors exhibit a message-passing scheme

which converges to the same value as a particular LP relaxation of our optimization prob-

lem. Denote p(xi, ... , x,) a probability distribution over all decision variables of g. Using



Jensen's inequality, we obtain:

Jg =max EV(xV) + #U,(xux) = maxEXrp [Ez(xV) +ZEu,(xuxv)
\ vu,v / .v ,v.

= max Z Pu,V(Xu, Xv)#u,V(Xu, Xv) + Z P(xv ()v (xv )

Clearly, any distribution p on the joint variables (x1, . .. , x,) satisfies for any u, v the three

consistency conditions Ex,,, Pu,v(zu, X) = 1, Z1 p(xu, x) = p(xu), and Ex. p(xu, xv) =

p(Xv). Let Loc denote the set of probability distributions which satisfy these three condi-

tions. Loc is a polyhedron defined by a polynomial number (in |VI + El) of inequalities,
and it defines a natural LP relaxation for upper-bounding the value of Jg:

Jg <; max ( pu,v(xu, xv)#u,v(xu, xv) + Z Pv(xv )#v(xv)
PELOC (u,v),xu,xv 

V,xv

The main result of [GJ07] is to establish that by considering a relaxation scheme following

the argument of Equation (1.13), one can construct a convergent message-passing scheme,
MPLP, which computes exactly the value of the LP relaxation constructed above. This

is done by considering a collection of simple "star" trees (each star tree consisting of one

node and its neighbors), and optimizing over the values of O'. The MPLP equations they

obtain (edge-version) are as follows:

MwV(xu ) = - 1 (E Mwsk(xu) + max [ M__k (xv) + $UV (xu, xv)
k EA(u)\{v} x k'EAv\{u}

The connection between convex relaxations and message-passing algorithms were later

refined, for instance by designing message-passing algorithms which compute tighter LP

relaxations of the underlying optimization problem (see for instance [SGJ08, SMG+08a]).

1.5 Conclusions

In this chapter, we presented the Belief Propagation algorithm, and showed how for trees,
the BP algorithm is an iterative version of a natural recursive dynamic programming al-



gorithm. Since this recursion is only correct for trees, we cannot expect loopy Belief

Propagation to be optimal for general graphs. This observation leads to the following

question: can the cavity recursion (1.3) be corrected for general graphs, and can we derive

new message-passing-like algorithms from this corrected recursion? This question will be

the focus of our next Chapter.
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Chapter 2

The Cavity Expansion algorithm

2.1 Introduction

In this chapter, we introduce a new, exact recursion for computing the objective values of

optimization problems, and, based on that recursion, we propose a new message-passing-

like scheme called the Cavity Expansion algorithm (CE). This algorithm will be at the

center of many of the results of this thesis. Our construction relies on a technique recently

used for constructing approximate counting algorithms. Specifically, Bandyopadhyay and
Gamarnik [BG06] and Weitz [Wei06) proposed approximate counting algorithms which are
based on local (in the graph-theoretic sense) computation. A crucial idea of Weitz [Wei06]
was to establish that certain counting problems in general graphs are equivalent to counting
problems on specially designed trees called self-avoiding walks trees (SAW trees). Simi-
lar SAW constructions were later used for optimization in specific settings [JS07], de-
coding [LMM07], and statistical physics and inference [Moo08]. The self-avoiding walk
approach was later extended in Gamarnik and Katz [GK07b, GK07a] and in Bayati et

al. [BGK+07], where it was shown that rather than constructing the SAW tree, it was
possible to write the recursion on the associated computation tree as a recursion on the
original graph which can be directly used for computations. The present chapter develops

a similar recursive approach for general optimization problems on arbitrary factor graphs.



2.2 The cavity recursion

2.2.1 The SAW tree construction

In this section, we construct a generalization of identity (1.3), in the same pairwise graphical

model framework introduced in the previous chapter. This generalization can be achieved

by building a sequence of certain auxiliary decision networks g(u, k, x) constructed as

follows.

Fix any node u and action x and let A(u) = {vi, ... , vd }. For every k = 1, ... , d let

g(u, k, x) be the decision network (V', E', ', x) on the same decision set x constructed

as follows. (V', E') is the subgraph induced by V' = V \ {u}. Namely, E' = E \

{(u, vi),... , (u, vd)}. Also #'i = #e for all e in E' and the potential functions #' are

defined as follows. For any v E V\{u, v1 , ... , Vk-1, Vk+1, .. . , ' = #, and

0 W #v(Y) + #,V(x, y), for v E {V1, . . . , ok-1}

#v(y) + #2,o(0, y), for v E {Vk+1,. , vd}

(2.2)

Theorem 1 (Cavity Recursion). Given a network g and u E V, let A(u) = (v 1 , ... , vs).

For every x E x,

d

BU(x) = pU(x) - #(0) + p u-V (x, By(ukx),Vk) (2.3)
k=1

Though we we will not prove it here (see [Wei06, JS07] for more details), it can be

shown that carrying out the cavity recursion for the binary decisions, pairwise costs case is

equivalent to carrying out the cavity tree recursion (1.3) on a self-avoiding walk tree, i.e.,

a tree for which each branch is a path in g which does not intersect itself. Our result is

however more general, as it can be generalized to multi-spin, general factor graph model.

We now proceed to prove Theorem 1.

Proof. Let Xj,k = x when j < k and = 0 otherwise. Let v = (vi,... ,vd), and z =



V

= #U(x) - 4$(O) + J .
V2 V3

= #s(x) - #s(O) + JU

- 4(X) - q5U(O) + JA

+ Ju

+JA

Bu

Figure 2-1: First step: building the telescoping sum; black nodes indicate decision x, gray
node decision 0

V

2 V3
- Ju

- Ju

- Ju



(z1, ..., zd) c xd. We have

Bg,u(x) = #5 (x) - #u(0) + max {
d

#U,,, (X, zy) + Jg\{u,v(z)}
j=1

- max { >u ' (0, zj) + Jg\{u},V(z) .

Consider a telescoping sum,

Bg,u(x) = #u(x) - #u(0)

d

max OU'v (Xjk, zj) + Jg\{u,v (z))
j=1

d

- max Oquv (Xj,k-1, zj) + Jg\{ug, (z)}
j=1

and the kth difference:

d

E cuJv (Xj,k, zj) + Jg\{u},v(z)
j=1

d
- max OU'vy (Xj,k- 11 Zj) + Jg\{ u},, (Z)

Let zk =(z1,... , Zk 1,Zk+1, ... ,zd). Then,

d

max { u,vj (xj,k, z3 ) + Jg\{u),v(z)}=
j=1

ma (U,vk(,zk ) -max{ E #u,v (,zj) + E 0,O zj) + Jg\{u),v(z))
Zk Z-k jsk-1 j~k+1

Similarly,

(2.5)

(2.6)

d

max { u,v (Xj,k-1, zj)
j=1

max (U,Vk (0, zk) + max{
Zk Z-k

+ Jg\{u},v (z) =

> uvj (X, zj) + # OU', (0, zj) + Jg\{u},v(z))
j<k-1 j~k+1

(2.4)

max{

(2.7)

d '

k=1 .



rv1  y 1  r1
3U 3 ,U3~1

=JU OV3 -V [uos = U<-V2(x, Bgtu,2,x),V2 )v2 V3 2 b -d 3

with

v1(z) = #vl (z) + #u,v1 (0, z)

V3 (z) = #V3 (z) + #u,v 3 (x, z)

Figure 2-2: Second step: building the modified subnetworks (here g(u, 2, x))

For each zk, we have

max { ,v (x, zj) + E #U,v (0, zy) + Jg\{u,v(z) = Jg(u,k,x),Vk (zk)
S jsk-1 j;>k+1

By adding and substrating Jg(u,k,x),vk (0), expression (2.5) can therefore be rewritten as

max(#U,Vk (x, y) + Bg(u,k,x)()) - max(#U,V (0, y) + Bg(u,k,x)(y)
y

which is exactly psz-V (x, Bg(u,k,x)). Finally, we obtain:

d

Bu(x) = # (x) - #U(0) + : (LxVk, Bg(ukx),vk)
k=1



2.2.2 Extension to factor graphs

We now turn to our most general result, the cavity recursion for factor graphs, which in

principle allows computation of bonuses for arbitrary optimization problems. We will need

to define a new family of modified subnetworks in order to derive the result. Consider

a node u with neighbors N(u) = {ai, a2 ,..., ad}, and an arbitrary action x E x. Once

again, we need the neighbors to be arbitrarily ordered (we will see in Chapter 5 this can

have an importance). For every k = 1,2, ... , d, let g(u, k, x) be the decision network

(V \ {u}, A' \ {ak}, <b', x) where <D' is constructed as follows. For any a E A \ {ai, ... , ad},

#a =a. For each j = k, #'. is a function only of Xa\{u}, and the updated values are given

by

#af (X, Xa\{u}), j < k;
aj (xa\{u}) - Oa#, (0, Xa\{u}), j > k.

(2.9)

Theorem 2. For every u E V with neighbors {ai,... ,ad}, and x G x,

Bg,u(x) = #u(x) - #u(O) + >3 pu<-ak(X, Mg(u,k,x)) (2.10)
1<k<d

where Mg(ukx) is defined as follows: let (u, w1, ... , w (k)) be the neighbors of aj in g.

Mg(u,k,x)(X1, . .. ,xn()) = Bg(u,k,x),(wi,...,wn(k))(X1, X2, ,Xn(k)) (2.11)

Note that Equation (2.10), while similar to the factor graph Belief Propagation Equa-

tion (1.9), does not have the same exact same structural form (in the way the pairwise

BP Equation (1.3) and the pairwise cavity Equation (2.3) have the same structural form).

In particular, the function M in Equation (2.11) is not decomposed as a sum of bonus

functions of the neighbors of ak in different network. This issue can be partially ad-

dressed by our next result. For any network g, vector of node v = (vi, . .. , vn) and actions

x = (Xi, ... , X), let 9{v : x} be the subnetwork (V', E', <, x), where (V', E') is induced

by V \ {vi,... , vn }, and all factors which depended on the action of some vi are computed

by fixing the action of vi to xi (while they have similar definitions, g(u, k, x) and 9{v : x}

differ in that no factors are removed from 9{v : x}).



Theorem 3. Consider any u, action x, and a factor aj such that A/(ak) = {u, wi, ... , Wn(k) }
and let 9' = (u, k, x) for simplicity. For any x1 ,... , xn(k) E X, and for any n > 0, let

w[n] = (Wi, ... -, wn) and x[n] = (XI, ... -, on).

Mg(u,k,x)(X1, .. . , Xlk)) = En Bg, f i [-1 _1]Jk, (Xn)
1<n<n(k)

We now prove Theorems 2 and 3.

Proof. Using the same telescoping sum used to prove Theorem 1, we have

Bg,u(x) = #u(x) - #u(0)+ max
x-u (#>1< ,(XXaj\{u})+

- max (E5 (0 OXaj\{u})+
X 1 <js d

#(z) -- #u(0)+ E max

1<k<d ( - (1
- max(

1- 
(

agAN(u)

agNF(u)

1 Oaj (X,k, Xa \{u})+ 

<j<d ag

# aj (Xj,k-1, Xa\{u}) +
<jsd

Consider the kth difference:

max oak , zak\{u})+

- max (ak (0, Xak\{u}) +

E
1<j<k-1

1<j<k-1

aj (X, Xa \{u}) + E caj (0, Xa \{u}) +
k+1j!d

S
a~A/(u)

a (Xa))

aj (X, Xa \{u}) + E Oaj(0,Xaj\{u})+ E &a(xa)

k+1 jd agN(u)

The first term of the kth difference can be decomposed as follows:

max (ak(Xxak\{u}) +x-u E1 #a(X7 Xa \{u}) +
1<j<k-1

S daj (0 Xaj \{u}) +
k+1<j-d

(2.12)

a(Xa))

#a(Xa))
Af(u)

a
aOA/(u)

# aa(xa))

E~u Oa(Xa)

agNl(u)



= max
XW1 XW 2 . - )Xwn(k)

ak (X, ak \{ul) + max
XV\K(a k)

S ay (X, Xay\{u})

1<j~k-1

+ E Oa(0,Xa f \{u}) +
k+1<j:d

And it is easy to check that

max ( :
xV\g(ak) 1)j&k-1

Oaj (X, Xaj \{u}) + S (aj0, Xaj \{u}) +
k+1 jsd

Jg(u,k,x),(w1 ,...,wn(k))(XI, X2, ... , Xn(k))

The same decomposition applies to the second term of the kth difference, and we obtain

that the kth difference can be rewritten:

max
XE ,XW

2 . 'Xwn(k)

max
Xw 1 ,Xw

2 ''Xn(k)

(Oak (X, Xak\{u}) + Jg(u,k,x),(w1,-.,wn(k)) (X1 , X2, ... , Xn(k))

(ak (0, Xak\{u}) + Jg(u,k,x),(w1,...,wy(k)) (X 1, X2 ,. . . , Xn(k))

which by substracting J(u,k,x),(w1 ,.. ,wn(k)) (0, 0, ... , 0) is seen to be equal to

max
X 1 ,XW

2 'Xwn(k)

max
X 1 , 2'''''Xwn(k)

(Oak (X, Xak\{u}) + Bg(u,k,x),(w,--,wn(k)) (X1 , X2, . , Xn(k)))

(ak (0, Xak \{u}) + Bg(u,k,x),(w1,...Wn(k)) (X1 , X2,... , Xn(k)))

-':-Pu<-ak (x, Mg(u,k,x))

which finishes the proof of Theorem 2. Theorem 3 is a special case of a simple identity:

for any network 9, collection of node (vi, ... , vd) and decision vector (x1, ... , X), we have

Bg,(vI,...,Vd)(X, ... , )X )= (2.13)S Bgv[nl]:x[n_1 },vn (x)
1<n<d

a
aOAr(u)

a(xa))

S
agNr(u)

Oa(Xa)) =



To prove the above, let x[n] denote (xi,... , X, 0, ... , 0), and simply note that

Bg,(v. . vd) (X,... ' Xd) J,(v1 ,. .,Vd) (x[d]) - J,(V,..,Vd)(XED])

- Jg,(Vl,1 ,.,) (x[n]) - J ,(i,.,Vd) (x[n - 1])
1<n<d

E BQ~v[n..l]:x[n.l]},vn (Xn)
1<n<d

2.3 The Cavity Expansion algorithm for graphs or factor

graphs

Armed with the cavity recursion, we are now in a position to develop new optimization

algorithms for general graphical models. The main problem with using the cavity recursion

for computing bonuses is that its computation time can be extremely large. As mentioned

previously, carrying the recursion until it terminates is equivalent to carrying the compu-

tation on a corresponding SAW tree. In general, the SAW tree will have degree as large as

the degree of our network g, and depth equal to the length of the longest self-avoiding walk

of the graph, which itself often grows linearly with the size of the graph. Consequently,

in the vast majority of cases, using the cavity recursion to compute the network cavities

will result in an exponential time algorithm. In order to remedy this, we design two main

algorithms. The first, the cavity expansion algorithm, is a message-passing-type algorithm,

whose main idea can be summarized as interrupting the computation after a predetermined

depth. The second, the cavity propagation algorithm, is a message-passing version of the

cavity expansion algorithm.

2.3.1 The CE algorithm

Given a decision network g, a node u E V with Nu = {v 1 , ... , vd}, and r E Z+, introduce

a vector CE[9, u, r] (CE[g, u, r, x], x E X) E RT defined recursively as follows.

1. CE[, u, 0, x] =0



2. For every r = 1, 2, .. ., and every x E X,

d

CE[g, u, r, x] = #u(x) - #,(0) + E pu<-v (x, CE[9(u, j, x), v, r - 1]), (2.14)
j=1

where g(u, k, x) is defined in Subsection 2.2.2, and the sum _1 is equal to 0 when

NAf = 0. Note that from the definition of !(u, k, x), the definition and output of CE[g, u, r]

depend on the order in which the neighbors v of u are considered. CE[g, u, r] serves as

an r-step approximation, in some appropriate sense to be explained in Chapter 3, of the

cavity vector Bg,u. The motivation for this definition is relation (2.3) of Theorem 1. The

local cavity approximation can be computed using an algorithm described below, which we

call Cavity Expansion (CE) algorithm.

Cavity Expansion: CE[Q,u,r,x]

INPUT: A network g, a node u in g, an action x and a computation depth r >

0

BEGIN

If r = 0 return 0

else do

Find neighbors Af(u) = {vi, v2, ... ,vd} of u in g.

If N(u) =0, return #,,(x) - $u(0).

Else

For each j=1,...,d, construct the network g(u,j,x).

For each j = 1,..., d, and y E X, compute CE[g(u, j, X), v, r - 1, y]

For each j = 1,..., d, compute puz-v( r -1, y])

Return #u (x) - #u(0) + 1i 1j pdu<-v,(x, CE[9 (u, j, x), v, r - 1, y]) as CE[9, u, r, x].

The algorithm above terminates because r decreases by one at each recursive call of

the algorithm. As a result, an initial call to CE[g, u, r, x] will result in a finite number of

recursive calls to some CE[9j, uj, kj, xj], where kj < r. Let (9j, Vi, Xi)isism be the subset of



arguments for the calls used in computing CE[9, u, r, x] for which ki = 0. In the algorithm

above, the values returned for r = 0 are 0, but it can be generalized by choosing a value Cj

for the call CE[gi, vi, 0, Xi].
The set of values C = (Ci)ii<m will be called a boundary condition. We denote by

CE[9, u, r, x, C] the output of the cavity algorithm with boundary condition C. The in-

terpretation of CE[g, u, r, x, C] is that it is an estimate of the cavity Bgu(x) via r steps

of recursion (1.3) when the recursion is initialized by setting CE[gi, us, 0, xi] = Ci and is

run r steps. We will sometimes omit C from the notation when such specification is not

necessary. Call C* = (Cr) = (Bg,,, (xi)) the "true boundary condition". The justification

comes from the following proposition, the proof of which follows directly from Theorem 1.

Proposition 5. Given node u and NA(u) = {v1,...,vd}, suppose for every j = 1,...,d

and y E x, CE[g(u, j, x), v , r - 1 ,y] = Bg(uj,x,vj (y); then, CE[g, u, r, x] = Bg,u(x).

As a result, if C is the "correct" boundary condition, then CE[9, u, r, x, C] = Bg,u(x)

for every u, r, x. The execution of the Cavity Expansion algorithm can be visualized as

a computation on a tree, due to its recursive nature. This has some similarity with a

computation tree associated with the performance of the Belief Propagation algorithm,
[TJ02, SSW08, BSSO8]. The important difference with [TJ02] is that the presence of cycles

is incorporated via the construction g(u, j, x) (similarly to [Wei06, JS07, BGK+07, GK07a,
GK07b]. As a result, the computation tree of the CE is finite (though often extremely

large), as opposed to the BP computation tree.

2.3.2 Properties and computational complexity

Independence Lemma

An important lemma, which we will use frequently in the rest of the thesis, states that in

the computation tree of the cavity recursion, the cost function of an edge is statistically

independent from the subtree below that edge.

Proposition 6. Given u, x and Af(v) = {vi,... ,vd}, for every r,j = 1,... d and y E X,

CE[9(uj,x),v,r - 1,y] and #u,,, are independent.

Note, however, that 0, and 9(u, k, x) are generally dependent when j 0 k

Proof. The proposition follows from the fact that for any j, the interaction function #uvj



does not appear in g(u, j, x), because node u does not belong to g(u, j, x)), and does not

modify the potential functions of g(u, j, x) in the step (2.1). D

Bounds on the cavities

Another strength of the CE algorithm is that it in the binary case (x {0, 1}, it pro-

vides upper and lower bounds on the cavities (this is contrast to convex relaxation, which

provides upper bound on the value functions instead, but the technique works only for

binary networks), through appropriate simple choice of the boundary condition. Consider

the following modified algorithm, which for any network g, node u, and integer r > 0,

computes two cavity approximations CE+ [9, u, r] and CE- [9, u, r] (recall that by design,

the cavity of 0 is always 0).

Cavity Expansion with bound CE+[g,u,r],CE~[,u,r]

INPUT: A network g, a node u in g, and a computation depth r > 0

BEGIN

If r = 0 return CE+[g,u,r] = +oo and CE~~[,u,r] = -oo

else do

Find neighbors N/(u) = {v, v2, ..,vd} of u in 9.
If N(u) = 0, return #,,(1) - 4u(0).

Else

For each j = 1, ..,d, construct the network 9(u, j, 1).

For each j = 1,...,d, compute CE-[g(u,j, 1), vj,r - 1] and

CE+[ (u, j, 1), v, r - 1]

For each j = 1,... d and each y E X, f orm the quant ity Ej =u,, (0, 0) +u,v, (1, 1)-

#2,Vj (0, 1) - #2,j (1, 0)

For each j = 1...d, create two variables B± and B as follows: if Ej 2 0,

let B - CE+ [9(u, j, 1), v, r - 1] and B. = CE-[9(u, j, 1), v, r - 1]; otherwise, let

B+ = CE-[9(u, j, 1), v, r - 1] and B, = CE+[g(u, j, 1), vj, r - 1].

For each j = 1,..., d, compute pu<-o, (1, Bt) and pu,_vj (1, B37)

Return 4U(1) - OU(0) + E < pu<o (1, Bt) as CE+[9, u, r] and

#u(1) - #u(0) + pl-j~dPu<-v,(1, B,) as CE-[9, u, r]



Theorem 4. For any network g, node u, depth r E N+, and action x,

CE- [G, u, r, x] < Bg,u(x) CE+[, u, r, x]

Proof. By induction: the result is clearly correct if r = 0 or if A/(u) = 0. The next step of

the proof is the following lemma:

Lemma 1. For any (u, v) E E, pu,_v(1, B) is nondecreasing in B if #u,v(1, 1)-+#4,o(0, 0)-

#u,v (0, 1) - #uv(1, 0) > 0, and nonincreasing otherwise.

To see why why this is true, simply consider all possible cases for the inequalities

between values of #uv. Next, assume that for all j,

CE-[G(u, j, 1), oj , r - 1] < B(u,j, 1),vj (1) K CE+[G(u, j, 1), vi, r - 1]

From Lemma 1, this implies

ps<_(-v(1, B ) :: pazu+v(1, Bg(u,j),v ) <- MP--V(1, Bt )

and we obtain the result by summing over j. D

Computational complexity

Our last proposition analyzes the complexity of running the Cavity Expansion algorithm.

Proposition 7. For every g, u, r, x, the value CE[G, u, r, x] can be computed in time

O(r(A T)r).

Proof. The computation time required to construct the networks 9(u, j, x), compute the

messages puz-vj (x, Bvj), and return <Du(x) - <Du(0) + Z14 4; d p+-v (x, Byj), is O(A T). Let

us prove by induction that that for any subnetwork G' of G, CE[G', u, r, x] can be computed

in time bounded by O(r(AT)'). The computation time for r = 0 is constant. For r > 1, the

computations of CE[g', u, r, x] requires a fixed cost of O(AT), as well as (AT) calls to CE

with depth (r - 1). The total cost is therefore bounded by O(AT + (AT) (r - 1)(AT)-1
which is O(r(AT)'). D



2.3.3 Message-passing version of the CE algorithm

In this last section, we detail how to

cavity recursion. We restrict ourselves

u, v, and decision x, let

derive a new message-passing algorithm from the

to the pairwise case. For any network 9, neighbors

Mg,Uv(xU) A max (#uv (xu, zv) + Bg,v (xv)) - max (#uv (0, xz) + #v (xv)Bg,v (xv))

The following proposition is an analog of Proposition 2 for the cavity recursion:

Proposition 8.

Mg,u+V (xU) = max ( z95u XU, x) + #V(xV) +
S

wEN(v)\{u}
Mg(ukX),V-Vk (X) )

-max #2,,(0,xV)+#V(xV)+ (
wCAN(v)\{u}

Proposition 8 suggests a new message-passing algorithm for computing the cavities of

a network G. The algorithm, which we call Cavity Propagation, depends on a depth pa-

rameter r and a network G, and at a high level, functions as follows. Cavity Propagation

computes messages recursively by using Equation (2.15) while decreasing the depth param-

eter at each iteration, and whenever the depth reaches zero, resets the modified subnetwork

to the original graph G. Formally, consider some network G and depth parameter r E N+.

Initial calls to CE[G, u, r, x] for all u will result in a finite number of recursive calls to

some CE[Gj,u, kj, x], where kg < r. For any s < r, let R, = { I kg = s} be the set

of all subnetworks N which were called with a depth equal to s, and R = U R, the set

of all subnetworks called recursively by the CE algorithm with depth r. For any N E R

and (u, v) E W, and iteration time t > 0, we define a message M-,2u_, which is updated

(2.15)

M g(,,x),V+<_ k (x ))



according to the Cavity Propagation equations:

For W E Ro M',v(xU) =max ( u , x) + #e (xV) +
(

weA(v)\{u}

-max $uv(Oxv)+$v(xv)+

For W g Ro, Mtuv(zu) =max
XV ( U , z) ) + #V(o)

- max O~(jv+vx)

(
wEA(v)\{u}

wEN(v)\{u

weN(v)\{u}

(2.16)

Mt-M97V+Vk (XV))

Mt- I (XV)W-(u,k,x) ,V+-Vk V

M

r t 1

It is easy to see that the algorithm for r = 0 corresponds to Belief Propagation, and for r

greater than the length L of longest self-avoiding walk of the graph, it provides the exact

cavity in each node v of the original network g. We can therefore expect that for 0 < r < L,
Cavity Propagation is an increasingly powerful family of message-passing algorithms.

2.4 Conclusions

Starting from an exact but computationally intensive recursion to compute cavities in

arbitrary graphical models, we developed a new message-passing-type algorithm, the Cavity

Expansion algorithm. At a high level, the CE algorithm works by locally computing cavities

as a function of neighboring cavities. The algorithm then proceeds by expanding the cavity

recursion in the breadth-first search manner for some designed number of steps t, thus

constructing an associated computation tree with depth t. At the initialization point the

cavity values are assigned some default value. The approximation value Bv(x) is then

computed using this computation tree. If this computation was conducted for t equalling

roughly the length L of the longest self-avoiding path of the graph, it would result in exact

computation of the cavity values Bv(x). Yet the computation effort associated with this

scheme is exponential in L, which itself often grows linearly with the size of the graph. The

CE algorithm interrupts the expansion after a fixed number of steps t << L. As such, the

CE constructs cavity approximations which are only based on information local to each

M ())



node. We are therefore led to wonder whether conditions exist which can guarantee that

the resulting approximations are very close to the correct cavities. We will address this

question in the following two chapters.



Chapter 3

Correlation decay and efficient

decentralized optimization in

decision networks with random

objective functions

3.1 Introduction

In this chapter, we begin our investigation of the connections between a property of random

systems called correlation decay, and the near-optimality of the CE algorithm we introduced

in Chapter 2. Here, we will focus on optimization in graphical models with discrete variables

and random cost functions.

The concept of correlation decay was introduced by Dobrushin [Dob68a, Dob68b] in

the context of infinite Markov Random Fields (see also [Spi7l, Geo88] for monographs on

related topics). The purpose was to identify sufficient conditions for the uniqueness of a

distribution on an infinite Markov Random Field, when given only local conditional distri-

butions. Dobrushin identified a simple sufficient condition for uniqueness which stated, at

a high level, that if local correlations were weak enough, the local conditional distributions

could only correspond to one distribution on the infinite field. This condition was later

found to have applications in computer science, as it was shown that finite Markov Ran-

dom Fields which satisfied conditions similar to Dobrushin's exhibited fast mixing of the



corresponding Markov Chain Monte Carlo dynamics [JS97]. In addition, further connec-

tions were found between Dobrushin's condition and convergence of the Belief Propagation

algorithm [TJ02].

Thus, correlation decay as introduced by Dobrushin is well adapted to counting and

sampling problems in Markov Random Fields. However, in order to apply these ideas to

optimization, a different concept of correlation decay is therefore needed. Such a con-

cept was introduced and studied in the context of probabilistic combinatorial optimiza-

tion [Ald92, Ald0l, AS03, GNS06, GG09], where it was shown that some optimization

problem on regular and random locally tree-like graphs with random costs are tractable

as they exhibit the correlation decay property. Moreover, it was shown that under the

correlation decay property, such optimization problems exhibit a phenomenon known as

long-range independence: intuitively, this means that the optimal decision taken by a node

in a network is asymptotically independent from that of nodes faraway from it.

This idea is reminiscent of the approach taken by the CE algorithm, which, as mentioned

in Chapter 2, uses only local network information to compute a decision for each node.

It is then reasonable to expect that the SAW tree construction of our last chapter and

the correlation decay analysis can be merged in some way. Namely, optimization problems

with general graphs and random costs can be solved approximately by constructing a

computation tree and proving the correlation decay property on it. This is precisely our

approach: we show that if we compute B,(x) based on the computation tree with only

constant depth t, the resulting error B(x) - B,(x) is exponentially small in t. By taking

t = O(log(1/e)) for any target accuracy c, this approach leads to an e-approximation scheme

for computing the optimal reward maxx F(x).

In this chapter, we provide a general technique to compute conditions on the parameters

of families of distribution that ensure the system exhibits the correlation decay property.

We illustrate the applicability of the method by giving concrete results for the cases of

uniform and Gaussian distributed functions in networks with bounded connectivity (graph

degree) A.

Another implication of correlation decay concerns decentralization of the decisions. De-

fine the local neighborhood A of radius r for node v in g as the subnetwork induced by

B(r). Intuitively, NA' is the subnetwork node v "sees" if its horizon has length r. A de-

centralized solution x4 of radius r for node v is a decision of X which is built only using

knowledge of NAJ. A vector of decisions taken with only partial (local) information is likely

to be suboptimal, and precisely how much is lost by discarding nonlocal information can



for instance be measured by the quantity F(x) - F(x'). The tradeoff between decentraliza-

tion and suboptimality was investigated by Van Roy and Rusmevichientong in [RR03), but

the analysis was restricted to line graphs. Our analysis generalizes their approach, casting

their results in the light of the correlation decay phenomenon; we find that if correlation

decay occurs, we can accurately quantify the decentralization-optimality tradeoff.

The chapter is organized as follows. In Section 3.2, we describe the general model, ex-

amples, and main results. In Section 3.3, we prove our main result, the fact that correlation

decay implies optimality of the cavity recursion and local optimality of the solution. The

rest of the chapter is devoted to the analysis of a general coupling technique used to iden-

tify sufficient conditions for correlation decay (and hence, optimality of the CE algorithm).

Concluding thoughts are offered in Section 3.7.

3.2 Model description and results

Recall the pairwise graphical model of Chapter 1: we consider a decision network g =

(V, E, D, X). Here (V, E) is an undirected simple graph in which each node u E V represents

an agent, and edges e E E represent a possible interaction between two agents. Each agent

makes a decision xu E x L {,1, .... ,T - 1}. For every v E V, a function #, : x - R is

given. Also for every edge e = (u, v) a function #e x2 -+ R is given. Let A denote the

maximum degree of the network g.

Our objective is to compute an optimal (or near-optimal) solution for the network,
and the main focus of this chapter will be on the case where #,(x), #e(x, y) are random

variables (however, the actual realizations of the random variables are observed by the

agents, and their decisions depend on the values taken by #,(x) and #e(x, y)). While we

will usually assume independence of these random variables when v and e vary, we will

allow dependence for the same v and e when we vary the decisions x, y. The details will

be discussed when we proceed to concrete examples.

Examples

Graph Coloring

An assignment # of nodes V to colors {1,...,q} is defined to be proper coloring if no

monochromatic edges are created. Namely, for every edge (v, n), we want #(v) -A #(u). Sup-



pose each node/color pair (v, x) E V x {1, .. . , q} is equipped with a weight W,2 ;> 0. The

(weighted) coloring problem is the problem of finding a proper coloring # with maximum

total weight E, WO(,). In terms of a decision network framework, we have #,, (x, x) =

-oo,#Ov,u(x, y) = 0,Vx # y E X {1,...,q}, (v,u) E E and #v(x) = WvxVv E V, x E X.

MAX 2-SAT

Let (Zi, . . . , Z,) be a set of boolean variables. Let (C1, . . . , Cm) be a list of clauses of

the form (Zi V Zj), (Zi V Zj), (Zi V Zj) or (Zi V Zj). The MAX-2SAT problem consists

of finding an assignment for binary variables Zi which maximizes the number of satis-

fied constraints Cj. In terms of a decision network, take V = {1,... ,n}, E = {(i, j) :

Zi and Zj appear in a common clause}, and for any k, let #k(x, y) to be 1 if the clause Ck

is satisfied when (Zi, Zj) = (x, y) and 0 otherwise. Let #v (x) = 0 for all v, x.

MAP estimation

We note in that in the graphical model and message-passing literature, the term MAP

estimation is often used to refer to MLE estimation of the graphical model g, or in other

words, to the task of finding max Fg(x). We consider here a problem which is properly "a-

posteriori ". In this example, we see a situation in which the reward functions are naturally

randomized.

Consider a graph (VE) with IV| = n and |El = m, a set of real numbers p =

(pi,... ,pn) E [0, 1], and a family (fi, . . . ,fn) of functions such that for each (i, j) E E,

fij, is a function fi~j(o, x, y) where o is real and x, y E {0, 1}2. Assume that for each

(x, y), fi (o,x, y) is a probability density for o. Consider two sets C = (Ci)1 ign and

o = (Oj)isjsm of random variables, with joint probability density

P(0, C) = J pci'(1 - pi)1-ci fi(oiJ, ci, c )
(ij)EE

C is a set of Bernoulli random variables ("causes") with probability P(Ci = 1) = pi, and

o is a set of continuous "observation" random variables. Conditional on the cause variables

C, the observation variables 0 are independent, and each O,, has density fij (o, ci, cj).

Assume the variables 0 represent observed measurements used to infer on hidden causes

C. Using Bayes's formula, given observations 0, the log posterior probability of the cause



variables C is equal to:

log P(C = c |O = o) = K + 0#+(c) + #i,j(ci, c)
i i,jEE

where

#i (ci) = log (pi/(1 - pj)) ci

#i,j (ci, cy ) = log (fi,j (or,j, ci, cI ))

where K is a random number which does not depend on c. Finding the maximum a

posteriori values of C given 0 is equivalent to finding the optimal solution of the deci-

sion network g = (V, E, #, {0, 1}). Note that the interaction functions #i,j are naturally

randomized, since #ij (x, y) is a continuous random variable with distribution

diP(#ij(x, y) = t) = et E dP(fi,j(o, x', y') = et)
x',y'E{0,1}

Main results

At a high level, all our results stem from a combined approach. The algorithm mentioned

in the following results is always the CE algorithm introduced in Chapter 2. Correlation

decay provides the framework used to prove optimality and polynomiality of the methods.

The proof that a correlation decay condition holds is framework-specific; in this chapter, all

results stem from the coupling technique detailed in Section 3.4, which applies to graphical

models with random costs and no combinatorial constraints. We present detailed results

from the uniform distribution and for the Gaussian distribution. It is important to note

that while we limit our exposition to these two families, nothing prevents us for applying

the methodology to a larger number of distributions. Finally, we refer the readers to
Appendix B for the definition of additive FPTAS with high probability.

Uniform Distribution

Suppose that for all u E V, #u (1) is uniformly distributed on [-I1, Ii], #u(0) = 0, and that

for every e E F, #e(0, 0), #e (1, 0), #e (0, 1) and #e(1, 1) are all independent and uniformly

distributed on [-12, 12], for some 11, 12 > 0. Intuitively, I1 quantifies the 'bias' each agent

has towards one action or another, while 12 quantifies the strength of interactions between



agents.

Theorem 5. Let = -. If 03(A - 1)2 < 1, then there exists an additive FPTAS for

finding Jg with high probability.

Gaussian distribution

Here we consider the case of Gaussian distributed reward functions: assume that for any

edge e = (u, v) and any pair of action (x, y) E {0, 1}2, #Uvx y) is a Gaussian random

variable with mean 0 and standard deviation o-e. For every node v E V, suppose #v(1) = 0

and that #v(0) is a Gaussian random variable with mean 0 and standard deviation op.

Assume that all rewards #5e(X, y) and #v(x) are independent.

Theorem 6. Let 2 = If /(A - 1)+ < 1, then there exists an additive

FPTAS for finding Jg with high probability.

3.3 Correlation decay and decentralized optimization

In this section, we investigate the relations between the correlation decay phenomenon and

the existence of near-optimal decentralized decisions. When a network exhibits the corre-

lation decay property, the cavity functions of faraway nodes are weakly related, implying a

weak dependence between their optimal decisions as well. Thus, one can expect that good

decentralized decisions exist. We will show that this is indeed the case.

Definition 1. Given a function p(r) ;> 0, r E Z+ such that limre p(r) = 0, a decision

network g is said to satisfy the correlation decay property with rate p if for every two

boundary conditions C, C'

max E I CE[9, u, r, x, C] - CE[g, u, r, x, C']| < p(r).
u'x

If there exists Ke > 0 and ac < 1 independent from the network topology such that

p(r) < Keae for all r, then we say that g satisfies the exponential correlation decay property

with rate ac.

The correlation decay property implies that for every u, x,

E I CE[g, u, r, x] - Bg,u(x)I < p(r).



The following assumptions will be frequently used in the subsequent analysis.

Assumption 1. For all v E V, x f y E X, B, (x) - Bv(y) is a continuous random variable

with density bounded above by a constant g > 0.

We will also assume the costs functions are bounded in L 2 norm:

Assumption 2. There exists K4 such that for any e E E, ( E|#e(x, y)|2)l 2  Ke

and for any v E V, ( EXG Elov(z)|2)1/2 < KD

Assumption 1 is designed to lead to the following two properties:

(a) There is a unique optimal action in every node with probability 1.

(b) The suboptimality gap between the optimal action and the second best action is large

enough so that there is a "clear winner" among actions.

Correlation decay implies near-optimal decentralized decisions

Under Assumption 1 let x = (x,)oEv be the unique (with probability one) optimal solution

for the network g. For every v E V, x E X, let x4 = argmaxxCE[9, v, r, x], ties broken

arbitrarily, and xr = (x'). The main relation between the correlation decay property, the

Cavity Expansion algorithm and the optimization problem is given by the following result.

Proposition 9. Suppose g exhibits the correlation decay property with rate p(r) and that

Assumption 1 holds. Then,

P(z =A xu) 2T2  2gp(r), Vu E V,r > 1. (3.1)

Proof. For simplicity, let Br(x) denote CE[9, u, r, x]. We will first prove that

P(r xz) T 2(ge + 2p(r)) (3.2)

The proposition will follow by choosing e = V2p(r)g- 1. Consider a node u, and notice

that if

(Bu(x) - Bu(y))(Br(x) - B'(y)) > 0, Vx = y,

then xz = xu. Indeed, since Bu(xu) - Bu(y) > 0 for all y = xu, the property implies the



same for B', and the assertion holds. Thus, the event {zx # x} implies the event

{-l(x, y), y # x : (Bu(x) - Bu(y))(B'(x) - B'(y)) 0}

Fix e > 0 and note that for two real numbers r and s, if Irl > e and Ir - sI < e, then

rs > 0. Applying this to r = Bu(x) - Bu(y) and s B'(x) - B'(y), we find that the

events IBu(x) - Bu(y)| > e and

(IBu(x) - B'(x)| < e/2) n (IBu(y) - B'(y)| < e/2)

jointly imply

(Bu(x) - Bu(y))(B'(x) - B'(y)) > 0

Therefore, the event (Bu(x) - Bu(y))(Br(X) - Br(y)) 0 implies

{IBu(x) - Bu(y)j < e} U {IB(x) - Br(x)I > e/2} U {IB(y) - B(y)| > e/2}

Applying the union bound, for any two actions x y,

P(Bsx)- Bs(y))(B5(x) - B5(y)) 0) IP(tBs(x) - Bs(y)| e) +t IP(IBs(z) - B5(z)| > e/2)

+ IP(IBu(y) - Br(y)| > e/2). (3.3)

Now P(IBu(x) - Bu(y)| I e) is at most 2ge by Assumption 1. Using the Markov inequality,
we find that the second summand in (3.3) is at most 2EIBs(x) - BE(x)I/e 2p(r)/e. The

same bound applies to the third summand. Finally, noting there are T(T - 1)/2 different

pairs (x, y) with x 7 y and applying the union bound, we obtain:

IP(z; # za) (T(T - 1)/2)(2ge + 4 p(r)/e)
x xT - 2p(r)

T2(gE + E

For the special case of exponential correlation decay, we obtain the following result, the

proof of which immediately follows from Proposition 9.

Corollary 1. Suppose g exhibits the exponential correlation decay property with rate ac



and constant Kc, and suppose Assumption 1 holds. Then

P(xz , x) 2T 2  2gKcoa/ 2 , VU E V, r > 1.

In particular, for any e > 0, if

r > 2 1log Kll + |log el
- |log(a'c)|

then

IP( 4 X z) e

where K, = 2T 2V2gKe

In summary, correlation decay - and in particular fast (i.e., exponential) correlation

decay - implies that the optimal action in a node depends with high probability only on

the structure of the network in a small radius around the node. As in [RR03], we call such

a property decentralization of optimal actions. Note that the radius required to achieve

an e error does not depend on the size of the entire network; moreover, for exponential

correlation decay, it grows only as a logarithm of the accepted error.

The main caveat of Proposition 9 is that Assumption 1 does not necessarily hold. For

instance, it definitely does not apply to models with discrete random variables #u and #u,,.
In fact, Assumption 1 is not really necessary, and it can be shown that a regularization

technique allows to relax this assumption. Note that Assumption 2 is not needed for

Proposition 9 to hold.

Correlation decay and efficient optimization

Proposition 9 illustrates how optimal actions are decentralized under the correlation de-
cay property. In this section, we use this result to show that the resulting optimization

algorithm is both near-optimal and computationally efficient.

As before, let before x = (x) denote the optimal solution for the network 9, and

let xr = (xr) be the decisions resulting from the Cavity Expansion algorithm with depth

r. Let x = (za) denote (any) optimal solution for the perturbed network 9. Let Ki =

10K., T(IV| + |El), and K 2 = K 1 (g Kc)/ 4, where Kc is defined in the assumption of

exponential correlation decay.



Theorem 7. Suppose a decision network g satisfies correlation decay property with rate

p(r). Then, for all r > 0

E[F(x) - F(x,')] Ki(gp(r))1/4  (3.4)

Corollary 2. Suppose g exhibits exponential correlation decay property with rate ac and

constant Kc. Then, for any e > 0, if

r > (81 loge|+ 4|log(K2)|)I log(ac)I

then

IP(F(x) - F(xr) > E) < E

and xr can be computed in time polynomial in |V|, 1/c.

Proof. By applying the union bound on Proposition 9, for every (u, v), we have: P((xU, x) 4

(xU, xv)) 4T 2 2gp(r). We have

EIF(x) - F(xr) I ZIE#JU(xU) -#u(xr) + S E/uv(xuxv) -#u,v(xr, xr)|
uEV (uv)EE

For any u, v E V,

E[#u,v(xU, zv) - #sV(xr, xr)] 5 E 1(X#,X)(XX) (x ) + #O (x, uxx))

< 2K4, P ((x , x r) (Xu, Xv)) 1/2

< 4KDT (2gp(r))'/4

where the second inequality follows from Cauchy-Schwarz. Similarly, for any u we have

E #U(xu) - # (x )I 54K. T (2gp(r)) /4

By summing over all nodes and edges, we get: E[F(x) - F(xr) 5 8K. T(2gp(r))1/ 4 <

K 1 (gp(r))1/4 , and Equation (3.4) follows. The corollary is then proved using the Markov

Inequality; injecting the definition of exponential correlation decay into Equation (3.4), we

obtain

P(Jg - F( ) ;> e) E[Jg - F(s)]/c < K 2 ar/4 /c



Since r > (41 log(K 2)| + 81 log(E)|)| log(a)|- 1 , we have K 2ar/4 < E2 and the result follows.

3.4 Establishing the correlation decay property

The previous section motivates the search for conditions implying the correlation decay

property. This section is devoted to the study of a coupling argument which can be used to

show that correlation decay holds. Results in this section are for the case lxi = 2. They can

be extended to the case |xI > 2 at the expense of heavier notations, but without providing

much additional insight. For this special case X {0, 1}, we introduce a set of simplifying

notations as follows.

Notation

Given 9 = (V, E, <D, {0, 1}) and u E V, let v1 , ... , Vd be the neighbors of u in V. For any

r > 0 and boundary conditions C, C', define:

1. B(r) CE[9, u, r, 1, C] and B'(r) ACE[, u, r, 1, C']

2. For j = 1,... d, let 9j = g(u, j,1), and let Bj(r - 1) A CE[9j, v,r - 1,1,C] and

B'(r-1) CE[j, vj, r-1, 1,C']. Also let B(r-1) = (Bj(r-1))l 53 d and B'(r-1) =

(Bj(r - 1))1j <d

3. Fork= 1, ... n, let (Vji, ... , vyi) be the neighbors of vj in 9j, and let Bjk(r - 2) =

CE[9j (vj , k, 1) ogk, r - 2, 1, C] and B (r - 2) = CE[gj (v, k, 1), v, r - 2, 1, C'] for all

k = 1 ... n. Also let Bj(r - 2) = (Bjk(r - 2 ))1 kn,5 and Bj(r - 2) = (B -

2))1 gk ,.

4. For simplicity, since 1 is the only action different from the reference action 0, we

denote ps<_vj(z) = p<vi (1, z).
From Equation (1.2), note the following alternative expression for ps<_vj(z)

p/-o-,(z) = #u,vj(1, 1) - #u,vj (0, 1)+ max(#u,vj (1, 0) - #O,,, (1, 1), z) (3.5)

- max(#k,V, (0,0) - #2,, (0,1), z)

5. Similarly, for any j = 1... d and k = ... nj, let IVJ<-v k(Z) A I<_vjk (1, Z).



6. For any z = (zi, ... , zd), let pz(z) = E4 p (zj). Also, for any j, and any z =

(zi, ... , znj), let sLv, (z) = Ei<kfIVjo-vjk (zk).

7. For any directed edge e (u <- v), denote

A# e O #2,(1, 0) - #Uo(I1, 1)

#2 Ou#,v (0, 0) - #O,(0 1

Xe e e

Ye #2 - # = #u,v(1, 1) - #,v (1, 0) -#u,v(0, 1) +q#2, (0,0)

Note that Y<,v = Yv4_, so we simply denote it Yu,v.

Note that for any e, E|Yel ; K< (see Assumption 2). Equation (2.14) can be rewritten as

B(r) = pu(B(r - 1)) + u(1) - #(0) (3.6)

B'(r) = pat(B'(r - 1)) + #u(1) - #s(0) (3.7)

Similarly, we have

Bj (r - 1) = pvj (Bj (r - 2)) + #vj (1) - vj (0) (3.8)

B (r - 1) = pvj (Bj(r - 2)) + #vj (1) - #v, (0) (3.9)

Finally, Equation (3.5) can be rewritten

pu <-v(Z) = #3 + max(#_V, z) - max(#+_v, z) (3.10)

Ye represents how strongly the interaction function #uv(zu, x) is "coupling" the vari-

ables xu and x. In particular, if Ye is zero, the interaction function #uv(zu, x) can be

decomposed into a sum of two potential functions #u(xu) + #e(x), that is, the edge be-

tween u and v is then be superfluous and can be removed. To see why this is the case, take

# (0) = 0, #$2(1) = #UV(1, 0) - #UV(0, 0), #v(0) = #uv(0, 0) and #4 (1) = #uv(0, 1), which

is also equal to #uv(1, 1) - #uv (1, 0) + #uo(0, 0), since Ye = 0.



3.4.1 Coupling technique

In this section, we present a sufficient condition for correlation decay. The condition

depends on the parameters of a particular form of coupling: For any neighbor vj of u,
it is possible that the partial cavities p_, and p depending on two different boundary

conditions C and C' be equal even when Bj $ B . The probability that this coupling occurs

decreases as the distance between B and Bj grows bigger.

Definition 2. A network 9 is said to exhibit (a, b)-coupling with parameters (a, b) if for

every edge e = (u, v), and every two real values x, x':

P (pu<-v(X + # (1) - #V(0)) = p<_v(z' + #V (1) - #V(0))) (1 - a) - bIx - x' (3.11)

The probability above, and hence the coupling parameters, depends on both the dis-

tribution of #v(1) - #, (0) and the distribution of the values #uv(x, y). Note that if for all

x, z'

P(pu<-v(x) = p[uv(x')) (1 - a) - blx - x'I (3.12)

then g exhibits (a, b) coupling, but in general the tightest coupling values found for Equa-

tion (3.12) are much weaker than the ones we would find by analyzing condition (3.11).

This form of distance dependent coupling is a useful tool in proving that correlation decay

occurs, as illustrated by the following theorem:

Theorem 8. Suppose g exhibits (a, b)-coupling. If

a(A - 1) + V/bK;(A - 1)3/2 < 1 (3.13)

then the exponential correlation decay property holds with K = A2 K. and a = a(A - 1) +

V/bK (,A - 1)3/2.

Suppose 9 exhibits (a, b)-coupling and that there exists Ky > 0 such that IYe| < Ky with

probability 1. If

a(A - 1) + bKy (A - 1)2 < 1 (3.14)

then the exponential correlation decay property holds with a = a(A - 1) + bKy (A - 1)2



Proof of Theorem 8

We begin by proving several useful lemmas.

Lemma 2. For every (u, v), and every two real values x, z'

|pax-V(x) - pAziv(x')| < I -- x'I. (3.15)

Proof. From (3.5) we obtain

ptuv(z) - puz=v(z') max (#3,,(1, 0) - #U2,V(1, 1), X) - max (#u,v(o, 0) - #5,,(0, 1), X)

- max (#,V (1, 0) - #53, (1, 1), x) + max (#UV (0, 0) - #UV(0, 1), ').

Using twice the relation maxx f(x) - maxx g(x) maxx(f(x) - g(x)), we obtain:

pee, (z) -- ptu, (x') max(0, x - x') + max(0, x' - x)

= z- z'

The other inequality is proved similarly.

Lemma 3. For every u, v E V and every two real values x, x'

|pu<_v(x) - p<-V(x')I IYu,vI (3.16)

Proof. Using (3.5) and (3.7), we have

y<-v (x) -- (#u,v (1, 1) - #u,v (0, 1)) = max(#u,v (1, 0) - #u,v (I1, 1), X)

- max(#2,OX(0,0) - #52, (0, 1),x).

By using the relation maxx f(x) - maxx g(x) 5 maxx(f(x) - g(x)) on the right hand side,

we obtain

pu<_v(z) - (#u,o(1, 1) -- #u,v(0, 1)) :5 max(0, -YU'V).

Similarly

-peLwv(X') + (#u,v(1, 1) - #uo(0, 1)) K max(0, Yu,v).
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Adding up

pI-v(x) - pu+v(x') |Yu VI.

The other inequality is also proven similarly.

Lemma 4. Suppose (a, b)-coupling holds. Then,

EIB(r) - B'(r)| < a E|Bj (r - 1) - Bj(r - 1)| + b E [lBj(,r - 1) - Bj(r - 1)121

1<j<d lIjsd

(3.17)

Proof. Using (2.14), we obtain:

EIB(r) - B'(r)| = E [#(1) - #u(0) + p<-, (By (r - 1)) - (#u(1) - #u(0)) - pi<_v (Bj(r - 1))
3 3

E Ipu*-v,(Bj (r - 1)) - pu<_vj(Bj(r - 1))

= EE [I zu,,vj (Bj(r - 1)) - p<v, -(Bj(r - 1))|pvj (Bj(r - 2), pvj (Bj(r - 2)]
3

By Lemma 2, we have |ptz+vj (Bj(r - 1)) - pu+-vj (B'(r - 1))| 1 |Bj(r - 1) - B'(r - 1)|.

Also note from that from Equation (3.8) and (3.9), 1Bj(r - 1) - B'(r - 1)| = p /a(Bj(r -

2)) - pvj(Bj(r - 2))I; hence conditional on both p[tv(Bj(r - 2) and It,(Bj(r -2), IBj (r -

1) - Bj(r - 1)1 is a constant. Therefore,

E [ 1pu,, (Bj (r - 1)) - p<_,3 (Bj (r - 1)) pvj (Bj(r - 2), pvj (Bj(r - 2)] (3.18)

IBj(r - 1) - Bj(r - 1)1 P(p _v(Bj (r - 1)) 0 p<vj (Bj(r - 1)) I pvj (Bj(r - 2), pvj (Bj(r - 2))

Note that in the (a, b) coupling definition, the probability is over the values of the func-

tions #u,vj, and #v. By Proposition 6, these are independent from pj (Bj (r - 2) and

pV, (Bj (r -2)). Thus, by the (a, b) coupling assumption, P(puzvj (B (r- 1)) 0 p-<_v, (Bj (r-

1)) |pI (Bj(r - 2), ,v (Bj(r - 2)) 5 a+ bIBj(r - 1) - Bj(r - 1). The result then follows. E

Fix an arbitrary node u in 9. Let Nf(u) = {vi,. .. , vd}. Let dj = I(vj)I - 1 be the

number of neighbors of vg in g other than u for j = 1, ... , d. We need to establish that for



every two boundary condition C, C'

E|CE(g, u, r, C) - CE(, u, r, C')I Ka' (3.19)

We first establish the bound inductively for the case d < A -1. Let ed denote the supremum

of the left-hand side of (3.19), where the supremum is over all networks 9' with degree

at most A, such that the corresponding constant K4 < KD, over all nodes u in g with

degree I|N(u) I A - 1 and all over all choices of boundary conditions C, C'. Each condition

corresponds to a different recursive inequality for er

Condition (3.13)

Under (3.13), we claim that

er a(A - 1)er-i + b(A - 1)3K. er- 2  (3.20)

Applying (3.8) and (3.9), we have

|Bj(r - 1) - B (r -- 1)j |pyIwv (Bk(r - 2)) - 'Vj_-V(Bjk(r -)

1<k d,

Thus,

|Bj(r - 1) - B (r - 1)12 AVj _-V k(Bjk(r - 2)) - pI, -V,(B k(r - 2))l
1<k d,

d< d3 |pVj+-Vk(Bjk(r - 2)) - -Vj(Bjk(r - 2))12

15k~dj

By Lemmas 2 and 3 we have IpVjVk(Bjk(r - 2)) - p/Vj_-V k(Bk (r - 2)) | I B k(r -

2) - Bk(r - 2)1 and I 4V,+~V k(Bjk(r - 2)) - pV,_Vik(B Jk(r - 2))| IYkj. Also, dj3

A - 1.Therefore,

IBj(r - 1) - Bj(r - 1)|2 < (A - 1) >3 IBj(r - 2) - B k(r - 2) . yjk| (3.21)
1<k<d,

By Proposition 6, the random variables IBjk(r -2)- B'k(r -2)1 and Yljkl are independent.



We obtain:

ElBj('r- 1) -Bj(r -1)|2 $(A -1) E, F-B j(r -2) -' ( - 2)|1 |Yi (3.22)
1<k<dj

(A-1)K.( ElBjk(r-2)-Bk(r-2)1)

<(A - 1) 2Keer-2

where the second inequality follows from the definition of KD and the third inequality

follows from the definition of er and the fact that the neighbors Vk, 1 < k < d- of v- have

degrees at most A - 1 in the corresponding networks for which Bjk(r - 2) and B r -2)

were defined. Applying Lemma 4 and the definition of er, we obtain

EjB(r) - B'(r)I < a E EIBj(r - 1) - Bj(r - 1)| + b E E[IBj(r - 1) - Bj(r - 1)12]
1jid 1 jid

a(A - 1)er-I + b(A - 1)3 KD er-2

This implies (3.20).

From (3.20) we obtain that er < Kar for K = AK, and a given as the largest in

absolute value root of the quadratic equation a 2 = a(A - 1)a + b(A - 1)3 K.. We find this

root to be

1
a = -(a(A - 1) + fa2 (A _ 1)2 + 4b(A - 1)3KD)2

< a(,A - 1) + -vb(A - 1)3K4,

<1

where the last inequality follows from assumption (3.13). This completes the proof for the

case where the degree d of u is at most A - 1.

Now suppose d = N(u)| = A. Applying (3.6) and (3.7) we have

IB(r) - B'(r)| p l/iz-vj(Bj(r - 1) - piuzvj(Bj(r - 1))j
1<j<d



Applying again Lemma 2, the right-hand side is at most

| Bj(r - 1) - Bj(r - 1)1 < Aer-i

since Bj(r - 1) and Bj(r - 1) are defined for vj in a subnetwork gj = g(u, j, 1), where vj

has degree at most A - 1. Thus, the correlation decay property again holds for u with AK

replacing K.

Condition (3.14) Recall from Lemma 4 that for all r, we have:

EIB(r) - B'(r)| < a E ElBj(r - 1) - B(r - 1)| + b S E[Bj(r - 1) - Bj(r - 1) 2].
1<jid 1<jd

For all j, IBj(r - 1) - Bj(r - 1)1 = |EkG(pvj,+k(Bjk) - PV, _vjk (Bjk))I. Moreover, for

each j, k, LIVjp-Vjk(Bjk) - ILvj+Vjk(Bk)I |Yjk| Ky (the second inequality follows from

Lemma 3, the third by assumption). As a result,

|Bj(r - 1) - Bj(r - 1)12 < (A - 1)KylBj(r - 1) - Bj(r - 1)1

We obtain:

er (a + bKy(A - 1)) (A - 1)er-1

Since a(A - 1) + bKy(A - 1)2 < 1, er goes to zero exponentially fast. The same

reasoning as previously shows that this property implies correlation decay.

3.4.2 Establishing coupling bounds

Coupling Lemma

Theorem 8 details sufficient condition under which the distance-dependent coupling induces

correlation decay (and thus efficient decentralized algorithms, vis-a-vis Proposition 7 and

Theorem 7). It remains to show how can we prove coupling bounds. The following simple

observation can be used to achieve this goal.

For any edge (u, v) - g, and any two real numbers x, x', consider the following events

Eu,,(x, x') = {min(x, x') + #,(1) - #e(0) ;> max(#0_, # c)}



E-,(x, x') = {max(x, x') + #7 (1) - #v(0) < min(#75-v, # )}

Euev (x, x') = E+ (x, x') U Euv(x, x')

Lemma 5. If Euev(x, x') occurs, then pu<v (z+#,(1)-#v(0)) = pus (z'+4v(1)-#$,(0)).

Therefore

P(t<_V(X + #V(1) - #v(0)) = pIu-v(X' + #V (1) - #v (0)) > P(Eu<_v(x, x'))

Proof. From representation (3.10), we have puzv(x) = #_ +max(01, z)-max(# ,v, z);
let x, X' be any two reals. If both x and x' are greater than both #5_, and Phi +, then

pu+V(X) = #3<_ = pu<-v('). If both x and x' are smaller than both #01, and Phi2v,

then puzv(z) = #_ + #i - _= pu<V The result follows from applying the

above observation to x + #v(1) - #5(0) and x' + #v (1) - #v(0).

Note that Lemma 5 implies that the probability that coupling does not occur P(p<_V (X+

#v(1) - #v(O)) 0 [ptu,(x' + #v(1) - #,(0))) is upper bounded by the probability of

(Eu<v(x, x'))c. When obvious from context, we drop the subscript u <- v. We will of-

ten use the following description of (E(x, x'))c: for two real values x > x',

(E(x, x'))c -

{min(# 1 , #2 ) + #V(0) - # (1) < x < max(#', #2 ) + #V(0) - #(1) + x - X'} (3.23)

Uniform Distribution: Proof of Theorem 5

In order to prove Theorem 5, we compute the coupling parameters a, b for this distribution

and apply the second form of Theorem 8.

Lemma 6. The network with uniformly distributed rewards described in section 3.2 exhibits

(a, b) coupling with a = - and b = 1

Proof. For any fixed edge (u, v) E g, _1v and 2 v are i.i.d. random variables with a

triangular distribution with support [-212,212] and mode 0. Because #_, and #2 v are



i.i.d., by symmetry we obtain:

IP((E(x, x'))c) -

2I2 dPp1 (a1)
-212

2 dp (ai)
-212

I 212ai

I 212

Pp2(a2) P(al + #v(O) - #v(1) < x < #,(0) - #v(1) + a 2 + x - x')=

dP0 (a2) P(x' - a 2 < #v(O) - #v(1) < x - ai)

The quantity P(x' - a2 < #,(0) - #v(1) < x - ai) can be upper bounded by a2-alx-x

and we obtain:

P(E(x, x')c)
X -

21,
11I 212 212dPp (ai) 1

-2I2 a

dP0(a 2)(a 2 - ai)

Note that dIPp (a 2 ) = (a2 + 212 )d(a 2 ) for a2 0, and dP0 (a2) = 1 (2I2 - a2 )d(a2 )

for a 2 > 0; identical expressions hold for d1Pp1 (ai). Therefore, for ai 2 0,

dPp (a 2 ) (a 2

1 2I2

- ) =412 Ja
(212 - a 2 )(a2 - ai) d(a 2 )

I 212
ai1

(212 - a2 )2 d(a2) + (212 -

- (212 - ai)3 + (2I 2 - a,)3)3 2

212

- ai)1 (212 - a2)d(a 2))

= (212 - ai) 3

Similarly, for ai 1 0,

I 212 dPp2(a 2 )(a 2 - ai) = -ai + 24I2 (ai

The final integral is therefore equal to:

212

ai) 1)02(a2)(

((ai + 2I2)(-ai +

24 3+ 4
15 12 15

a2 - ai)

I (ai + 21 2 )3 )d(ai) + I 212 1 (212 - ai)4d(ai)

-3)= 7
12 12

'7 15

I 212
a 1

= 12(

2 I2/2I2

_ -21 2

+ 2I2)3

-2I2
-412(

- 4122(

-



Finally,

P((E(,x') < 712+ < 12+ Ix-x/I
51- + 21 ~ 2I1 2 I1

Therefore, the system exhibits coupling with parameters (, ).

We can now finish the proof of Theorem 5. For all (u, v) E E and x, y E X, IUv (X, y) I
12. Therefore, for any (u, v), |YU, I = I#O,, (1, 1) - #uv (0, 1) - #5,, (1, 0) + #u,, (0, 0)1 412.

Note that for all edges, IYel 5 412, so that the condition #(A - 1)2 < 1 implies -12 (A -

1) + 2(A - 1)2 < 1. Since (A - 1) (A - 1)2, if (A - 1)2 < 1 we also have -L-(A -

1) + 42 (A - 1)2 < 1. This is exactly condition (3.14) with a, b as given by Lemma 6 and

Ky = 412. It follows that g exhibits exponential correlation decay, and since Assumptions

1 and 2 hold, all conditions of Corollary 2 are satisfied, and there exists an additive FPTAS

for computing Jg.

Gaussian distribution: Proof of Theorem 6

In this section, we compute the coupling parameters for Gaussian distributed reward func-

tions. Rather than considering only the assumptions of Theorem 6, we adopt a more

general framework. The proof will then follow from the application of Theorem 8 (first

condition) and a special case of the computation detailed below (see Corollary 3). Assume

that for every edge e = (u, v) the value functions (#u,v (0, 0), #Ov (0, 1), #uv (1, 0), #Ov (1, 1))

are independent, identically distributed four-dimensional Gaussian random variables, with

mean y = (pti)ijEOO,Oi,1O,j1}, and covariance matrix S = (Si,)i,je{oo,oi,10,1}. For every node

V E V, suppose qOv(1) = 0 and that #v(0) is a Gaussian random variable with mean y, and

standard deviation op. Moreover, suppose all the #v and #e are independent for v E V,
e E E. Let

r2 = Si - 2Si,1 + S1,1 + 2 o =Soooo - 2Soooi + S

2 2 o2
P = (oo2)-(S00,10 - Soo,1 - S01,10 + Soi,,, + o-) C 2 1

/(Or + o-2)2 - 4p20.2or2
21 2 2

oX = o- + a2 + 2poiU2  Cy =O- + o2 - 2po-io-2

Proposition 10. Assume C < 1. Then the network exhibits coupling with parameters



(a, b) equal to:

1 1 -Oy\ 2 /WOO + pi /0- t oia = arctan( 2 +
x \V 1-Cax

2 1

Corollary 3. Suppose that for each e,(#e (, 0), #e(, 1), #e (1, 0), #e (1, 1)) are i.i. d. Gaus-

sian variables with mean 0 and standard deviation o-e. Let # = " Then a < # and

bKO #.

Proof. Under the conditions of corollary 3, we have oS = 4o-2 a2 44+4U2, and C = 0.
Note also that K. 2o-e By Proposition 10, the network exhibits coupling with parameters

a = arctan 2 2 <-# /3
e p

1 1 2
b = + and so, bK < # <#

Note that if a-e -+ 0, then # -+ 0 and correlation decay takes place; moreover, combining

Corollary 3 and Theorem 8 (condition (3.13)) directly yields Theorem 6.

Proof of Proposition 10 . Fix an edge (u, v) in E; for simplicity, in the rest of this section
denote e1 = 4&__n ± 4k(0) - 4b(1) and -2 = _ + 4(0) - 4(1). It follows that ( -2

follows a bivariate Gaussian distribution with mean (pl, p2):

pi = p1o - p11l + p and p2 = pOO - p1o1 + tp

and covariance matrix

So= 22SA- P91u 072J
p-11-2 O-2

Let X = q + .2 , Y 2 1 . Then, (X, Y) is a bivariate Gaussian vector with means

E[X] = Pi + p2 and E[Y] = p2 - p1, standard deviations -x, a-y and correlation C as

defined previously. Denote also X - E[X] and Y Y - E[Y], the centered versions



of X and Y. Consider two real numbers x > X', and let (b, t) be the two real numbers such

that x = b + t/2, x' = b - t/2. From Equation (3.23), we have

(E(x, x'))C = {min (_,05 2 ) - t/2 < b < max(0 1, 2 ) + t/2}

The first step of the proof consists in rewriting the event (E(x, x'))c in terms of the variables

X, Y:

Lemma 7.

(E(x, x'))C = {I Y| X - 2b| - t}

Proof.

(E(x, x))C ={min(0 , 2) - t/2 < b < max( 1 , 2 ) + t/2}

={ t/2 < b < 2 + t/2 -< 2} U { 02 - t/2 < b < ' + t/2, Y < 0, 2 < 1-1 - -1 - 2- - -- 1

={2 - t < 2b < 2-2 +t, < 2} U 2-2 - t < 2b < 2- +t,q$-2 -1

={X -Y-t < 2b < X+Y+t,Y >} O {X +Y-t < 2b < X -Y+t,Y < O}

={(X - 2b) -Y - t < 0 < (X - 2b) +| Y| + t}

={\Y| (X - 2b-t} n {|Y| > (2b - X -t)}

={|fY IX - 2b| - t}

For any b and t > 0, let S(t) = {x,y : ly| IxI - t}, and for any real x, let S(t,y) =

{x : |yl IxI - t}. Note that S(t,y) is symmetric and convex in x for all y. Using the

lemma, we obtain:

IP((E)c(xx')) = 1 exp(- 1 ((x - li - P2 + 2b)2

27rcro- 1 - C2 JS(t) 2(1 - C2) 0.2

- 2 C (x - pi - p + 2b)(y + p2 - 91)))dzdy

= u jexp(- -1 ( 1 p+pi)2)g(y)dy
27raoYo-y / -C2 Jy 2(1 -C2) 012

+(Y A2 + pi)2
0r2

(3.24)



where:

g(y) / exp(- 1 (x - pi - P2 + 2b) 2 _ ( - Pi - P2 + 2b)(y - P2 + Pl) ))dx
Jxs(t,y) 2(1 - C2) U2 .U

Let Xb = (x-A1-A 2 +2b) and 9= (y-92+) . Then:O'X OV

(y) =exp( 2 (1 C2) IXES(t,y) exp(- 2(1 - 02) (Zb - Cj) 2 )dx

. Recall Anderson's inequality [Dud99]: let 7

be a centered Gaussian measure on Rk, and S be a convex, symmetric subset of Rk.

Then, for all z, 7(S) ;> y(S + z). Since S(t, y) is a convex symmetric subset, by setting

2b = pi + p2 + Cox(Y-912+91) it follows that

g (y) : exp( 2 ( 0 2  ) exp(- 2d
x2(1-C2) esy) 2ol(1 - C2)a22)dz

Injecting that bound in Equation (3.24), we obtain:

< 1 exp(
~27xo V V/1 -C2 fy 2(1

1 (Y-pA2±+pi) 2

~C2)-c2) 0.2

expf 2ol1 - C 2) X 2)dx) dyS (Y 2 + )2 XES(ty)ep2(1 - C2) U

2wuo-oy Y1 - C2 Js(t)
exp(_ 1 ( 2 +

2(1 - C2) ,
(1 0 2) (Y -112 + [,1)))dxd

0y A

Finally, note that the triangular inequality, for any a we have S(t) c Sa(t) 2 {(x, y)

jy - al ;> Ixz - t - Ia|}. We obtain:

P((E)C(x, x'))
1

2xo-xoYV1 - C2

< 21
-21o-xo- 1 -- 02

exp( -  1  C2 )( +
Js12 -01(t 2( - 2

exp(- 1 (
S(t+1P2-pili) 2(1-C 2 ) X

(1- C2) (Y - A2 + ))dzdy

+ 1 - c2) Y ))dxdy(1- 2

where the second inequality follows from a simple change of variable. Let t' = t + p2 - [liI

Now, zb - C =

P((E)C(x, x'))

x -p1-p2+2b- CUx (Y-92+A1)



Finally, we decompose S(t') as the union of two sets: S(t) = Sint(T) U Sout(t), where:

Sint (t') ={(X, Y) : lXI < t'}

Sout(t') ={(X, Y) : |X> t' and |Yl (IXI - t')},

and note that Sint(t') n Sout(t') = 0. We have:

2t'
P (Sint (W)) < t

t 2r(1 - C2)u.

and, by symmetry of Sout(t') in X and Y,

P(Sout (t')) =4P({(x, y) : x > t, y > 0, y x - t})

2(1 - C2)
= 2
7ro-ro-y v'1 -C2 JI(X'Y):X,,,,,O y>Xtj

+ C2)y )) dxdy+ (1- 012

Using the change of variables (x', y') =( ic 2  -),we get:

P(Sout t')) = exp(-(x' + t1 2 _ Y 2 d

7r j(x,y'):x'>O,y'>O,y'>"" ' -2 } v1 -C2 c.)

Since (' + )2 > X12, it follows that:

(exp(-'2 _ Y/2))dxdy

By using a radial change of variables (x', y') = (r cos(0), r sin(0)) we can compute exactly

the expression above, and find:

exp(-r 2 )rdrd9P(Sout (t)) 5- 2
7r {(r,O):r>0,arctan("x )<O< 7}

1 o
=-arctan( '7r O- V'1 -1 C2

P(Sout t')) <- 7 I I,)X>,>OY ,xV -2 l7r {('y)r>0 > ,' " C '}



1 + 2 |p2 -Al|) 2 t
P((E)'(x, x')) < -arctan( 'Y ) + IC)( 2

-7r Uo V/1 - C2 Ur( - 2UXg(1-C)e

(3.25)

which gives us the desired bounds on (a, b). E]

3.5 Decentralization

In this section, we consider another property obtained as a result of the correlation decay

property, specifically, the decentralization of optimal solutions. In economics, the field

of team theory [Mar55, Rad62, MR72] tries to quantify the minimal suboptimality losses

incurred by a team of agents when each of them takes a decision with limited information.

For instance, we may consider a set of decision networks D and a function i from {(9, v), 9 E

D, v C Q} to some set called information set I. We explicitly assume that i is not one-

to-one. Then, we consider some scheme 0b I E- x and assume that each agent v in a

network g of D uses the scheme @ to choose its decision: V9 E D, Vv E 9, xv = (f(9))-

The main research question is to devise a scheme 4 which minimizes some measure of the

suboptimality loss Fg(x) - Fg($(f(!))).

An interesting question raised in [RR03] asks what the cost of decentralization is for a

team of agents. In other words, if we assume that each node only receives local information

on the network topology and costs, what kind of performance can the team attain? For any

node v and integer r > 0, we recall that Nv denotes the subnetwork induced by B'. We call

decentralized algorithm 0 ' of radius r a function that takes as input a local neighborhood

Avr and outputs a decision x E x. The corresponding decentralized solution is xr, defined

by xr(v) = 0r (NJ) for any v E V. A decision made with only partial information is likely

to be suboptimal, and precisely how much is lost by discarding nonlocal information is

measured by the following quantity:

1
I E [Fg(x)] - E [Fg(xr)]

It should be clear at this point that the CE algorithm in fact provides a decentralized

solution, that is, x4 = argmax CE[9, u, r, x] is a decentralized decision of radius r for node

v. Therefore, another way to interpret Theorem 7 is that the decentralization suboptimality

loss is essentially upper-bounded by the rate of correlation decay.



The main result of [RR03] states that for a chain of agents (i.e., a decision network

for which the graph is a line), the cost of decentralization using randomized decentralized

algorithms can be upper bounded by y for any 0 < a < 1. We will show that their

result is a special case of our coupling theorem. Assume that the functions #0,, and #, are

deterministic and bounded by K4, and that A = 2, so that (V, E) is a disjoint union of

path and cycles. For given r E N+ and 6 > 0, construct x'6 as follows:

1. For each node v E V, force x, to 0 with probability 6, and leave x undecided

otherwise

2. For each undecided node v E V, run the cavity algorithm with depth r and choose

the action which maximizes the approximate cavity function obtained by the cavity

algorithm.

Proposition 11. If A = 2 and if for all (u, v) E E, u, zu E X, we have |Uo(XU, IXV)I <
KD a.s. and |$o(xj)| K, a.s., then for any r > 0, there exists 3 > 0 such that the

suboptimality gap of xrS is bounded by L(IV| + |E|)1-l , where L is a constant which

depends only on K4,.

Proof. Let 6 > 0, and let (hu)uEv be a family of i.i.d. Bernoulli random variables with

probability 6. For each u E V, the action xu is forced to 0 if h, = 1.

Consider the modified network g6 = (V, E, #6, X), where for any u, if hu = 1, the

potential function #u (1) is changed to -oo (#u(0) is unchanged), and for any (u, v), if

hu = 1, the interaction function #UV(XU, Xz) is changed to #uv(0,x ) (and becomes a

function of x only). Let x6 be the optimal solution of g6, and x be the optimal solution

of g. Let H= {uE V : hu= 1}, andlet E'= {(u,v) :ui H,vgH}.

F(x') =F' (x)

(u,v)EE' u H (u,v)EE\E' uEH

Subtracting this quantity from F(x), we obtain:

F(x) - F(x6) |# , (zU, xS) - #UV (XU, zV)| + >3 |#(x) - (X)|
(u,v)EE\E' uEH

<6K.IH|



We have E|HI = |V16. By taking expectations, we obtain

E[F(x) - F(x2)] < 6Kp 61V|

Let us now prove that forcing some variables to 0 induces coupling in the network with

value function F6 : remember that for any message sent on an edge (u, v), IP", (B) -

pAtu+- (B')I |Yu,v|. But if hV = 1, then #,( zX ) is actually #uv(z, 0) and it immedi-

ately follows in that case that Yu,v = 0. Therefore, for any two messages t, A' sent on the

computation tree and started with different boundary conditions, we have

P(1p = p') > 6

It follows the system has distance-dependent coupling with parameters (a, b), with a =

(1 - 6) and b = 0. Since A = 2, a(1 - A) = (1 - 6) < 1 and by Proposition 8, the network

exhibits exponential correlation decay. By Equation (3.4), there exist constants K 1 , K 2

which depend only on KD such that

]E[F(x) - F(x'')] < (IVI + IE)Ki6 + K2(1 - 6)

By choosing 6 = lo9g, it follows thatr

log r
E[f (x) - f (xr,3 )] <(|V + IE)K1 + K2 exp(r log(1 - 6))

r

log r log r

(IV|+~E|)K1  +1 K2 e-rr r:!_(V +JJ)jlog r 1 2

r r

(IVI + |E|Llog r
r

3.6 Regularization technique

The main caveat of Proposition 9 is that Assumption 1 does not necessarily hold. In fact,

it definitely does not apply to models with discrete random variables 4% and (D,,. We now

introduce an idea of regularization via a small perturbation of '4, IDv.



Let Z,,, v E V, x E X be a collection of independent standard Gaussian random vari-
ables. Fix 6 > 0 and consider 4 (x) = 1,(x) + 6Z,. Let 9 = (VI F, E, ,<, In other

words g is obtained from 9 by perturbing the potential functions J v with 6Z,,.. Also let

x and x be (any) optimal decisions for the networks g and g, respectively. Denote by
Bv(x) the corresponding bonus function. Then we find that the bonuses in the regularized

network g have bounded density, and that the functions F and F reach similar values

Proposition 12. For every x f y, B(x) - Bv(y) is a continuous random variable with

density bounded above by 476 . Moreover, for any random vector z, we have:

EIF(z) - F(z)] < T V o. (3.26)

While we will not do it here, it is easy to use Equation (3.26) to show that a near-optimal

solution for the regularized network g is also a near-optimal solution for 9.

Proof. We have:

Bu(x) - Bu(y) Bu(x) - Bu(y) + 6Zu,2 - 6Zu,y.

Let D = Bu(x) - Bu(y) and D = Bu(x) - B,(y). Since Zu,_ - Zu,y is a zero mean Gaussian

random variable with variance 2, then for every t E R and h > 0, by conditioning on

Z, - Zu,y, we obtain:

f+00 1 u2_

P(t<)<t+h) = ]e4IP(t-u<D<t+h-u)du
1 [+oo h

< iI P(t-u<D<t+h-u)du<

where the last inequality follows from the fact that, for any random variable X with

EIXI < +oo,

jI P(x < X < x + h)dx < h

Taking the limit for h -* 0, we conclude that D has a density and which is bounded by
'=. Finally, we have:

IF(z) - F(z)| 6 Z ZVY I
V y



which implies
2

E|F(z) - F(z)| <;, T - IV| 6

l

Finally, we will show that the regularization technique can only improve the coupling

technique of section 3.4:

Lemma 8. If g exhibits (a, b) coupling, then for any 6 > 0, 0 also exhibits (a, b) coupling.

Proof. Let Z = Ze,, - Z,,o. Then 5,(1) - ),(0) = 4,(1) - Jv(0) + Z. For any x, x'

Pl(ED (X + (1) - eV(0)) = pluzv(x' + (5V (1) - 4)v (0))) =

dPz(z)P (piu, (x + z + G (1) - 'V (0)) = ps<v (X' + z + DV(1) - (V(0))

Applying definition (3.11) to x + z and x' + z, we obtain

P(pU<-V(z + No(1) - eV(0)) = pUzV(X'+ 5j(1) - 5j(0))) jdPz(z)((1 -a) - blx - x'/)

2(1 -a) - bjx-zx'

3.7 Conclusions

In this chapter, we introduced a new definition of correlation decay adapted to optimiza-

tion problems in arbitrary graphical models, and sought out the connections between the

correlation decay property and the near-optimality of the Cavity Expansion algorithm. We

have shown that such connections do indeed exist: graphical models with random costs

often exhibit the correlation decay property, and therefore admit near-optimal approxima-

tion algorithms. We have identified a variety of models which exhibit the correlation decay

property and we have proposed a general-purpose coupling technique which demonstrates

when the property holds. However, this technique is limited to settings where all costs are

bounded, and is thus restricted to settings without any hard constraints. This limitation

prompts the question of whether the correlation decay property can be proven to hold



for constrained optimization problems. In Chapter 4, we will study the correlation decay

phenomenon for a combinatorial optimization problem with constraints.
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Chapter 4

Correlation decay and average-case

complexity of the Maximum

Weight Independent Set problem

4.1 Introduction

In this chapter, we investigate whether the correlation decay analysis of Chapter 3 can be

extended to combinatorial optimization problems, in particular, the Maximum Weighted

Independent Set (MWIS) problem.

The problem of finding the largest independent set of a graph is a well-known NP-

complete problem. Moreover, unlike some other NP-complete problems, it does not admit

a constant factor approximation algorithm for general graphs: Hastad [Has96] has shown

that for every 0 < 3 < 1 no ni-6 approximation algorithm can exist for this problem unless

P = NP, where n is the number of nodes. Even for the class of graphs with largest degree

at most 3, no factor 1.0071 approximation algorithm can exist, under the same complexity-

theoretic assumption; see Berman and Karpinski [BK98]. Similar results are established in

the same paper for the cases of graphs with maximum degrees 4 and 5 with slightly larger

constants. Thus, the problem does not admit a PTAS (Polynomial Time Approximation

Scheme) even in the least non-trivial class of degree-3 graphs.

The study of correlation decay in the context of combinatorial optimization was in-

troduced by Aldous [Ald92],[Ald01],[AS03] in the context of solving the well-known ((2)



conjecture for the random minimal assignment problem. More recently, a different average

case model was considered in Gamarnik et al. [GNS06]: the nodes of an Erdos-R6nyi graph

(with average degree c) are equipped with random weights distributed exponentially. The

authors show that when the problem exhibits correlation decay, they are able to compute

the limiting expression for the maximum weight independent set. Correlation decay was

proven to hold in the regime c < 2e, and similar results were established for r-regular

graphs with girth diverging to infinity for the cases r = 3,4. They also show that the

correlation decay property does not hold when r > 4. The local-weak convergence/cavity

method thus was used extensively, but only in the setting of random graphs, which are

known to have a locally tree-like structure.

In this chapter, we extend the correlation decay analysis to general graphs. The ap-

plication of the Cavity Expansion algorithm in a randomized setting has a particularly

interesting implication for the theory of average case analysis of combinatorial optimiza-

tion. We consider an arbitrary graph with largest degree at most 3, where the nodes are

equipped with random weights, generated i.i.d. from an exponential distribution with pa-

rameter 1. Surprisingly, we discover that this is a tractable problem - we construct a

randomized PTAS, even though the unit weight version of this problem (maximum car-

dinality independent set) does not admit any PTAS, as mentioned above. We extend

this result to more general graphs but for distributions which are mixtures of exponential

distributions.

Furthermore, we show that the setting with random weights hits a complexity-theoretic

barrier just as the classical cardinality problem does. Specifically, we show that for graphs

with sufficiently large degree the problem of finding with high probability the largest-

weight independent set with i.i.d. exponentially distributed weights does not admit a

PTAS. This negative result is proven by showing that for large degree graphs, largest-

weighted independent sets are dominated by independents sets with cardinality close to

largest possible. Since the latter does not admit a constant factor approximation up to

O(A/2v0(A)) multiplicative factor [Tre0l], the same will apply to the former case.

4.2 Model description and results

Consider a simple undirected graph g = (V, E), V = [n] = {1, 2,... , n}. A set of nodes

I C V is an independent set if (u, v) ( E for every u, v (- I. The quantity a = a(g) =

maxi Il is called the independence number of the graph, where the maximization is over all



independent sets. Let IS = I denote the independent set with the largest size: I| - o.

In cases where we have several such independent sets, let IS be any such independent set.

Suppose the nodes of the graph are equipped with weights Wi 2 0, i E V. The weight

of an (independent) set I is EZ i W,. The maximum weight independent set problem is

the problem of finding an independent set I with maximum weight. It can be recast as a

decision network problem g = (V, E, <, {0, 1} by setting #e(0, 0) = #e(0, 1) = #e(1, 0) =

, 0#e(1, 1) = -oc for al edges e E E, and #, (1) = W,, #1 (0) = 0 for all v E V.

In this chapter we consider a variation of the MWIS problem, where the nodes of the

graph are equipped with random weights W, i E V, drawn independently from a common

distribution F(t) = IP(W < t), t > 0. The goal is again to find an independent set I with

the largest total weight W(I) - Ejej Wi. Naturally, this problem includes the problem of

computing oz(!) as special case when F(t) is the deterministic distribution concentrated

on 1. Our main result shows that, surprisingly, the problem of finding maximum weight

independent set becomes tractable for certain distributions F, specifically when F is an

exponential distribution with parameter 1, F(t) = 1 - exp(-t), and the graph has degree

A < 3. Let I* = I*(9) be the largest weighted independent set, when it is unique, and

let W(I*) be its weight. In our setting it is a random variable. Observe that I* is indeed

unique when F is a continuous distribution, which is our case.

We now state our first main result:

Theorem 9. There exists an algorithm which for every g = (V, E) with Ag 3, and

every e > 0, produces a (random) independent set I such that

P > 1 + < e, (4.1)

when the node weights are independently and exponentially distributed with parameter 1.

The algorithm runs in time 0 (n20(E-2 los(1/))), namely it is an EPRAS.

Remarks:

1. Our algorithm, as we shall see, uses randomization, independent of the underlying

randomness of the instance. Thus, the probabilistic statement (4.1) is with respect

to two sources of randomness: randomness of weights and randomization of the

algorithm.



2. The choice of parameter 1 in the distribution is without the loss of generality, of

course: any common parameter leads to the same result.

3. Observe that the running time of the algorithm is actually linear in the number

of nodes n. The dependence on the approximation and accuracy parameter e is

exponential, but the exponent does not involve n. In fact our algorithm is local in

nature and, as a result, it can be run in a distributed fashion.

The exponential distribution is not the only distribution which can be analyzed in this

framework. It is natural to ask if the above result can be generalized, and in particular to

wonder if it is possible to find for each A a distribution which guarantees correlation decay

holds for graphs with degree bounded by A. It is indeed possible, as we extend Theorem 9,
albeit to the case of mixtures of exponential distributions. Let p > 25 be an arbitrary

constant and let a3 = p3 ,j > 1.

Theorem 10. There exists an algorithm which for every g (V, E) with Ag ; A and

e > 0 produces a (random) independent set I such that

(W(I* )
PW( > + E < E, (4.2)

SW(IE)

when the nodes weights are distributed according to P(W > t) = Z1j<A exp(-at).

The algorithm runs in time O(n(l)A), namely it is an FPTAS.

Note that for the case of a mixture of exponential distributions described above, our

algorithm is in fact an F(fully)PTAS as opposed to an EPRAS for Theorem 9. The reason

for this (rather the reason for the weaker EPRAS result) is that in order to establish the

correlation decay property for the case of exponential distributions we need, for technical

reasons, that the average degree is strictly less than two. Thus, our algorithm is preempted

by preprocessing consisting of deleting each node with small probability 6 = 6(e) indepen-

dently for all nodes. This makes the correlation decay rate dependent on 6 and ultimately

leads to an exponential dependence on e. On the other hand, for the case of a mixture

of exponential distributions, we will show a correlation decay rate which holds for every

degree (by adjusting the weights in the mixture).
Our last result is a partial converse to the results above; one could conjecture that

randomizing the weights makes the problem essentially easy to solve, and that perhaps



being able to solve the randomized version does not tell much about the deterministic ver-

sion. We show that this is not the case, and that the setting with random weights hits a

complexity-theoretic barrier just as the classical cardinality problem does. Specifically, we

show that for graphs with sufficiently large degree the problem of finding with high prob-

ability the largest-weighted independent set with i.i.d. exponentially distributed weights

does not admit any PTAS. We need to keep in mind that since we are dealing with in-

stances which are random (in terms of weights) and worst-case (in terms of the underlying

graph) at the same time, we need to be careful as to the notion of hardness we use.

Assuming that the results of Theorems 9 and 10 hold (which we call "finding the MWIS

with high probability"), it can easily be proven that there exists a PTAS for computing

the deterministic number E[W(I)*], the expected weight of the MWIS in the graph g
considered. However, we show that if the maximum degree of the graph is increased, it is

impossible to approximate the quantity E[W(I)*] arbitrarily closely, unless P=NP.

Theorem 11. There exist Ao and c*, c* such that for all A > Ao the problem of computing

E[W(I)*] to within a multiplicative factor p = A/(c* log A2c*/log A) for graphs with degree

at most A is NP-complete.

In principle, we could compute a concrete Ao such that for all A > Ao the claim of

the theorem holds. But computing such Ao explicitly does not seem to offer much insight.

We note that in the related work by Trevisan [Tre01], no attempt is made to compute a

similar bound either.

The main idea of the proof is to show that the difference between the largest weighted

independent set and the largest independent set measured by cardinality is diminishing

in A. A similar proof idea was used in [LV97] for proving the hardness of approximately

counting independent sets in sparse graphs.

4.3 Cavity expansion and the algorithm

We begin by establishing the cavity recursion CE in the special case of MWIS. In this section

we consider a general graph !, whose nodes are equipped with arbitrary non-negative

weights W, i E V. Thus, no probabilistic assumption on Wi is adopted yet. Note that for

the Independent Set problem, we have Jg = W(I*), and for any (ii,... , ir), Jg,( 1 . ir) (0 ) =

Jg\{i1 ,. .,ir}, where g \ {i. ir} is the subgraph induced by nodes V \ {ii . ,r}. For



any node i, we define the quantity Cg(i) = Jg - Jg\{i}, which will be called censored cavity

at node i.

Proposition 13. Given i E V, let N(i) = {ii,...,ir}. Then

Cg(i) = max (0, W - [ Cg\{i,ii,.,_(i 1 )), (4.3)
1<l<r

where Ei<i<r = 0 when N(i) = 0. Moreover, if Wi - ZigC ii 1 . 1 (41 ) > 0,

namely Cg(i) > 0 then every largest weight independent set must contain i. Similarly if

Wi - E<<r Cgx{j, 1 . ,1 _ 1(i) < 0, implying Cg(i) = 0, then every largest weight indepen-

dent set does not contain i.

Remark: The proposition leaves out a "fuzzy" case Wi- Ei,<<r.,C.....,.1 1 (i1 ) 0.

This will not be a problem in our setting since, due to the continuity of the weight distribu-

tion, the probability of this event is zero. Modulo this tie, the event Cg(i) > 0 (Cg(i) = 0)

determines whether i must (must not) belong to the largest-weighted independent set.

Proof. Observe that

Jg = max (Jg\{i}, W + Jg\{i,i,...i1)

Subtracting Jg\{i} from both sides, we obtain

Cg(i) = max (0, Wi - (Jg\{j} - Jg{i,i,...,il))

Observe further,

Jg\{j - Jg\{jj, . ,r, - 3 Jg\{jj 1 ,...,}j - Jg{ji 1 .
1<l<r

= >3Cg\{i,i1 ,. ,_ ()
1<1<r

The proof of the second part follows directly from the analysis above. El

Let us now relate the above theorem and notations in terms of the more general result

of Chapter 2. It is easy to see that for independent sets, for i = (ii, i2, ... , ij),we have



Jg\{ii,i2 ,...,il} = Jg,i(0,0,...,0). From Theorem 1, we have

Bg,i = Jg,i(1) - Jg,i(0) = W + piz-i,(1, Cg(i,1),ij)

In the decision network formulation of MWIS, we have #e(x, y) equal to -oc for (x, y)

(1, 1) and 0, otherwise. Therefore, by definition of pUi,, we have

pi<-i,(1, Bgtj,1>j,) =max(-oo + Bg(j,), 0) - max(Bg(j,l), 0)

= - max(Bg(i,l), 0)

Thus, we have

Bg,i = Wi - max(Bgj,z), 0)

which gives

max(Bg,j, 0) = max(0, W - max(Bg(i,l), 0))

This is exactly the specialized cavity recursion (4.3), when setting Cg (i) = max(Bgj, 0),
and supposing g(i, 1) = g \ {i, i1 , ... , iz_1}. By carefully looking at the definition of g(i, 1),
we can see this is indeed the case, and therefore Equation (4.3) is a special case of Equation

(2.3) when applied to the "censored cavities" or C = max(B, 0), for the problem of MWIS.

We now construct quantities which provide bounds on the cavity C. For every induced

subgraph 'W of g every t = 0, 1,2, ... and every i C V define C-(i, t) recursively as follows.

Let N-(i) = {ii,..., ir}. Then,

{(0, t=0;

C- (i, t) = 00; (4.4)
max (0, Wi - El<l<r C+ (il, t - 1), t > 1.

CH(i, t) = (4.5)max (0, W - i C(it- 1)), t ;> 1.

By Proposition 13, if it was the case that C- \ii . 1  (il, t - 1) = CH\_iSii.

for all 1, then C-(i, t) = CW(i, t). The same applies to C+(i, t). However, this is generally

not the case due to our "incorrect" initialization C- (i, 0) = 0. Our goal is to show using



correlation decay that when t is sufficiently large, C-(i, t) is approximately correct. Show-

ing this is the subject of the next section. We now close this section by giving two helpful

lemma, before describing the modified Cavity Expansion algorithm used for the proof of

Theorem 9.

Lemma 9. For every g with degree A, i c V(9) and t, the quantities Cg-(i, t), C+(i, t)

can be computed in time O(tAt).

The proof follows directly from Proposition 7.

It turns out that C- (i, t) and C+(i, t) provide valid bounds on the true cavities CjH(i).

Lemma 10. For every t,

C- (i, t) :! CR (i) :! C+(i, t),

Proof. The proof is by induction in t, and is a special case of Theorem 4. The assertion

holds by definition of C-, C+ for t = 0. The induction follows from (4.3), definitions of

C-, C+ and since the function x - max(0, W - x) is non-increasing. E

We now describe our algorithm for producing a large weighted independent set. Our

algorithm runs in two stages. Fix e > 0. In the first stage we take an input graph

9 = (V, E) and delete every node (and incident edges) with probability e2 /2, independently

for all nodes. We denote the resulting (random) subgraph by 9(e). In the second stage

we compute Cg-() (i, r) for every node i for the graph 9(e) for some target even number of

steps r. We set 1I(r, e) = {i : Cg-( (i, r) > 0}. Let 1* be the largest weighted independent

set of 9(e).

Lemma 11. I(r, e) is an independent set.

Proof. By Lemma 10, if C(,) (i, r) > 0 then Cg(,) > 0, and therefore I C I,*. Thus our

algorithm produces an independent set in 9(e) and therefore in 9. El

Due to Lemma 9, the complexity of running three stages of CA(t, e) is O(n t At). As

it will be apparent from the analysis, we could take B- instead of B+ and arrive at the

same result. We now proceed to the analysis of the Cavity Expansion algorithm CA(t, e).
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4.4 Correlation decay for the MWIS problem

In this section, we will prove Theorem 9. The main bulk of the proof will be to show that

I(r, c) is close to I,* in the set-theoretic sense. We will use this fact to show that W(I(r, e))

is close to W(I,*). It will be then straightforward to show that W(I,*) is close to W(I*),
which will finally give us the desired result, Theorem 9. The key step therefore consists in

proving that the correlation decay property holds. It is the object of our next proposition.

Correlation decay property

We first need introduce for any arbitrary induced subgraph W of g(c), and any node

i in W, introduce M-(i) = E[exp(-CW(i))],M-i(i,r) = E[exp(-C-(i,r))],M+(i, r) =

E [exp (- C+ (i, r))]

Proposition 14. Let !(E) (V, E,) be the graph obtained from the original underlying

graph as a result of the first phase of the algorithm (namely deleting every node with

probability 6 = e2 /2 independently for all nodes). Then, for every node i in g(e) and

every r

P(Cg ()(i) = 0, C+ (i, r) > 0) 3(1 - E2/2)r, (4.6)

and

P (Cg(6)(i) > 0, C- (i, r) = 0) 3(1 - E2/2)r. (4.7)

Proof. Consider a subgraph 71 of 9, node i E W with neighbors NV(i) = {ii,... , id}, and

suppose for now that the number of neighbors of i in g is less than 2.

Examine the recursion (4.3) and observe that all the randomness in terms Cf\{ . (ii)
comes from the subgraph R \ {i, ii, ... , il_ 1 }, and thus Wj is independent from the vector

(CN\i,ii,..,, I (ii), 1 1 < d). A similar assertion applies when we replace C\iii (ii)

with C-\i ii........ ..(i.,.r) and C .+ (iz, r) for every r. Using the memoryless prop-

erty of the exponential distribution, denoting W a standard exponential random variable,
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we obtain:

= X] =P(W <; x)E[exp(O)]+E<Clyggd...,,,_,1(il)
1<1<d

E[exp(-(Wi - x)) I Wi > x]P(Wi > x)

=(1 - P(W > x)) + E[exp(-W)]P(Wi > x)

=(1 - P(Wj > x)) + (1/2)P(W > x)

=1 - (1/2)P(Wi > x)

=1 - (1/ 2 ) exp(-x) (4.8)

It follows that

E[exp(-C-(i))] = 1 - (1/2)Eexp - C (ii)
1<1<d

Similarly, we obtain

E [exp (-C (i, r))] = 1 - (1/2)E exp(- E. (il, r -

1<1<d

E [exp (-CW(i, r))] = 1 - (1/2)E exp(- C \iii (ir-
1<l<d

1))

1))

Since i had two neighbors or less g, it also has two neighbors or less in 'W. For d = 0, we

have trivially MR(i) My-(i) = M4 (i). Suppose d = 1 : NR (i) = {i1}. Then,

M (i, r) - MwI (i, r) = (1/2) (E [exp(-C\1j, (ii, r - 1))] - E[exp(-C,\jj (ii, r - 1))]

= (1/2)(M\ {i(ii, r - 1) - MAI (ii, r - 1)) (4.9)

Finally, suppose d = 2: N(i) = {ii, i 2}. Then

M (i, r) - MW (i, r) = (1/2)E [exp(-C \ {(ii, r - 1) - C \{ii I(i 2 , r - 1))

- (1/2)E [exp(-C,+\,i (ii, r - 1) - CW+\{i 1} (i2 , r - 1))]
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(1/2)E [exp(-C-\ j(ii,r - 1))(exp(-C\fj ,(i 2 , r - 1)) - exp(-C'\jj 1 I(i 2 , r - 1))

+ (1/2)E [exp(-C \{i'11 (i 2, r - 1))(exp(-C-,\,(ii, r - 1)) - exp(-CW+\fg(ii, r - 1))]

Using the non-negativity of C-, C+ and applying Lemma 10 we obtain

0 < M-J(i, r) - M (i, r) 5 (1/2)(M-\i~\{ I(i 2 , r - 1) - M i\{l}(i2, r - 1))

+ (1/2) (M-\{j} (ii, r - 1)] - M\{i} (ii, r - 1)) (4.10)

Summarizing the three cases we conclude

|MH (i, r) - My-(i, r)| 5 (d/2) max M ,(j,r-1)-M-(r-1) , (4.11)

where the maximum is over subgraphs N' of g and nodes j E 'H with degree less than 2 in

N. The reason for this is that in Equations (4.9) and (4.10); the moments Mg,(j, r - 1)

in the right hand side are always computed in a node j which has lost at least one of

its neighbors (namely, i) in graph N. Since the degree of j was at most 3 in 9 and one

neighbor at least is removed, j has at most two neighbors in N. By considering N n g(e)
in all previous equations, Equation (4.11) implies

IM fg(e (i,r) - M-lg(, (i, r)| (d(e)/2) ma M (j, r - 1) - M-ng (j,r - 1),

(4.12)

where d(E) denotes the number of neighbors of i in N n g(E). By definition of 9(E), d(e)

is a binomial random variables with d trials and probability of success (1 - E2/2), where d

is the deree of i in N. Since d < 2, E[d(e)] 5 2(1 - E2/2). Moreover, this randomness is

independent from the randomness of the random weights of N. Therefore,

E MWflg (i,r) - My-lg((i,r) (1 - E2 /2)maxE M (j, r - 1) - My-g (, r - 1)

(4.13)

where the external expectation is wrt randomness of the first phase of the algorithm (deleted

nodes). Let er_1 the right-hand side of (4.13). By taking the max of the left-hand side

of (4.13) over all (N,j) where j has degree less than or equal to 2 in N, we obtain the

inequality er 5 (1 - E2/2)e,-1. Iterating on r and using 0 < M < 1, this inequality implies
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that er < (1 - e2 /2)r for all r > 0. Finally, it is easy to show using the same techniques

that Equation (4.11) holds for r = 3 as well. This finally implies that for an arbitrary node

i in 9(c),

FE M+( (i,r) - M-)(i, r) < 3/2(1 - C2/2)r

Applying Lemma 10, we conclude for every r

0 E exp(-C (,)(i, r)) - exp(-C+,)(i, r)) : 3/2(1 - E2 /2)r

Recalling (4.8) we have

E[exp(-CgE)(i))] = 1 - (1/2)P(W > C ...,j,_, (ij)) = 1 - (1/2)IP(Cg(E)(i) > 0),
1<l<d

Similar expressions are valid for C( (i, r)),C+ )(i, r)). We obtain

0 < P(C )(i, r) = 0) - P(C-)(i, r) = 0) 3(1 - E2/2)r

Again applying Lemma 10, we obtain

P(Cg(6)(i) = 0 C J()(i, r) > 0) P(C-( (i, r) = 0, Cg (ir) > 0) < 3(1 - e2 /2)r

and

P(Cg(c)(i) > 0, C( (i, 2r) = 0) P(CJ(6 (i, 2r) = 0, C+ )(i, 2r) > 0) < 3(1 - E2/2)2r

This completes the proof of the proposition. E

Concentration argument

We can now complete the proof of Theorem 9. We need to bound IW(I*) - W(I*)I and

W(I* \ I(r, c)) and show that both quantities are small.

Let AVE be the set of nodes in g which are not in g(f). Trivially, IW(I*) - W(II*)|

W(AV). We have E [AV] = e2/2n, and since the nodes were deleted irrespective of their

weights, then E [W(AV)] = E2/2n.

To analyze W(I* \ I(r, c)), observe that by (second part of) Proposition 14, for every
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node iI P(i E I* \I(r,e)) 3(1 - e2/2)r = 61. Thus, E|I* \ I(r,E) 1 6in. In order to

obtain a bound on W(I,* \ I(r, E)) we derive a crude bound on the largest weight of a

subset with cardinality 61n. Fix a constant C and consider the set Vc of all nodes in g(e)

with weights greater than C. We have E [W(Vc)] (C + E[W - CjW > C) exp(-C)n=

(C + 1) exp(-C)n. The remaining nodes have a weight at most C. Therefore,

1E [W (I,* \ I (r, e)]< E [W ( ((I* \ 1 (r, c)) n Vc) u V ] CE [|I,* \ IE(r,,e)|1] + E [Vc]

<C6i1n + (C + 1) exp(-C)n.

We conclude

E[IW(I*) - W(I(r, c))|] E2 /2n + C 1in + (C + 1) exp(-C)n. (4.14)

Now we obtain a lower bound on W(I*). Consider the standard greedy algorithm for

generating an independent set: take arbitrary node, remove neighbors, and repeat. It

is well known and simple to see that this algorithm produces an independent set with

cardinality at least n/4, since the largest degree is at most 3. Since the algorithm ignores

the weights, then also the expected weight of this set is at least n/4. The variance of that

weight is upper bounded by n. By Chebyshev's inequality

IP(W(I*) < n/8) < n = 64/n.
(n/4 - n/8)2

We now summarize the results.

P( W(I(r, E)) W (I(r, ) < 1 - E W(I*) n/8) + IP(W(I*) < n/8)
W(I*) W(I*) -

P( IW( I*) - W(1(r, c)) > E, W(I*) n/8) + 64/nW(I*)
IW(I*) - W(I(r,,c))| > E) + 64/n

n/8

<E2 /2 + 4C(1 - E2/2)r + (C + 1) exp(-C) + 64/n,
- c/8

where we have used Markov's inequality in the last step and 61 = 4(1 - 6)'. Thus, it suffices

to arrange 6 and C so that the first ratio is at most E/2 and assuming, without the loss of

generality, that n > 128/E, we will obtain that the sum is at most c. It is a simple exercise
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to show that by taking r = O(log(1/e)/e 2 ) and C = O(log(1/e)), we obtain the required

result. This completes the proof of Theorem 9. l

4.5 Hardness result

In this section, we prove Theorem 11.

Proof of Theorem 11. The main idea of the proof is to show that the weight of a maximum

weighted independent set is close to the cardinality of a maximum independent set. A

similar proof idea was used in [LV97] for proving the hardness of approximately counting

independent sets in sparse graphs.

Given a graph G with degree bounded by A, let I" denote (any) maximum cardinality

independent set, and let I* denote the unique maximum weight independent set corre-

sponding to i.i.d. weights with exp(1) distribution. We make use of the following result

due to Trevisan [Tre0l].

Theorem 12. There exist A0 and c* such that for all A > A0 the problem of approx-

imating the largest independent set in graphs with degree at most A to within a factor

p = A/2c* ,log A is NP-complete.

Our main technical result is the following proposition. It states that the ratio of the

expected weight of a maximum weight independent set to the cardinality of a maximum

independent set grows as the logarithm of the maximum degree of the graph.

Proposition 15. Suppose A > 2. For every graph G with maximum degree A and n large

enough, we have:

1< E[W(I*)] < 10 log A.
Is -

This in combination with Theorem 12 leads to the desired result.

Proof. Let W(1) < W(2) < ... < W(n) be the ordered weights associated with our graph
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G. Observe that

E[W(I*)] =E[Z Wv]
vEI*

< E[ W(i)]

n-II*I+1
n

E [ W(i)]
n-IIs+1

The exponential distribution implies E[W(j)] = H(n) - H(n - j), where H(k) is the

harmonic sum Z1<i<k 1/i. Thus

E[W(j)] = (H(n) - H(n - j))
j=n-I1sl+1 n-IIsl1+1sjsn

= |IIH(n) - H(j).
js| I P1-1

We use the bound log(k) H(k) -y log(k) + 1, where -y ~ .57 is Euler's constant. Then

E[W(j)] |jI|(H(n) - y) + log(|I|) + 2 - log(j)
j=n-I s1+1 Ij<- I-I

|I|(H(n) - -y) + log(|II|) + 2 - f log(t)dt

" jIIlog(n) + lI|+ log(IIs|) + 2 - IIlog(JI'|) + 11|

(1(II1|+1)(log n + 2 +log(JIIs)/jII)

|Ij|(log(A + 1) + 3) + (log(A + 1) + 3),

where the bound |I| n/(A + 1) (obtained by using the greedy algorithm, see Section

4.4) is used. Again using the bound |Is n/(A + 1), we find that E[W(I*)] < log(A +

1) + 3 + o(1). Since E[W(I*)] E[W(Is)] = 11|, it follows that for all sufficiently large

n, 1 E[I*)] < log(A + 1) + 4. The proposition follows since for all A > 2 we have

log(A + 1) + 4 < 10 log A. E
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4.6 Generalization to phase-type distribution

4.6.1 Mixture of exponentials

In this section we present the proof of Theorem 10. The proof follows two steps. First, we

show how to analyze correlations for the MWIS problem when the distribution of weights

is a mixture of exponentials (as opposed to simply exponential, as in Theorem 9). Then

we show that the correlation decay property holds for the parameters chosen in Theorem 10.

The mixture of A exponential distributions with rates aj, 1 < j < A and equal weights

1/A can be viewed as first randomly generating a rate a with the probability law P(a =

aj) = 1/A and then randomly generating exponentially distributed random variable with

rate aj, conditional on the rate being aj.

For every subgraph R of g, node i in W and j = 1, ... , A, define M3(i) = E[exp(-ajCR(i))],
M ' (i, r) = E[exp(-aC-(i, r))] and M+'3 (i, r) = E[exp(-ajC+ (i, r))], where CjH(i)), C+ (i, r))

and C-(i, r)) are defined as in Section 4.3.

Lemma 12. Fix any subgraph W, node i E W with NR(i) = {i 1 , ... , id}. Then

= 1 

1<k<m

= 1 

1<k<m

= 1 - Em

a E[exp(-
a.- + ak

aj E[exp(-
a + aE

a I E [exp(
aj + ak

E akC\{1 .  (i))]
1<I<d

aE C (i1 , r
1<1<d

1 
.d (i, r

Proof. Let a(i) be the random rate associated with node i. Namely, P(a(i) = aj) = 1/A.

We condition on the event CI<1<d-\{ii1...,i (i1 ) = x. As C-(i) = max(0, Wi - x), we

108

- 1))]

- 1))]

IE[exp (- aj C-(i)) ]

E [exp(-aj C+ (i, r)) ]

E [exp(-aj C (i, r)))



obtain:

E[-aojCW(i)|x] = S E[-ajCh(i)|x,a(i) = ak]
k

i P(Wi ) xxa(ip) = a),)
k

+P(Wi > xla(i') = ak)E[exp(-aj (Wi - x)) JW > X, a(i) = ad]

k
- exp(-akx) + exp(-akx) ak )

= 1+ a exp(-akx)
k aj+ak

Thus,

= 1 -|- E[exp(-
k k

E akCW\i ii.- 1' 1 } (il))]
1<l<d

The other equalities follow identically.

By taking differences, we obtain

M ' (i, r) - M+' (i, r) =

a +ak E[ exp(-akCW\fi.
\i+a 1<1<d

(r - 1))] - E[ H exp(-akC-\ (il, r - 1))]
1<1<d

We now use the identity

H x- H
1<I<r 1<I<r

Xk)(Xl-l)( Hk A)),

which further implies

when max, lxii, lyll < 1. By applying this inequality with x, = exp(-akC+\i., 11 (j, r-
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1<l<r

H
1<l<r

X - H
1<I<r

y :5 1xl -yl
1<l<r

E[-ajC-H(i)]

l+1<k<r1<k<l-1



1)) and y' = exp(-akC-\ . (il, r - 1)), we obtain

M M(i, r) - M' (i, r)

1<k<m a + ak 1<1<d

This implies

M j(ir) - M-H's(ir) (4.15)

Smax M- }(ir - 1) - M+,k.(ii, r - 1) (4.16)
1<k<m a 3 + &k 1<1<d .

For any t > 0 and j, define er,j as follows

er,j= sup M "(i,r) - M 'j(i,r) (4.17)
WCG,icE

By taking maximum on the right- and left- hand side successively, inequality (4.15) implies

er,j Z a3  er-1,k
1<k<m aj + ak

For any t > 0, denote er the vector of (eri, ... , er,m). Denote M the matrix such that for

all (j, k), M,k = .-s-- We finally obtainAaj-,ak

er Mer-1.

Therefore, if Mr converges to zero exponentially fast in each coordinate, then also er
converges exponentially fast to 0. Following the same steps as the proof of Theorem 9,
this will imply that for each node, the error of a decision made in I(r, 0) is exponentially

small in r . Note that < K 1. Recall that aj = pi. Therefore, for each j, k, we have

M,,k K -s----. Define MA to be a A x A matrix defined by Mjj = 1/2, M3 ,k = 1,j > k and

Mj,k = (I/p)k-i, k > j, for all 1 < j, k < A. Since M < MA, it suffices to show that M
converges to zero exponentially fast. Proof of Theorem 10 will thus be completed with the

proof of the following lemma:

Lemma 13. Under the condition p > 25, there exists 6 = 6(p) < 1 such that the absolute
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value of every entry of M is at most 63(p).

Proof. Let e = 1/p. Since elements of M are non-negative, it suffices to exhibit a strictly

positive vector x = x(p) and 0 < 0 = 6(p) < 1 such that M'x < Ox, where M' is transpose

of M. Let x be the vector defined by Xk = Ek/2 1 < k < A. We show that for any j,

(M'x)j (1/2 + 2 )Xj

It is easy to verify that when p > 25, that is e < 1/25, (1/2 + 2 _/) < 1, and the proof

would be complete. Fix 1 < j A. Then,

(M'x)j = ( Mkj Xk + 1/2xj + Mkj Xk
1<k<j-1 j+1<k<A

= ei-kEk/2 + 1/2d /2 + E Ek/2
1<k<j-1 j+1<k<A

Since x= ej/2, we have

( x) (j-k)/2 + 1/2 + > e(k-j)/2

3 1<k<j-1 j+1<k<A

= 1/2 + ek/2 + ek/2 < 1/2 + 21/2
1<k<j-1 1<k<A-j

This completes the proof of the lemma and of the theorem. El

4.6.2 Phase-type distribution

In this section, we generalize the correlation analysis of section 4.6.1 to general phase-type

distributions. It is well known that phase-type distributions are dense in the space of all

distributions, and this approach therefore allows us, in some sense, to study the correlation

decay property for all distributions. Consider a triplet (m, Q, v), where:

" m is a number of states.

e Q is a m x m generator for a continuous-time Markov process for which states

{1, 2, ... , m - 1} are transient and state m is absorbing.

* v is a distribution for the starting state.
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Note that for all u, Q (u, m) = Q (m, u) = Q(m, m) = 0. Let X(t) denote the state of that

Markov process at time t (conditional on X(0) being distributed according to p). Since

m is absorbing, we know that T = inf{t : X(t) = m I X(0) ~- pu} is a finite stopping

time. The distribution of T is called the phase-type distribution with parameters (Q, p).
Furthermore, for any state i, let T = inf{t : X(t) m X(0) = i}, and for any (j, k), let

M[jk] be a m x 1 vector with components M[j,k)(i) A E (exp(QTi)) j,k] . Finally, for every

subgraph W of g and any v, w, define MV '(u) = E (exp (QCN(u))) . Similarly, define

Mu''' (u, r) = E (exp (QC,(u, r)))jk1 and M+,ow(u) = E (exp (QC+(u)) ) 1. We

begin our analysis by the following lemma:

Lemma 14. Let x > 0, and suppose W follows a (Q, p) phase-type distribution. Let

C = max(0, W - x). Then, for any (j, k)

E [(exp (QC))jkl = vT exp(QX)M[,k] (4.18)

Proof. Let X(t) denote the state of the Markov process at time t, with starting state

distributed according to p. We are interested in the state of the process at time x. If

X(x) = m, then the process has reached state m, the corresponding variable W is less than

X, and (W - x)+ = 0. However, if X(x) = i < m, then the remaining time until X reaches

m is T (by definition of Ta). In this case, we have W = x+T, and therefore (W -x)+ - T.

Since Tm = 0, we can conclude in general that (W - x)+ has the same distribution as Tx(x).

Finally, by classical theory of Markov processes, P(X(x) = i I X(0) ~ v) = (VT exp(Qx))i.

Combining all these observations, we obtain:

E [(exp (QC)),kl P(X(x) = i) E [(exp(QTi))jk]

= (vT exp(Qx))iMD,k](i) = VT exp(Qx)M[j,k]

Now, consider any subgraph W, node u E W, with NR(u) = {v 1 ,... , vd}. Then, from

CNuH) = max(0, WU - Z1 ~ dCW\1u,'v,. 1 1 (vi)) and Lemma 14, we obtain
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Lemma 15.

MWk(U) -- vTE exp Q - CH\{' vi V1 .. I(v)) M[j,k]
1<1<d

M-'i'k(u r) - vTE exp Q- C (vi, r - 1)) M[j,k]
1<1<d

MHj,'k UIr - v TE exp Q - C-v'i--- (vi, r - 1 M[j,k]
1<1<d

Proof. The proof is essentially the same as that of Lemma 12. To obtain the result, we

use the tower property by conditioning on the value x of E1I<d C\{u,...,v1_1(v1)), and

invoke Lemma 14.

4.7 Conclusions

In this chapter, we considered a combinatorial problem with hard constraints, and showed

that, once again, the correlation decay property proved to be a sufficient condition for the

existence of local, near-optimal algorithms. Our results highlight interesting and intriguing

connections between the fields of complexity of algorithms for combinatorial optimization

problems and statistical physics, specifically the cavity method and the issues of long-

range independence. For example, in the special case of the MWIS problem, we showed

that the problem admits a PTAS, provided by the CE algorithm, for certain node weight

distribution, even though the maximum cardinality version of the same problem is known to

be non-approximable unless P=NP. It would be interesting to see what weight distributions

are amenable to the approach proposed in this paper. For example, one could consider the

case of Bernoulli weights and see whether the correlation decay property breaks down

precisely when the approximation becomes NP-hard. It might also be useful to inquire

whether random weights assumptions for general decision networks can be substituted

with deterministic weights which have some random-like properties, in a fashion similar

to the study of pseudo-random graphs. This would move our approach even closer to the

worst-case combinatorial optimization setting.
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Chapter 5

Graphical games

5.1 Introduction

Graphical games, introduced by Kearns, Littman and Singh in [KLS01a], are a class of

models used to sparsely represent local interactions between selfish, rational agents. They

are a natural extension of the discrete optimization models used in Chapters 3 and 4 to a

game-theoretic setting. In a graphical game, each agent is assigned her own utility function,

which depends on her own decision and the decisions of a few other players in the network.

Ideally, each agent would choose an action which maximizes her expected utility; however,

as her utility depends on the actions of other agents, in general, she cannot assume that

other players will have aligned objectives. As a result, agents have to make their decisions

while taking into account other agents' potentially conflicting objectives. The traditional

concept used in game theory to predict the resulting outcome is to postulate that the

agents' strategies will result in some kind of equilibrium, where the different forces at play

balance out. The well known concept of Nash equilibrium [Nas50, Nas5l] dictates that the

game will result in a situation where each player cannot increase her utility by changing

her decision, assuming the strategies of other players are fixed to those dictated by the

equilibrium.

One of the main problems behind the assumption that rational players play according to

a Nash equilibrium is that a Nash equilibrium, while guaranteed to exist in a large number

of situations (see for instance [FT91]), is hard to find. At the heart of the computational

issues behind notions of game-theoretic equilibrium are the following two questions: how

complex is the computation of Nash equilibrium, and what are the best algorithms to find
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one? In recent work at the intersection of computer science and economics, great progress

has been made towards answering these questions. It has been shown that even under re-

strictive assumptions, finding a pure Nash equilibrium is NP-hard, while computing a mixed

Nash equilibrium is PPAD-hard (see [CSO2, CSO3, GGS05, DFP06, BFH09, DGP09] for

more details and appendix B for a primer on the PPAD complexity class). Other computa-

tional problems, such as finding a Nash equilibrium satisfying particular constraints [GSO4],
particular optimality conditions [CS08, CSO3, EGG07, GGS05], and the related problem

of finding all pure Nash (or finding a finite algebraic representation of all mixed Nash)

[MM96], were also found to be generally hard to solve.

A potential way to address the complexity of computing a Nash equilibrium is to study

graphical games. Indeed, the latter have generated a lot of interest in the past decade, as

their sparser and more structured representation compared to traditional models has the

potential to help design simpler algorithms for computing equilibria. They also may help

identify nontrivial classes of games for which an equilibrium can be found in polynomial

time. Finally, they build connections with the well-developed field of inference in graphical

models. Following that reasoning, the objective of this chapter is twofold: first, we want to

develop a framework for creating new message-passing schemes to compute Nash equilibria.

Second, we want to identify sufficient conditions for the fast computation of Nash equilibria.

In particular, we want to prove that under a suitably defined correlation decay condition,
simple distributed schemes can compute Nash equilibria in polynomial time for particular

graphical games. The fact that the scheme would be distributed, decentralized, efficient,
and near-optimal would give credence to the notion of Nash equilibrium as a model for

social behavior.

Literature review

The first models for graphical games can be found in [KLS01a] (for a game-theoretic analog

of Markov Random Fields), and in a slightly different fashion, in [VK02, KM03] and [LMOO]

(for a game-theoretic analog of Bayesian networks, more adapted to studying the question

of causality in games). In their original paper [KLS01a], Kearns et al. present a general

framework for graphical games, and introduce TreeProp, a simple message-passing algo-

rithm for computing exact and approximate Nash equilibria in trees (the exact algorithm

runs in exponential time in the worst case, while the approximate algorithm is a FPTAS).

An important feature of their algorithm is that it provides a representation of all Nash
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equilibria (approximate or not). They also propose in [LKSO2] a heuristic modification

of TreeProp aimed at finding one Nash equilibrium in polynomial time for trees (while it

does run in polynomial time, the algorithm, unlike TreeProp, is not guaranteed to find an

equilibrium). On the same topic, Elkind et al. prove in [EGG06] that it is unlikely that

algorithms similar to TreeProp would be able to find an exact Nash equilibrium for trees

(the question of whether this is possible or not nevertheless remains open).

Later, Ortiz and Kearns generalize TreeProp into NashProp, a message-passing heuristic

which tries to compute Nash equilibria for general graphs (in a very similar fashion to the

way Belief Propagation is generalized to arbitrary networks). They prove that NashProp is

a convergent search algorithm which correctly reduces the size of the search space (in the

sense that it only removes bad solutions from the space of solutions, but not necessarily all

of them). Kakade et al. [KKLO03] investigate the computational issues behind the more

general notion of correlated equilibrium in graphical games; they discover a very fruitful

connection with Markov Random Fields. They use this connection to show that under

technical assumptions, the correlated equilibrium can be sparsely represented as well, and

under the assumption that the graph is chordal, prove that the correlated equilibrium can

be computed in polynomial time. Another generalization to TreeProp, this time for games

of imperfect information, is developed in [SSW04].

Other techniques for computing Nash equilibria in graphs are developed in [KM03,

SSW07], where connections between constraint satisfaction problems (CSPs) and graphical

games are used to recast TreeProp as a constraint satisfaction algorithm; in [BSK06], a

version of the classical homotopic algorithm for computing NE is specialized to the structure

of graphical games.

In [DP06], Daskalakis and Papadimitriou shows that the computation of pure Nash

equilibria in graphical games can be recast as a MAP problem in a related Markov Random

field, thus formally establishing a connection between graphical game theory and graphical

models. This connection is used to exhibit a first class of nontrivial graphs for which the

Nash equilibrium can be efficiently computed (if it exists), namely, graphs with bounded

treewidth. A similar result is established again in [JLB07] in the more specific case of

action graphical games (games where payoffs depend only on the set formed by the action

of all the neighbors of a node, and not on which neighbor took which action).

Approximation algorithms for graphical games are considered in a number of papers, a

0.5-approximation algorithm is first exhibited in [DMP09], later improved to 0.38 [DMP07],

and finally to 0.34, the current state of the art, in [TS07].
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Random graphical games have also been studied in a number of papers. Often, these

papers investigate the number of pure Nash equilibria in games with either random graphs

or random payoffs. Rinott and Scarsini look at a complete graph with arbitrary correlations

between payoffs in [RSOO]. Graphical games per se are studied in [DGS07] (the authors

assume a variety of fixed graph topologies and symmetric i.i.d. payoffs), and [CDM08]

(the authors prove more general results and provide bounds on the expected number of

NE for arbitrary graph topology and symmetric, i.i.d. payoffs; they also consider random

Erdos-Renyi graphical games, and show the existence of a double-phase transition for the

existence of a pure Nash equilibrium). In a different direction, Barany, Vempala and

Vetta [BVV07] show that Nash equilibria are in some sense easier to compute in random

games, and provide FPRAS for two player games, in the cases of uniform and Gaussian

distributions.

We conclude this section by mentioning that in more specific settings, Saberi and

Montanari [MSO9] and Chien and Sinclair [CSO9] propose simple iterative algorithms on

graphs and show their convergence to Nash equilibria.

5.2 Game theory, Nash equilibria, and approximate Nash

equilibria

Games, strategies, solutions

A normal form game is defined as a triplet (V, x,< ), where V is a set of agents, X =

{O, 1,... IT - 1} is a finite set of decisions for each player, and <b = (v)uy is a set of

utility or payoff functions, with a given utility function #u : n -4 R for each agent u. For

any x = (X) E x", #U(x) is the utility of agent u when agent v plays xv.

A strategy su for player u is a set of probabilities for each action in x: let su -

(s (1),... , s (T - 1)), such that for each i, su(i) E [0,1] and Ej su(i) = 1, then, su(i)

represents the probability that player u plays action i. Recall that for any finite set x, we

denote by S(x) the set of (discrete) probability distributions on x. Therefore, a strategy

su is formally an element of S(X). A strategy is said to be pure if there exists i such that

su(i) = 1 and su(j) = 0 for j f i. In this case, we abuse notation and write su = i.

A discretized strategy of stepsize 6 is a strategy su such that for all i, su(i) = kS, for

some nonnegative integer k. The set of all 6-discretized strategy is denoted by S(X).

A solution (also called strategy profile) s = (sU)UEf,...,nj is a set consisting of one
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strategy per player - in other words, it is an element of S(X)". A solution is said to be

pure if the strategy is pure for each player. Similarly, a solution is discretized if each

strategy composing it is. For any function f on X", its expected value under solution s is

the expected value of f under the assumption that each player u plays i with probability

su(i), independently of other players.

Es [f (x)) = 1: r s (Xu) f(X1,., Xn)

(xr,---,n)Exn uEV

For any strategy s and player u, we define #u(s) = Es[#u(x)].

For any player u, let s-u be a tuple (sv)vg of strategies for all players but u. We call

such a set a complement solution to player u. #U (su, sS-) represents the utility of player u

when he plays strategy su and the other players follow the strategy s.

Nash equilibrium

A Nash equilibrium (NE) is a solution s such that for each u, and each x E X,

#U (s) #U (X, s-U) (5.1)

Thus, for each player u, if all other players v f u keep their strategy fixed to sv, then u has

no incentive to deviate from strategy su. It is known [FT91] that any normal form game

admits a Nash equilibrium. A pure Nash equilibrium (PNE) is a pure solution x which is

a Nash equilibrium. In other terms, tt is a set of action x = (x 1, ... , XN) E XN such that

for all y E X and u E V,

#(x) :-: #2(9, x-U) (5.2)

Finally, we will need the concept of approximate Nash equilibrium. For any e > 0, an

E-approximate Nash equilibrium is a solution s such that for all u and all y E X,

#U (s) + >- 2 #(Y, S-U) (5.3)

For any v = (e, 6), a 6-discretized solution which is a c-approximate Nash equilibrium will

be called a v-Nash equilibrium. A pair (E, 6) for which an (e, 6)-NE is guaranteed to exist

is called a valid pair. We only consider valid pairs throughout this chapter (an easy check
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for (E, 6) to be a valid pair is given by Proposition 17).

Best reponse function

For any player u, the best response function is the function BR" : S(x)N-1 -± 2X such

that for any s-u E S(x)N-1,

BRs(s-u) = argmax_-#u(x, s-u) (5.4)

In other words, for any x E X, x E BRu(s-u) if and only if #u(x, s-u) #u(y, s-u), for all

y E x. From this, we obtain the following alternative definition of a pure Nash equilibrium:

x is a PNE if and only if for all u, xo E BRu(x-u).

By extension, for any player u, and any complement strategy ss, we will say that a

strategy su belongs to the best response of s-u if and only if for any action y E X, we have

#2(su, sU) 2> #u(Y, S-a)

Note this is simply the same as requiring that Supp(sU) c BRu(su). For each player

U, we can also define an e-approximate best response to a complement strategy s~- by

BR'(s-u) = {su E S(x) | Vy E x, #u(su, s-u) + c > #u(y, s-u)} and conclude that s is an

c-approximate NE if and only if for all u, su E BR'(s-u).

5.3 Graphical games

Basic Model

A graphical game 9 = (V, E, x,< b) is a normal form game, where for each u E V, the

utility function #u is only allowed to depend on the action xu and the actions xN(u) of the

neighbors of u. For any u, let N(u)e = {u} U N(u). Then, #u is a function from X|N(u)I

to R. In particular, this implies that for each player u, the best response function BRu

depends only on the strategies of the neighbors of u.

Given a subset of vertices v = (vI, ... , vk) and strategies s, = (sV1, ... , svk), let 9[v : s]

be the game obtained by fixing the strategies of each node vi E v to si. Mathematically,
we have g[v : s] = (V', E', X, <b), where V' = V \ {vi, .. . , vk}, E' = E n (V' x V'), and for
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any node u with neighbors (w 1 ,..., wd) in V', and any zu, xw,, ... , ze in x, we have

(xU, WI) LWd) '-:: lE~vIU X XW 1 ,... I , I 5 V1,*. SVJ)

(where a variable sv, appears on the expression above only if vi was a neighbor of u in

(V, E))

Note the following important fact: by definition, for any Nash equilibrium in g[v : s] , the

agents v E v do not have to be in best-response to their neighbors, they are excluded from

the game and serve as fixed boundary conditions.

Decomposable graphical games

We will need a further simplifying assumption regarding the structure of graphical games.

A decomposable graphical game is a set (V, E, x,< ), with <D = ((@Pu)uEV, (#u-v) -).(u<-v)EE
For each u E V, ou is a function from x to R, and for each oriented edge u <- v, #u<_, is

a function from x 2 to R. In a decomposable game, the utility function for agent u, given

actions xK(u)e, is

veN(u)

Directed tree game

Our final and simplest model is the directed tree game. A directed tree game is a game

9 = (V, E, o, X, <D), where T = (V, E) is an out-tree with root o, and for each node v in the

the tree, its utility function only depends on the action of that player, and the actions of

its children. This is in contrast with a graphical game on a tree, where the utility function

of each player depends on its action and the action of all its neighbors (in other words,
given an arbitrary orientation of the tree, the utility function depends on a player's action,
the action of its children, but also the action of its parent). For each node v, denote by

IC(v) the set of children of v in T (with orientation given by the root o). Thus, for any

node u, #u is a function of sr(u). Directed tree games have the additional property that

they always admit a pure Nash equilibrium:

Property 1. There exists a pure Nash equilibrium for any directed tree game. Moreover,
if all the payoff functions are injective, the pure Nash equilibrium is unique.

Proof. We prove the result by induction. Clearly, for any directed tree game with a single
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node v and payoff function #v, argmax(#v) is the set of pure Nash equilibria for that game.

Furthermore, if #, is injective, the maximizing decision is unique, and so is the PNE.

Now consider a general directed tree game g = (V, E, o, X, <D), and let (vi, ... , vd) be the

children of o in 9. For each vi, let 9, denote the subgame induced by the subtree rooted

at vi, each g,, is a directed tree game. By the induction hypothesis, each Q, admits a pure

Nash equilibrium which we denote xi, and let x, be the decision of vi in xi. Then, take

any x0 E argmax(q 0(Xxv1 , -. . , XVA)), and let x = (Xo, xx 2, ... , xd). By construction, x

is a pure Nash equilibrium for g. Furthermore, if the payoff functions were injective, xi

was unique for each i, and so was x0 , and we conclude that the pure Nash equilibrium is

unique as well. E

5.4 Computation of Nash equilibrium

5.4.1 Nash cavity function

Our general aim is to identify algorithms for computing approximate Nash equilibria in

graphical games. There are three different problems of interest. The first one consists of

finding any (depending on the problem, mixed, pure, or approximate) Nash equilibrium.

The second consists of finding a Nash equilibrium with particular properties (maximizing

total payoff, maximizing payoff of a single player, maximizing minimal payoff). The third

consists of finding all Nash equilibria (note that traditional notions of computational com-

plexity are harder to apply here, since it is not clear that the set of all Nash equilibrium

can be succinctly represented). Clearly, the first problem is easier than the second, which

is easier than the third; we a priori consider all three. We also wish to analyze spatial

properties of the equilibria, and in particular, we wish to analyze the potential decentral-

ization properties of Nash equilibria. Our main tool to compute Nash equilibria will be the

following functions.

Given a graphical game 9 and node v E 9, let ZG,v be a function from S(X) to R+, such

that Zg,,(sv) > 0 if and only if there exists a Nash equilibrium in 9 in which v plays sv.

We call these functions Nash cavity functions, they are the analog of the cavity functions

of Chapters 1-4. We will focus in particular on two special kinds of Nash cavity functions.

A binary Nash cavity function is a function Zg,v(sv) which is equal to 1 if and only if there

exists a Nash equilibrium in g in which v plays sv, and 0 otherwise. A set (Zv)vev of
Nash cavity functions for each node in 9 is called a set of local Nash cavity functions if and
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only if for each v, argmaxvZv(s,) is composed of a unique element s, and the solution

s = (sv)vEV is Nash equilibrium. Similar definitions for (c, 6)-approximate (resp. pure)

Nash equilibria are denoted Z,' (resp. ZP). Both local and binary cavity functions have

their own interest: binary cavity functions are useful because they are more symmetrical

(i.e., they do not differentiate between any of the Nash equilibrium), and are the most

natural tool to search for the set of all Nash equilibria. Furthermore, as we will explain

later, they are useful for the study of message-passing algorithms for graphical games. This

is because message-passing algorithms that aim to compute binary Nash functions tend to

have strong convergence properties. Another way to look at binary Nash cavity functions

is that they are simply indicator functions of any other Nash cavity function. On the other

hand, knowing local cavity functions can be extremely useful to locally compute Nash

equilibria, as well as finding a Nash equilibrium with particular properties (for instance,
finding a Nash equilibrium which maximizes total welfare).

5.4.2 From Nash Cavity functions to Nash equilibria

In this section, we will motivate further the problem of computing Nash cavity functions,
by relating that problem to the problem of computing Nash equilibria. Given a set w =

(w1, . . , wk), let Zg,w be a function from S(x)k to [0, +oc) such that Zg,w(sw) > 0 if

and only if there exists a Nash equilibrium in 9 where for each i = 1, ... , k, wi plays s,,.

Similarly, let Zg,, be a function from SJ(x)k to [0, +oc) such that Zg,(sw) > 0 if and

only if there exists a v-Nash equilibria in which wi plays seg for all i. Finally, let Z , be

a function from x to [0, oc) such that Zg,w(x.) > 0 if and only if there exists a pure Nash

equilibrium from g in which wi plays xz%. The reason we are interested in these is because

of the following reductions:

e Given an algorithm A which computes Zg,, for any (!, w), there exists an algorithm

A' which outputs an v-Nash equilibrium for any g if there exists one. Conversely,
given an algorithm A' which finds all v-Nash equilibrium for g, there exists an algo-

rithm A which computes some function Zg,, with the desired properties.

* Given an algorithm A which computes Zg,w for any (G, w), there exists an algorithm

A' which outputs a Nash equilibrium for any 9. Conversely, given an algorithm A'

which finds all Nash equilibrium for 9, there exists an algorithm A which computes

some Nash Cavity function Zg,w.
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Note that the reductions above are trivial: a binary Zg,{vi,...,,nI(s) is exactly the the

indicator function 1(s is a Nash equilibrium for 9). Computing Zg,[v1 ,...,v"} is however not

a practical goal, as the very high dimension of the function makes it impossible to store

it, let alone compute it. The hope is that in graphical games, computing Zg ,vl,...,Vk}
for small values of k is sufficient (practically or theoretically) to find at least one Nash

equilibrium. For instance, the main result of [KLS01a] shows that computing the Zg,v(sv)

and Zg[u:su],v(sv) for any u, v is enough to find all Nash equilibria on trees, and that the

Zg[U:S],,(sv) can be computed recursively by a message-passing algorithm (for details on

the algorithm, see section 5.5).

Proposition 16 (upstream phase of TreeProp [KLS01a]). Given a game 9 defined on a

tree, and Nash cavity functions Zg,v(sv) and Zg[us,],v(sv), the following algorithm finds a

Nash equilibrium in polynomial time:

TreeProp (upstream phase): TP [9, Zg,v(sv), Zg[u:su],v(sv)1

INPUT: A graphical game g defined on a tree, and Nash cavities

Zg,V(sv), Zg[u:sU],V(sv)

BEGIN

Choose an arbitrary node u, and choose su such that Zg'u(su) > 0

Letting (v 1, ... , vd) be the neighbors of u, f ind (s . ,svd) such that Zg[u:8s],vj(svj) =

1 for all i, and send a tag s, to vi.

FOR all vertices w u in ! (in order of proximity to u) DO:

Receive a tag sw from the parent node v . Fix decision to sw.

Letting (v, wi, .. .,wd) be the neighbors of w, find (s1 .... , Swd) such that for all

i, Zg[v:v],w,(swj) = 1, and send tag sw, to each i.

END DO. END BEGIN.

OUTPUT: s = (sv)veg such that s is a Nash equilibrium.

The algorithm can be proven to be correct by a simple induction. Extensive numerical

evidence [VK02, OK03, KM03, SSW07] suggests that simpler versions of the search algo-

124



rithm, detailed below, are very efficient at computing Nash equilibria.

NashSearch: NS[G,(V, ... , V), (W1, ... , Wk), Zg[V.. }w0(.), Zg,]
INPUT: A game G, two sets (V,...,Vk) and (W1,...,Wk), where for each i, Vi and

Wi are subsets of V such that VinWi = 0. Assume we are given the function

ZG[V:..,w,(.) for each i, as well as functions Zg,v

BEGIN

Let F = 0
WHILE F $ V DO

Pick a node in u in V \ F such that Ru A {i : u E Vi,Vi C F, Wi \ v C F} is

largest in cardinality. Find sv such that Z,(so) > 0 and such that for all

i E Rv,

Zg[Si;ss ],v(sv, sT\{v}) > 0

OUTPUT: s = (sv)veg is a candidate for Nash equilibrium.

The set F represents the set of all nodes v for which the strategy sv has been fixed

already. The set Rv represents the set of all constraints which are checkable, meaning

that all strategies in the boundary condition Si are fixed, and all strategies the constraint

depends on (Ti) are already fixed, except for the strategy of s,. Intuitively speaking,

the algorithm above simply tries to find a Nash equilibrium by sequentially looking for

strategies s, which satisfy currently checkable constraints (meaning a constraint for which

all strategies but s have already been fixed by the algorithm).

5.4.3 Existence of approximate Nash equilibria

Graphical games are special cases of normal form games, and they therefore admit a Nash

equilibrium. In general, the equilibrium will be mixed, and the corresponding solution will

therefore be continuous. This creates a problem, since both message-passing algorithms

and correlation decay methods are not well suited for continuous problems. The reason we

are interested in e-approximate Nash equilibrium is that there always exists a discretized
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strategy (with 6 small enough) which is an c-Nash equilibrium (cf. the following propo-

sition). This will allow us to view strategies as discrete rather than continuous objects,
which will make the use of graphical models. Suppose x = {0, 1, ... , T - 1} , and let A be

the maximum degree of the graph. The following is an improved version of a lemma from

Kearns [KLS01a]. For any normal form game, denote ||k||I be the maximum absolute

utility over decisions and players: || - maxUXX N kU(X)I.

Proposition 17. For any graphical game (V, E, x, D), and for any e > 0, take an integer

n > 2TA+1 (A + 1) ||I%||K, and let 6 = -. Then there exists a 6-discretized solution s6n

which is a c-approximate NE.

The following proof follows very closely that of Kearns et al., using more general ar-

guments and more careful bounds, and is included for completeness. We first need the

following lemmas, the first of which is new, and the second of which is a generalization to

more than two actions, and has a better dependency on n.

Lemma 16. Let su be a strategy over T actions, and n be some positive integer. Let

6 - > 0. Then, there exists a 6-discretized strategy sb such that for all in

|s (i) - s (i)| < 6

Proof. For any i, let k- = [nsu(i)J and k+ = ~nsu(i)~. For all i,

k-6 < su(i) < x+6 (5.5)

and

kt - k- < 1 (5.6)

By summing over i, we obtain

(Zk-)6 < 1 ( k)6

For any 0 < j T, consider the vector k' defined by kJ (i) = k- if i > j and kt otherwise.

In particular k0 = k~, and kT = k+. Note that Ei k0 (i) < n and EZ kT(i) > n. Since

for any j, we have E> kJ+1(i) - EZ k (i) 1, there exists some j' such that Ei ki'(i) = n.
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This implies that s6 A kj'6 is a 6-discretized strategy, and from Equations (5.5) and (5.6),
we obtain Is, (i) - s6(i)| < 6 for all i. D

Lemma 17. Let x and y be two elements of the m-dimensional simplex, such that supi |xi-

Yi| < 6 . Then, |li xi -HBjyi| <m6

This is proven by simple application of the formula

H xi -fyi= E ( H Xj)(Xi -yi)( F Yj)
i 1<iim 1<j<i-1 i+1 j<k

Lemma 18. Let u be a player with Au neighbors. Consider two solutions s, sb such that

for any v E V and xv E x, we have Isv(x,) - s6(x)I < 6. Then,

#O2(s) - #U(s3 ) < TAu+'(Au + 1) - |1<b1|, .6

Proof. Recalling that N(u)e = Af(u)U{u}, and expanding the expectations over all possible

outcomes, we obtain:

#O2(s) - #U(s 6) = r 8V s(z) - rI s'V(zV) #U (X)
xEXIXr(u>'l (vEN(u))' vENr(u))'

S|#(171 s (U + 1) 6
xE xlA(()'I

< TAu+1 (Au + 1) ||<Djoo 6

where the second inequality is from Lemma 17, and the third inequality comes from count-

ing the number of elements in XI(u)'l. E

Proof of Proposition 17. Since g is a normal form game, there exists a solution s which is

a Nash equilibrium. For each v, consider the 6-discretized strategy sb which approximates

sv as in Lemma 16, and let s6 = (s)veV. Consider an arbitrary player u and action y E x.
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Then,

#u (y, siU) - #s s _U) = #u(y, s§~) - #u(y, s_)

+#u (Y, U) - #(ss S)

+ #5 (su, s-) - #u(si, su_.)

< e/2 + 0 + e/2 < e

The first and third summand are upper bounded by e/2 by application of Lemma 18 and

the choice of 6. The second summand is upper bounded by 0 since s is a NE. E

5.5 Message-passing algorithms for graphical games

In this section, we explore the use of message-passing for graphical games. We first in-

troduce the TreeProp and NashProp algorithms of [KLS01a), the canonical equivalents of

the BP algorithm to the settings of graphical games. Then, in a spirit similar to the pure

Nash-MRF reduction of Daskalakis et al. [DP06], we present a framework further establish-

ing the connection between graphical games and optimization in graphical models. This

allows in principle the derivation of a large number of new algorithms for graphical games.

In particular, we prove that TreeProp is a special case of the cavity algorithm applied to

the graphical model derived from a graphical game on a tree. In addition, we show how

applying the cavity recursion to a general graphical game results in a new heuristic for

finding Nash equilibria.

5.5.1 TreeProp and NashProp

Consider a graphical game g = (V, E, X, <D) such that (V, E) is a tree T. For any two nodes

u, v and strategies su, sv, we are interested in computing binary Nash cavities Zg[s:,.I,,(s,).

By analogy with the original paper, and in order to highlight the connection with a message-

passing paradigm, we will also denote this quantity by Tu _,(su, sr). The main result of

[KLS01a] was the following:

Theorem 13 (Downstream pass of [KLS01a]). Consider an arbitrary node v E V, and let

(u, w1, ... , wd) be the neighbors of v. then, for all (su, sv) E S(X) 2 , Tuv(su, s,) = 1 if and

only if there exists (s.l, SW2, - - - , SWd) E S(X) such that

1. For all i, TV<_Wi(sV IsWJ = 1
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2. sv E BRv(su,sI,...,SWd)

Furthermore, for any node u E V with neighbors {v 1,... ,V }, Zu(su) = 1 if and only if

there exist (sV1 , * * sVd) E S(x) such that

1. For all i, TU<_V (s, svi) = 1

2. su E BRu(su, sv1,..., svd)

Proof. (included for completeness)

Recall that for any tree T, removing an edge (u, v) separates T into T<_u, which contains

u, and u,_v, which contains v. A Nash equilibrium for g[u : su] is composed of a Nash

equilibrium for T<_v[u : su] and a Nash equilibrium for 7v [u : su] (both conditional on

u playing su). Since no payoff function of Tu<v[u : su] depends on any node of T,<_[u : su]

(and vice-versa), there exists a Nash equilibrium in 9[u : su] in which v plays sv if and

only if there exists a Nash equilibrium in Tu,[u : su] in which v plays s,.

Let us assume such an equilibrium exists, and let su, denote this Nash equilibrium,

and let (sw I..., swd) denote the actions of (wi, ... , wd) in this equilibrium. Clearly, by

projecting s1<- on each subtree T<_wi, there exists for each i a Nash equilibrium for each

ITw,,i [v : sv] where wi plays sw,. Therefore, for each i, Tvw, (sr, sws) = 1. Furthermore,

since (sV, sWI, ., swd) are the actions of (v, w 1,..., Wd) in a NE of Tuev[u : su], we obtain

that su E BRv(su, sw,. ., sWd). This prove the "if" part.

For the only if part, we just reverse the argument. If there exist (s, W1,...,sWd)

such that Tv4_v (sv, swi) = 1, then this means there exist Nash equilibria sv<_)% for each

Tw,_v[v : sv]. Combining the equilibria into sz_ = (Sr, SVeI,... ,s V ), we see that

szv is a Nash equilibrium for T<v [u : su], and therefore Tuzv (su, sv) = 1. D

By the exact same arguments, similar results are proven for (e, 6)-approximate and

pure Nash equilibria: for any node v with neighbors {u, w1 ,... , wd}, 6-discretized strate-

gies su, sv, and decisions xu, x, we let T-v (su, sv) A Z [us]v(sv) and Tu,_v(xu, x)

Z[u:xu],v(x).

Theorem 14. For all (su, sv) E S(X)2 , Tuv(su, s) = 1 if and only if there exists

sW, ,w2, - -- , sWd E S(x) such that

1. For all i, T s s) = 1

2. sv E BR (su,sw1,....,sw)
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Theorem 15. For all (s, s,) E S(x)2 , s) = 1 if and only if there exist

sW1,sW2, -- ,sWd E x such that

1. For all i, TlaW (su, sw) = 1

2. sv E BRv(su, sw1,.., sIwj)

Note that while the proof of correctness of Theorem 13, 14 and 15 relies on the fact that

(V, E) was a tree, the update equations themselves do not. It is therefore possible to use

the exact same equations for any graphical game g. The resulting algorithm is called Nash

propagation. By initializing Tuv to be identically 1 for all u, v, Ortiz and Kearns [OK03]

show that Nash Propagation always converges, and that true Nash equilibria of the network

g satisfy the constraints implied by Equations (13), (14) or (15). In that sense, NashProp

is an algorithm which correctly reduces the search space (without necessarily reducing it

to the set of all Nash equilibria). In the next section, we will see how this property is a

special case of Nash search algorithms for binary Nash cavities.

Finally, observe that since TreeProp computes binary Nash cavities, even if one could

show that these cavities can be computed locally (eg., through a correlation decay argu-

ment), it is an intrinsically nonlocal algorithm: in order to compute a Nash equilibrium

from the Nash cavity function, TreeProp needs to use the iterative upstream algorithm

mentioned in section 5.4.2 (this algorithm has the additional undesirable property of dis-

tinguishing a root node u for no apparent reason). We will see how to alleviate this

assumption in the next section, and how to turn TreeProp into a truly local algorithm.

5.5.2 A framework for deriving message-passing algorithms for graphical
games

From now on, we only consider (e, 6)-approximate NE, and will omit this fact from state-

ments and notations in order to avoid repetitions.

In this section, we present a general framework for establishing a connection between in-

ference in graphical models and computation of approximate equilibria in graphical games.

Our method is related to the reduction of Daskalakis et al. [DP06], with two differences:

first, we generalize the approach from pure Nash equilibria to approximate, discretized

Nash equilibria; second, by using the factor graph framework rather than Markov Random

fields, the resulting graphical model is arguably simpler to construct and has fewer edges
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(and is therefore more amenable to the use of message-passing algorithms). Furthermore,
our focus will be on the Nash cavity functions, as opposed to directly optimizing the joint

probability of the corresponding MRF.

The reduction

The reduction is very simple: for any graphical game g = (V, E, <D, X) and any v = (, ),
we build a graphical model N = (V, A, E', <', x) such that:

" A, the set of factor nodes, is a set indexed by the elements of V: A = {a, , v E V}

* For each v E V, (u, av) E E' if and only if (u, v) E E or u = v.

" For each v E V, Oa, is a function of (so, s-v) such that

#av (sV, sv) > 0 if so E BR'(s-v) (5.7)

#a(svs-v) = -K otherwise (5.8)

and K satisfies

K > n max #av (8v, sV)
V'soIs-o

We denote by FW(s) the cost function corresponding to the graphical model N. Note

that given the way (V, A, E') is constructed, (u, av) E E' if and only if (v, a,) E E'. In

particular, no matter what the topology of (V, E) was, (V, A, E') is not a tree (unless

E = 0). Moreover, we can always take K = oc, but it is sometimes desirable to keep K

bounded, in particular to ensure that the cavities on W stay well defined.

From the definition of W, we immediately obtain the following result, which links opti-

mal solutions of W to v-approximate Nash equilibria of g, and is an analogous to Lemmas

3.1 and 3.2 in [DP06).

Theorem 16. For any s E S6(x), F(s) 0 if and only if s is an (e, 6)-approximate Nash

equilibrium for g.

Proof. For any solution s, if there exists a node v for which s, is not an c-best response to

its neighbors, then the total cost includes at least one -K term. The total contributions of

all the other factors being at most (n - 1) maxv,sv,s-v #a (so, s-), we obtain that the total

cost is at most - maxo,se,s #av (so, sV), and is therefore strictly negative. Conversely, it
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is clear that if s is a (e, 6)-approximate Nash equilibrium, then the contribution of each

factor is nonnegative, and therefore the total cost is nonnegative as well. D

This construction allows us to establish another connection between graphical games

and graphical models, namely, we prove that under certain assumptions, Nash cavities are

directly related to the value functions and cavity functions of Chapters 1 and 2.

Property 2. For any graphical game g, and node v E V, the function Zv defined by

Z,(sv) = Jw,,(s,) is a Nash cavity function for g. Moreover, if W admits a unique

maximum, then the set (Zv)vEV forms a set of local Nash cavity functions for g (i.e.,
(argmax Zv(sv))VEv is a Nash Equilibrium). Finally, for any tree graphical game g, the

Nash cavity functions Zg[u:S ]V(sV) = 1J>[U:0U],v(Sv) O are exactly equal to the messages of

the TreeProp and NashProp algorithms.

The proof follows directly from Theorem 16.

Choosing the parameters

Finally, by assigning different values for the feasible assignments to each factor, we obtain

different properties for the optimal solution of N. We propose different models as follows:

Theorem 17.

(a) Suppose that K = +oo, and that for all v E V, complementary strategies s-v, and

E BR&(s ~), we set #av(srsV) = 0. Then, the set of all (e, 6)-approximate Nash

equilibria is exactly the set {s | FR(s) = 0}

(b) Suppose that for all v E V, complementary strategies s, and sv E BR'(s-v), we set

Oav(sv,s-v) = &v(sv,s-v). Then, the optimal solution of W is a (e, 6)-approximate

Nash equilibrium which maximizes the total utility.

(c) Suppose that there exists u E V such that for all v # u, complementary strategies s-v,
and sv E BR (s-,), we set #av(s,,sv) = 0. Furthermore, suppose that for all su

and su E BR (s-u), #au (su, s5U) = #u (su,s-u). Then, the optimal solution of N is a

(e, 6)-approximate Nash equilibrium which maximizes the utility of player u.

(d) Consider a collection of independent random variables Xv,x uniformly distributed over

[0,1] and indexed by player v and decision x E x. Suppose that for all v E V, com-
plementary strategies sv, and sv E BR(s-v), we set #av(sv,-v) = Es[Zx Xv,,j.

Then, the optimal solution of N is unique with probability 1.
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Proof. For the first statement, simply note that N is designed so that FW(s) is equal to

-o if s is not a Nash equilibrium, and 0 otherwise. For the second (resp. third), note

that N is designed so that FR(s) is negative if s is not a Nash equilibrium, and equal to

the total utility (resp. utility of player u) induced by s otherwise. Finally, for the last

statement, note that the joint distribution of the utility of two distinct discretized solution

has a density, and therefore, two distinct discretized solutions have almost surely distinct

payoffs. Since there is only a finite number of discretized solutions, the probability that two

have the same payoff is zero. Therefore, the solution which maximizes FW is unique. El

Note that the uniform distribution assumption of the last point can be replaced by any

nonnegative distribution with a density. In most cases, the approximate Nash equilibrium

which maximizes the total utility (or a given player utility) is unique. This is for instance

the case with probability 1 if the utility functions are random variables and if their distri-

bution has a density. In this case, from Property 2, computing said Nash equilibrium and

computing the local Nash cavity functions is equivalent.

5.5.3 Search algorithms

In the previous section, we showed that computing a Nash equilibrium for g is equivalent to

computing the optimal solution of a suitably defined factor graph. It is therefore natural to

wonder if the message-passing algorithms exposed in Chapters 1 and 2 can be converted into

message-passing algorithms for graphical games. We show that this is partially the case,
as the cavity expansion algorithm, applied to the factor graph of a tree game, is equivalent

to the TreeProp algorithm. Using the cavity expansion algorithm, we also generalize the

TreeProp algorithm into the Nash Cavity Expansion (NCE) algorithm, a message-passing

family of heuristics which aims to compute Nash cavity functions for graphical games.

Furthermore, we show that NCE algorithms, when they are designed to compute binary

Nash cavities, always converge, and always decrease the size of the search space for NE. We

show in particular that the NashProp algorithm of Ortiz and Kearns belongs to the NCE

family. Finally, we show how to modify the TreeProp algorithm so that it computes local

Nash cavities, thus removing the need for the second "upstream" phase of the TreeProp

algorithm.
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TreeProp as a special case of the Cavity Expansion

Take a graphical game g (we do not suppose for now that g is a tree), and consider the

reduction from 9 to N where K is set to +oo, and assignments (sr, sV) in best-response

for factor v have utility Oa, (so, s-) = 0. Note that in the graphical model W, any value

function J.,v(sv) can in fact be considered as the negative of a cavity function (or more

precisely, of a censored cavity function, in the meaning of Chapter 4). Indeed, we have

JWV (sV) = J-,V(sV)- JW, since JW is always zero (as there always exists a Nash equilibrium

for g, we know that the value function of W is 0). It is sometimes more intuitive to think

of a censored cavity JR - JN,v(sv) as a difference Jw,v(f) - Jwv(sv), where f represents the

"free" action, meaning that v can optimize over it.

Now, consider any node v E V with neighbors {wi, ... , wd}, a strategy sv, and suppose

we wish to compute JH,v(sv). In W, v has neighbors {av, a 1, ... , aWd}. Let us apply the

cavity recursion for factor graphs (2.10) in order to compute JN,v(sv). We obtain:

J-,V(sV) JR,V(sV) - JW

= p-v+-av4 (so, M(v,i,so)) + -v<-av (si, M(v,d+1,so))

1<i<d

We obtain that Jw,v(sv) is 0 if and only if each term of the sum is 0 as well. We now

make the following observation: since we chose the factor av to be last in our expansion,
in each of the N(v, 1, sv), the decision of v in factor av is actually fixed to the value f, the

"free" decision variable. Therefore, the corresponding y function is 0 (since there always

exists a Nash equilibrium for any game, even if the decision of v is constrained to be so,

as long as we do not check if v is in best-response to its neighbors). The first d terms of

the sum are therefore zero (this can be verified through careful checking of the definitions).
We are thus left with only one term, pv<-av (sv, MW(v,d+1,so)). In N(v, d + 1, sv) , both the

node v and its factor av has been removed, and in every other factor v was involved in,
the decision of v is fixed to sv. Thus, N(v, d + 1, so) is simply N[v : sv], and checking

definitions, we find that Mw[v:s,] is equal to JH[v:sv],,w(s). Finally, it is easy to check that

p-v<-av (so, Jj[V:sv3,w(sw)) is equal to 0 if and only if there exists s, such that:

" so E BRv(sW,..., sWd)

* Zg[v:s]w(sw) = 1. In other words, there exists a NE in 9[v : sv] in which each player

wi plays s1 ,,
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Note that the above statement is in fact obvious, and that for completely general graph-

ical games, the Cavity Expansion does not provide useful information. However, by

applying Theorem 3 (Chapter 2) to W, we immediately recover that JN[v:s,3w(Sw) =

Zi JW[v:s,,w,(8wi), or in other words that Zg[v:s)],w(sW) 1 if and only if Zg[v:,vw,(sw,) =
1 for all i. This is the mathematical way to say that there exists a NE in 9[v : sv] in which

each player wi plays se2 if and only if for each i, there exists a NE in g[v : sv] in which wi

plays se, (since all players wi are decoupled after conditioning on v). We thus recovered

the TreeProp equations as a special case of the CE algorithm.

Proposition 18. Given a tree graphical game g and the corresponding graphical model W,
the Cavity Expansion algorithm applied to 71 has the same output as the output of TreeProp

for g, and thus computes exactly the Nash cavity functions.

Nash cavity expansion

Let us try to go further. The following lemmas will help design useful (although non-exact)

recursions for computing the Nash cavity functions:

Lemma 19. Consider an arbitrary set T C {1, ... , n} and 0-1 function G, which takes as

input an object (sT, F 1,... , Fk) where:

* ST is a set of strategies for the elements of T: ST = (se)vET

" For each i, F is a function from S6 (X) to {0, 1}

Suppose that for any ST and (F 1,..., Fk), G(sT, F1 ,..., Fk) is equal to one if and only

if there exists a set of strategies s-T = (sv),T such that, after forming a solution s =

(sT,s-T), we have:

" For each v G T, sv E BRv(sv, sV)

* For each i, F(s) = 1

Then, G is an increasing function of F1,..., Fk.

Proof. Consider two sequences (F1 , . . . , Fk) and (F, ... , Fj) with Fi Fj' for all i, and

a set of strategies ST. If G(ST, F1 ,... , Fk) = 0, then clearly G(sT, Fj, ... , Fj) ;> 0 =

G(ST, F1 , .. . , Fk). If G(ST, F1 ,... , Fk) = 1, then there exists s-T such that the conditions

above hold for the sequence F. But then, since Fi F/, the conditions above also hold

for the sequence F', and G(sT, Fj, . . ,Fj) is also equal to 1. L
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Lemma 19 can be used to show that a wide family of message-passing algorithms for

computing binary Nash cavity functions converges. It suffices to think of the F as the set

of all messages, and G as the update rule for one of the messages. Since the update rule is

monotonic and belong to a finite space, using a generalized version of the technique used

by Ortiz and Kearns [OK03], we can show that the messages have to converge.

Nash Cavity Expansion

INPUT: A graphical game g, two sequences (Si,... ,Sk) and (Ti,... ,Tk) of subsets

of V such that T n Si 0 for all i, and a sequence (Ki,...,Kk) of subsets

of {1,...,k}

BEGIN

For each i, initialize Yjo as a function of strategy sets ssi and sT2 , equal to

1 for all values of the input.

While Yr = Yir+1 for all i DO:

For all i DO:

Update Yr(ss.,sT,) as follows:

IF there exists s-(Tiusi) = (sV)vgsSuT, such that:

" For all v E Ti, so E BRv(s)

" For all j E Ki, we have Y-1(ss,,sT) = 1

THEN set YT(Ss, Sr>) = 1

ELSE

set Yr(ss,, s) = 0 OUTPUT The set of converged functions Yi.

Lemma 20. Nash Cavity Expansion always terminates, and at termination, for any NE

s* of G, we have

Yi(s*,s*) = 1
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Proof. Since Y' is identically one, we have Y 1 < YiO for all i. From Lemma 19, we obtain

Yr < Yr-1 for all i and r > 1. Finally, since Yr decreases and has a finite number of

configurations, it converges. For the equality, it suffices to check by induction that all NE

s* are stable through the iterations.

The second part of Lemma 20 ensures that we have effectively reduced the search space

for Nash equilibria, and improves the chances of the NashSearch algorithm to obtain a

valid Nash equilibrium.

The final "step" of designing a good NCE algorithm is to design the clusters and take

advantage of the graphical structure to ensure that, when updating Y, only a few of the

Yj are checked, as well as checking over all strategies s-Tus, can be made on a smaller set.

Consider for instance any node v with neighbors {u, wi, ... , wj}, consider the oriented

edge u <- v and let S(u - v) = {u}, T(u +- v) = {v} and K(u - v) {v <- wi, 1 < i K

d}. Then it is easy to check that by the set of all S(u <- v), T(u <- v), the corresponding

NCE is NashProp.

By slightly augmenting the size of the clusters, one can easily obtain an algorithm which

is strictly stronger than NashProp, yet whose complexity can be manageable. For instance,
consider clusters of size 3: for any node v with neighbors {w 1 , ... , wd}, let S(v, wi, wj) =

{wi, wj}, T(v, wi, wj) = 1, and K(v, wi, wj) be the set of permutations of (v, wi, wj). The

number of iterations of NashProp is upper bounded by IEI1/6 2 , and each iteration takes

O(1/ 6 ) steps, so that the overall compexity of NashProp is O(|E|1/6A+ 2). In constrast,
the 3-cluster algorithm takes at most |E1A63 iterations, and each iteration is O(1/ 6 2A), so

that the overall complexity is O(|E|A1/62A+3).

5.6 Correlation decay and local Nash equilibrium

In this section, we develop a correlation decay analysis for graphical games, in the restrictive

framework of directed tree games. Nevertheless, there are many reasons to believe the

technique we develop for directed tree games can be extended to general tree games, and

perhaps, to a lesser extent, to general games on arbitrary networks. We will assume for

simplicity that lXi = 2. All results can be extended to the case lxi 2 2, with more complex

computations of the coupling and correlation constants.

Consider an arbitrary decomposable, directed tree game g = (V, E, o, X, <D). Recall that
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for any u E V with neighbors {v 1, .. . , Vd }, the utility function of u can be decomposed as:

OU (C) ,1IXVd) = o' (xU) + E w- (U v
veA(u)

Recall that for a directed tree game with random costs with a jointly continuous distri-

bution, there exists a unique pure Nash equilibrium. For any directed tree game W and

node v, we will denote Zwv the action of v in the PNE of W. (We use the same notation

as a Nash cavity function since the Nash cavity function ZH(x) will be nonnegative for a

unique x. As such, there is a clear bijection between a Nash cavity function and an optimal

decision in the PNE). Our probabilistic model is as follows:

Assumption 3. There exist two nonnegative real numbers I1 and 12, and distributions FV

and F0 such that the following two assumptions hold:

* For all u, 74u(0) = Ii@' (0) and @bu(1) = I1 0' (1), where the set

(0'/(0), ' (1))ucv is a set of i.i.d. random variables with common distribution F0.

We also suppose that F0 has a bounded density, and denote ap the bound on the

density.

" For all (u, v) E E, and xu, x, E x, #uv (xu xv) = I2 4'W<v(xu, xv), where the set

(#' xv(Xu,2v))(u,v)eE,(xu,xv)Ex2 is a set of i.i.d. random variables with common dis-

tribution F0.

We denote a4 = E[max(',v, (0, 0)-#'. (1,0), # (0, 1)-#'_v, (1, 1))-min(',v, (0, 0)-

4'neo (I1, 0), 1#'/,_Vi (0, 1) - 4'Wsen,(1, 1))] ;> 0.

For any u E V, let Qu (resp. g') denote the game induced by the subtree rooted at

node u (resp. the game induced by the subtree rooted at u with depth at most r), both

gU and G' are decomposable directed tree games. Let Zu be the optimal decision of u in

gU, and Zu be the optimal decision of u in g (which is also the optimal decision of u in 9,

by Property 1). Our objective is to identify sufficient conditions pertaining to Fp, F0, and

the maximum degree A, to guarantee the following correlation decay condition:

Definition 3. For a nonnegative function p(r) which decreases and converges to 0, we say

that a directed tree game g exhibits the correlation decay property with rate p if

Vu, r > 0, P(Zu # ZU) < p(r) (5.9)
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Correlation decay is said to be exponential if p(r) is of the form Kar, with K > 0 and

a < 1, where K and a do not depend on the network topology or the number of nodes, but

solely on the distribution of the costs.

The condition is of interest because of the following property, which follows from a

trivial application of the union bound.

Property 3. Suppose that the correlation decay condition (5.9) holds. Let xr = (Zur)uev.

Then,

P(xr is a NE) > 1 - |Vjp(r)

Note that Property 3 is not a statement about computation times, since it is very easy

to compute Nash equilibria for directed tree games. Instead, it should be seen as a locality

property of a Nash equilibrium in a random game. In other words, in a directed tree game

which satisfies a correlation decay condition, the decision of an agent in the tree depends

only on a local neighborhood around it - see Section 3.5 in Chapter 3 for a discussion

about decentralization.

5.6.1 Results

We now give our main results.

Theorem 18. Suppose that Assumption 3 holds, and that FO and Fp both are the distri-

bution of uniform random variables over [0,1]. If

A < 1
I1

then the exponential correlation decay property holds, and there exists a local NE for the

directed tree game g.

Theorem 19. Suppose that Assumption 3 holds, and that FO and Fp both are the distri-

bution of standard Gaussian random variables. If

AI 2  <
/2(I + (A - 1)12)

then the exponential correlation decay property holds, and there exists a local NE for the

directed tree game G.
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5.6.2 Branching argument

In this section, we consider the simplest argument to prove the existence of local Nash

equilibria for decomposable graphical games on trees (this particular argument actually

trivially extends to general graphical games). The conditions we obtain will serve as a

benchmark for the more powerful bounds we will obtain by using a more refined correlation

decay analysis. Consider a decomposable game g defined on a tree T, and let u be an

arbitrary node with d neighbors v1, ... , Vd. Let # be the probability that the best reponse

reponse function BR, of node u is always a fixed action x E X, no matter what the input

strategies (sV1 , sv2, ... , Svd) are.

S= IP ( E x, V(sv, . . . , sv) E S(x)d, BRu(sv, ... , sVd) = z) (5.10)

# is called the branching parameter of the system, and provides a simple way of proving

the existence of a local Nash equilibria:

Property 4. Assume A(1 - #3 < 1. Then g exhibits correlation decay with rate p(r)

(A(1 - #))r

Proof. We prove the result by induction. The result is clearly true for r = 0, since for any

agent u, P(ZuO f Zu) 1 < (A(1 - #))O. Suppose now the result is true for a given r, and

let us compute P(Zur+ 1 = Zu). Let (v1 , ... , vd) be the children of u in Zu.

IP(Zr+1 # ZU) = ]P(i s.t. Z. 0 Zvi)IP(Z +1 = Zu I 3i s.t. Z1 , f Zvi)

By induction hypothesis and the union bound, P(i s.t. Z; $ Zvi) K A.. ((1 - #)A)r,
Furthermore, P(Zr+1 0 Zu I i s.t. Z~. 0 Zvi) = 1 - P(Z+ 1 = Zu I 3i s.t. Zr f Zvi)
(1 - 3). Combining both bounds, we obtained the desired result. 1

Proposition 19. Suppose for all u, $u(0) and pu(1) are independent and uniformly dis-

tributed over [0, Ii], and for all (u, v), #u<_v(0, 0), #u<_v(0, 1), #<_(1, 0) and #o (1, 1) are

independent and uniformly distributed over [0, 12]. Then,

(1 -#) A 12
I1
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More generally, under Assumption 3, we have

(1-) A 12

Proof. First, note that we have

# = P(A U B)

with

A = {V(si,..

B = {V(svi,..

,Vd ) E S(x)d, BRu(sv, .... , sVd) = 1

,Vd ) E S(x)d, BR(svl, ... sVd) = 0

It is easy to see that

(5.11)

is a necessary and sufficient condition for

V(sV, I... , Sd) E S(x)d, < D(1, s) > <DU(0, s) (5.12)

to hold. It is clearly necessary, and is sufficient since the payoff of a mixed strategy is

a convex combination of payoffs of pure strategies. The payoffs are decomposable, and

therefore

(5.13)<Du(1,Y) - <D(u(O,Y) = (#'(1) - #)(O)) - (#3 (O)U-V(Oyi) -O#+-i(1,yi))
1<i<d

For any i, let Ci = max(#u<_v, (0, 0) -#O<_v, (1, 0), #u<_, (0, 1) -#O<_v, (1, 1)). From Equation

(5.13), we obtain that (5.11) holds if and only if

(@(1) - @s(0)) ;> Ci
1<i<d

(5.14)

Similarly, let Di = min(#u<-i (0, 0) - #u4, (I1 0), # _-v, (0, 1) - #u4_, (I1 1)). Then, event
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B holds if and only if

(@b (1) - @U (0)) < Di (5.15)
1<i<d

We finally obtain

1 - =P(Ac nBC) = P( E Di < (1) - u(o) < Cj) (5.16)
l<i<d 1<i<d

If for any x, Ou(x) = I1' (x), and the density of 0' (x) is upper bounded by a4,, then the

density of ou (x) is upper bounded by W. It follows that the density of $u (1) - @'(0) is

also upper bounded by , and we obtain

1 - # =E [1El< D<Vu(1)-@u()<z1<i d Ci

=E [ [11<<d Dj<Vu(1)-Vu(O)<C 1<i<d Ci I 0, 5D1
=E E P Di < $u (1) - 7pu(0) < C, C , 1Di

1<i<d 1<i<d i i

E C,- Y Di
1<i<d 1<i<d

<a4 a4AI2
Il

Note that the first inequality comes from the fact that C > Di almost surely. Finally,
for uniform random variables, a4 < 1, and simple algebra (very similar to the calculations

of Section 3.4.2 in Chapter 3) shows that a4 = , < 1 leading to the desired upper

bounds.

Remark: The branching argument, through Property 19, shows that g exhibits cor-

relation decay as soon as A 212 is less than some constant K. This is a weaker result than

the conditions of Theorems 18 and 19, showing that the branching argument alone does

not suffice to show our correlation decay result. Through lengthy computations, one could

in fact show that in the uniform case (and most likely for a vast number of distributions),
(1 - #) is at most K'/&'2 for some constant K', which shows that the best that theii
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branching argument could ever do is a condition of the form A3 /2 l < 1, still weaker than

Theorems 18 and 19. This shows that the correlation decay phenomenon truly is more

than a simple branching argument in a tree.

5.6.3 Dobrushin trick

In this section, we introduce a stronger technique to prove that the correlation decay

property holds. It is based on a simple interpolation trick Dobrushin used in order to

prove his condition for uniqueness of Gibbs distribution (c.f. [Dob68a]), and the resulting

condition we obtain for correlation decay in graphical games is quite similar to a uniqueness

condition for Gibbs fields.

Consider an arbitrary directed tree game W. Recall that for any node u E N with

children (vi, v2,... Ivd), we have

Zu = BRu(Zvl, ZV2 , ... , Zed)

Also, for any r > 0,

Zu = BRu(Zv -1, Zvr2 , .. d

Finally, for all v, Zv is an arbitrary decision in {0, 1}. Introduce er = supv P(Zv #
ZEr). Also, given distributions Fp and F4, for any d > 0, let a,(d) denote the maximum

probability that two vectors of d decisions that are identical in all but one component have

a different best response.

av(d) A sup P(BR(0, y-j) f BR(1, yj)) (5.17)

Note that implicit in the definition of a is the fact that the best response function BR is

sampled according to (IFb, I 2Fe) and corresponds to a node of degree d. Our main result

is the following Lemma:

Lemma 21. er supyvEVd<A(daV(d)) er-1

Proof. Consider any node v E V. Since Zo E {0, 1}, note that P(Zu $ Zu) = E IZu - Zu l.

For any 0 < i < d, define the vector Z,1i] = (Z14],..., Zd[i]), where Zv,[i] = Zv, if

j < i and is equal to Z,-i1 otherwise. Note that Z,[10 = (Z 1I,... , ZVd) and Z,[d] =
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(Z, ., Z 2 , Zd). Using a telescoping sum,

P(Zu f Z1 ) =E IZ - Z|= E |BRu(Zv [d]) - BRu(Zv[0])|

=E )7(BRu(Zv[i]) -BRu(Zv[i - 1]))
1<i<d

E |BRu(Zv[i]) - BRu(Zv[i - 1])| (5.18)
l<i<d

Now, notice that Zv [i] and Z, [i -1] differ only on Z,,: Zi [i] = Zvi, while Zv [i -1] = Zr- 1.
Conditioning on the event {Zo, = Z- 1}, we obtain

E IBRu(Zv[i]) - BRu(Zv [i - 1])| =P(Zi = Z,-) E [IBRu(Zv[i]) - BRu(Zv[i - 1])| Zvi = Z '-]

+P(Zvi/ Zv '1) E [lBRu(Zv[i]) - BRu(Zv[i - 1])l Z, Zv 21]

: P(Zo = Z<r-') 0 + P(Z 7 Zv -7) a(d)

by definition of a. Substituting the last inequality into (5.18), we obtain

P(Zu = Z ) aP(Zv, = Z 2 ) a(d)der-i
1<i<d

Taking the supremum over all nodes u, we obtain the desired result. El

Lemma 21 trivially implies the following

Proposition 20. If for all d < A, a(d)d < 1, then G exhibits correlation decay with rate

p(r) = (supd<A(a(d)d))r

All what remains to do in order to prove Theorems 18 and 19 is to compute desired

upper bounds on a(d)

Proposition 21. Suppose that Assumption 3 holds, and that both Fk and F'P are the

distribution of uniform random variables over [0,1]. Then,

Vd > 0, a(d) 12 (519)
I1

Suppose instead that FO and Fp are the distribution of standard Gaussian random variables.
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Then,

Vd > 0, a(d) < 12 (5.20)
-/2(I12 + (d - 1)122)

Proof. Since @b.(1) and 0,(0) are i.i.d. random variables, and so is the collection of

(#2<-v(XU, xv))(Xz,X)eX2. Therefore, the quantity P(BR(0, y-i) $ BR(1, y-i)) does not

depend on i or y-j, and we take i to be 1 and y-i to be identically zero. Letting Od-1

denote the vector composed of d - 1 zeroes, we therefore have

a(d) = P ({BR(0, Od1) = 0, BR(1, Od_1) = 1} U {BR(0, 0d_1) = 1, BR(1, Od 1) = 0})

The event {BR(0, 0d-1) = 0} is equivalent to

O (0) +#-o, (0, 0) + E #-Vi(o0, 0) > ' +ps(1) + (1 0) + 13 #2-0(1, 0) (5.21)
2<i<d 2<i<d

On the other hand, {BR(0, 1d_1) = 1} is equivalent to

O' (0) + #w-o, (0, 1) + Y #><-3,(0, 0) #b(1) + #s<_Vl (1, 1) + E #W-o (1,1 0) (5.22)
2<i<d 2<i<d

Let X = 4'(1) + E2<i<d #u<-Vi (1, 0) - @U (0) - E 2<i<d #u<-v, (0, 0). Together, Equations

(5.21) and (5.22) imply that the event {BR(0, 0d_1) = 0, BR(1, 0d_1) = 1} is equivalent to:

#U+-vj (0, 1) - #U,_Vj (1, 1) x < #ueeVj (0, 0) - ub-V1 (1, 0) (5.23)

Conversely, event {BR(0, Od1) = 1, BR(1, 0d_1) = 0} is equivalent to

#W-V1 (0, 0) - #24_, (1, 0) X < #U<4,, (0, 1) - V4)U._V (1, 1) (5.24)

Letting Y = #u<vj (0,0) - #u<-v (1,0) and Z = #u<_, (0,1) - @u<v, (1, 1), by combining

Equations (5.23) and (5.24), we finally obtain

a(d) = P(min(Y, Z) X < max(Y, Z)) (5.25)

Let us now upper bound this probability for the case of uniform random variables. The

density of X can be very crudely upper bounded by the density of @u(1) - @u(0) (for
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any independent random variables X and Y, the density of X + Y is upper bounded by

the minimum of the maximum density of X and the maximum density of Y), itself upper

bounded by } Therefore,

a(d) = dPydPzP(min(y, z) X < max(y, z))

dPydPz max(y, z) - min(y, z)

<-E[max(Y, Z) - min(Y, Z)] = 12 2 -1

For normally distributed random variables, X is a zero-mean Gaussian random vari-

able with variance 2(I2 + (d - 1)I). The density of X is therefore upper bounded by

112(I+(-1)~)Using the same method as above, we obtain:

a(d) < 12
/2(I11 (d - 1)I1)

and it is easy to show that for Gaussian variables (see similar computations in Chapter 3,
we also have a4 5 1, giving us the desired result. D

5.7 Conclusions

In this chapter, we switched focus from a classical optimization setting where agents of the

networks are cooperating towards a common goal, to a game-theoretic setting in which our

network is composed of selfish agents locally interacting with each other. Our approach

is twofold. First, following the lead of Daskalakis et al., we established a connection be-

tween optimization in graphical models, and computation of Nash equilibrium in graphical

games. In particular, we found that TreeProp, a tree-optimal message-passing algorithm

for computing Nash in graphical games, was a special case of a family of heuristics derived

from the cavity expansion. We suggested a simple modification of TreeProp which ensures

that a Nash equilibrium can be computed locally and without coordination between agents,
and developed a new family of search heuristics. Next, we developed a notion of correlation

decay for graphical games, although in the restricted setting of directed tree games, and

found sufficient conditions for the correlation decay property to hold. In particular, we

developed a Dobrushin-like trick to prove these conditions, which we demonstrate to be
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stronger than simple coupling techniques. These findings point to several areas for future

research. An important open problem is to generalize the correlation decay proof technique

to general graphs, or at least non-directed tree graphs. While the Dobrushin method we

introduced can be trivially applied to tree graphs, it is hard to compute the correlation

coefficients a(d) in a non-tree setting. Furthermore, we need to extend our development

and analysis of message-passing algorithms. We see at least two directions in which this

is important. The first direction consists of developing algorithmic methods which would

allow us to link a tree-based correlation decay methodology to general graphs. The second

direction consists in identifying specific game-theoretic models for which simple algorithms

such as NashProp would converge to the exact Nash cavity functions.
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Chapter 6

Application of graphical models

and message-passing techniques to

the early diagnosis of Alzheimer's

disease

6.1 Introduction

In this last chapter, we shift our focus from theoretical questions to an applied problem,
and investigate applications of graphical models and message-passing algorithms to the

early diagnosis of Alzheimer's disease (AD). By doing so, we aim to demonstrate the

practical relevance of the mathematical frameworks we considered throughout this thesis.

In particular, the statistical model developed in this chapter is a graphical model, and the

key algorithm used to perform inference will use the Belief Propagation algorithm.

Alzheimer's disease is a neuro-degenerative disease, the most common form of dementia,
the third most expensive disease and the sixth leading cause of death in the United States.

It affects more than 10% of Americans over age 65, nearly 50% of people older than

85, and it is estimated that the prevalence of the disease will triple within the next 50

years [MMS, Mat04]. While no known cure exists for Alzheimer's disease, a number of

medications are believed to delay the symptoms (and perhaps causes) of the disease.

The progression of the disease can be categorized in four different stages. The first
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stage is known as Mild Cognitive Impairment (MCI), and corresponds to a variety of symp-

toms - most commonly amnesia - which do not significantly alter daily life. Between

6% and 25% of people affected with MCI progress to AD every year. The next stages

of Alzheimer's disease (mild and moderate Alzheimer's disease) are characterized by in-

creasing cognitive deficits, decreasing independence, culminating in the patient's complete

dependence on caregivers and a complete deterioration of personality (severe Alzheimer's

disease) [SYA+01].

Early diagnosis of Alzheimer's disease, and in particular diagnosis of MCI, is important

for several reasons [CFC+02a, CFC+02b, SHY05, BJZGA07, BLT+08]:

" A negative diagnostic may ease anxiety over memory loss associated with aging. It

also allows for early treatments of reversible conditions with similar symptoms (such

as thyroidal problems, depression, and nutrition or medication problems).

" Early diagnosis of AD also allows prompt treatment of psychiatric symptoms such

as depression or psychosis, and as such reduces the personal and societal costs of the

disease.

" Current symptoms-delaying medications have a given time frame during which they

are effective. Early diagnosis of MCI helps ensure prescription of these medications

when they are most useful. As research progresses, preventive therapies may be

developed. Early diagnosis raises the chance of treating the disease at a nascent

stage, before the patient suffers permanent brain damage.

" Finally, positive diagnoses give the patient and his family time to inform themselves

about the disease, to make life and financial decisions related to the disease, and to

plan for the future needs and care of the patients. Furthermore, as institutionalization

accounts for a large part of health care costs incurred because of AD, by preserving

patients' independence longer and preparing families for the needs of AD patients,
timely diagnosis further decreases the societal cost of the disease.

Medical diagnosis of Alzheimer's disease is hard, and symptoms are often dismissed

as normal consequences of aging. Diagnosis is usually performed through a combination

of extensive testing and eliminations of other possible causes. Psychological tests such

as mini mental state examinations (MMSE), blood tests, neurological examination, and

increasingly, imaging techniques are used to help diagnose the disease [AA03, SGR07,
PBM+07].
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Our approach is based on medical studies which show that many neurophysiological

diseases (such as Alzheimer's disease) are often associated with abnormalities in neural

synchronicity. It is indeed well known the neural activity of different parts of a healthy

brain is, to some extent, synchronized. In contrast, it has frequently been reported that

these diseases cause brain signals from different brain regions [Mat0l, Jeo04] to become

less coherent. Therefore, developing methods to reliably detect degradations in brain-signal

coherence may help to diagnose such diseases.

A common type of brain activity are so-called electroencephalograms (EEGs); these

are measurements of electrical activity produced by the brain as recorded from electrodes

placed on the scalp [NS06]. In particular, we will focus on the problem of quantifying the

coherence of EEG signals (EEG synchronicity).

In general, quantifying the statistical interdependence between time series is an impor-

tant but challenging problem. Although it is relatively easy to quantify linear dependencies

(through the measure of statistical correlation, for instance), the extension to non-linear

dependencies is far from trivial. This is especially true in the case of EEG anomalies, since

it is important to detect brain diseases as early as possible, and fluctuations in brain signal

coherence are usually very weak at this stage.

Following this last hypothesis, we developed a novel similarity measure for the purpose

of detecting perturbations in EEG synchronicity. We will refer to this measure as "Stochas-

tic Event Synchrony (SES)", since it tries to capture stochastic interactions between certain

events in the time series.

6.2 Basic principle

In this section, we will briefly describe the problem of quantifying similarity of synchronicity

between time series or point processes, and give a high-level, qualitative description of our

algorithm.

6.2.1 Measures of synchronicity

Finding good measures of similarity between data sets is a problem of tremendous prac-

tical importance. Classical mathematical notions of distance between time series often do

not correspond to the qualitative separation the practitioner desires to achieve, and it is

therefore often necessary to carefully design a new metric of separation which takes into
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account knowledge of the problem at hand.

More specifically, being able to measure alignment or synchronicity (which we will

loosely define as the alignment of oscillatory processes) of different time series or point pro-

cesses has been found to be the mathematical problem at the center of many various prac-

tical applications, including oceanography (e.g., oceanic "normal modes" caused by con-

vection [KCOO]), seismography (e.g., free earth oscillations and earth oscillations induced

by earthquakes, hurricanes, and human activity [AFR72]), biochemistry (e.g., oscillatory

events in calcium imaging data are due to oscillations of intracellular calcium [VLM+07]),
proteomics [LNRE05, LKBJ08], speech recognition and stereo vision [LP98, LNRE05], and

lastly, our application of interest, neuroscience.

Finding quantitative measures of synchronicity in brain activity is indeed an important

topic in neuroscience. For instance, it is hotly debated whether the synchronous firing of

neurons plays a role in cognition [VLRMO1]. The synchronous firing paradigm has also

attracted substantial attention in both the experimental [ABMV93] and the theoretical

neuroscience literature [ANWSO3].

6.2.2 Stochastic Event Synchrony

Stochastic event synchrony is a new measure of the interdependence of generic point pro-

cesses, and as such can be used to measure alignment of point processes coming from

various fields. We will, however, solely consider time series that occur in the context of

neuroscience, in particular, electroencephalograms (EEG).

Point process representation of EEG data

A potential problem for using SES with EEG signals is that, as we will see, SES is developed

to be a measure of synchronicity of point processes, while EEG signals are continuous time

series. More generally, we would like to be able to use SES to compare any collection

of time series. In order to do so, we will assume that the data obtained is, potentially

after transformation, sparse in some domain, and therefore well approximated by a point

process representing "bursts" of activity. Sparse representation of data has attracted a lot

of interest recently through the development of compressed sensing.

Returning to the field of computational neuroscience, it is in fact known that EEG

signals are, after appropriate pre-processing, well approximated by point processes: the

time-frequency maps (spectrograms) of EEG signals are indeed sparse, as shown in Fig. 6-1
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(top). They contain discrete regions of strong activity, commonly referred to as oscillatory

events, which are believed to contain much of the information encoded in brain signals.

The brain, which is a network of over a hundred billion neurons, can be considered as a

huge network of coupled oscillators; as a consequence, oscillations, and oscillatory events

in particular, are a key concept in the analysis in brain signal measurements such as EEG.

7.(H

Wec

7.5k

20 W

Figure 6-1: Bump modeling: the original EEG signal (top) is transformed in time-frequency
domain (second from top). Then, a bump model (bottom two figures) is extracted from
the resulting time-frequency map.

Following this intuitive reasoning, we pre-processed our EEG data and approximated

it by a sparse representation, which we describe at a high-level as follows (see appendix C

for full details on the pre-processing used):

1. wavelet transform
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2. normalization of the wavelet coefficients

3. bump modeling of the normalized wavelet representation,

4. aggregation of the resulting bump models in several regions.

We used Morlet wavelets (well-known to be useful in the extraction of oscillatory patters

in EEG data, see [TBBDP96]). The output of the wavelet transform is a time-frequency

signal (cf. Fig. 6-1 (top)), in which clear bursts of activity can be identified.

Therefore one may consider approximating each wavelet transform by a sequence of

(half-ellipsoid) basis functions ("bumps") [VMD+07]. The resulting bump models repre-

sent the most prominent oscillatory activity, and can be represented as points in a multi-

dimensional space, two dimensions for the center of the bump, two for the width and height,
and one for the intensity.

The basic principle behind SES

The idea underlying SES itself is very simple, and consists in matching events from one

point process to events from other processes, as illustrated in Fig. 6-2. The better the

matching, the more similar the original signals are. Let us reiterate that this approach

differs from the classical approaches mentioned earlier in one important point: classi-

cal measures are usually directly computed from the original signals, either in time or

time-frequency domain. In contrast, we determine the similarity based on point processes

extracted from those signals, e.g., oscillatory events in EEG.

Suppose for now that we are only comparing two time series (N = 2; see Fig. 6-3).

Bumps in one time-frequency map may not be present in the other map (non-coincident

or orphan bumps); other bumps are present in both maps (coincident or matched bumps),
but appear at slightly different positions on the maps.

The black lines in Fig. Fig. 6-3 connect the centers of coincident bumps; hence, they

show the offset in position between pairs of matched bumps. Stochastic event synchrony

consists in this case of five parameters that quantify the alignment of two bump models:

" p: fraction of orphan bumps,

e 6t and 6f: average time and frequency offset between matched bumps,

154



f t

/

(a) Time-frequency maps.

/

(b) Bump models.

Figure 6-2: Stochastic event synchrony of three EEG signals
frequency transforms (top), one extracts two-dimensional point
bottom), which are then aligned by the proposed algorithm.

(N = 3);
processes

from their time-

("bump models";

9 st and sf: variance of the time and frequency offset between matched bumps.

It is noteworthy that SES tolerates shifts in time and frequency between both bump models,
and this is also the case for the multivariate formulation of SES, as we will explain later.

We align the two bump models and determine the above parameters by coordinate de-
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(a) Bump models of two EEG channels; the arrows are described in Section 6.3.

25 --

20 --

15

t [s]
(b) matched bumps (p = 27%); the black lines connect the centers of matched bumps.

Figure 6-3: Bump models of two BEG signals (N = 2), one model is depicted in red, the
other in blue; some bumps are matched (bottom), others are orphans.
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scent, iterating between the following two steps (in a fashion similar to the EM algorithm):

1. For given estimates of 6t, 6f, st, and sf, we align the two bump models (cf. Fig. 6-3

(bottom)). In section 6.3, we show that the alignment of two' bump models can be

recast as a maximum weighted matchings problem.

2. Given this alignment, the SES parameters are updated by maximum a posteriori

(MAP) estimation.

The five SES parameters are determined from the resulting alignment by maximum a

posteriori (MAP) estimation. The parameters p and st are the most relevant for the

present study, since they quantify the synchronicity between bump models (and hence, the

original time-frequency maps); low p and st implies that the two time-frequency maps at

hand are well synchronized.

So far, we have described SES for pairs of signals (as in Fig. 6-3). In practice, however,
one often needs to analyze multiple signals simultaneously. For example, EEG is usually

recorded by an array of 21, 64, or 256 electrodes [NS06]. In principle, one may apply SES

to each pair of signals, and average the SES parameters over all those pairs, resulting in

a global measure for synchronicity. This approach, however, may become unwieldy as the

number of pairs grows quadratically with the number of electrodes. This is one reason why

we wish to consider all signals simultaneously. Secondly, multivariate SES also allows us

to investigate interactions between more than two signals; for example, it enables us to

distinguish events that occur in all signals from those that only occur in a subset of signals.

At a high level, multivariate SES is built upon the same idea as bivariate SES (see Fig. 6-

4): events from the different signals are matched with each other. If the point processes

are similar, the matched events form clearly distinguishable clusters as in Fig. 6-4, each

containing at most one event from each point process. Events within each cluster are then

similar and nearly simultaneous (apart from a potential shift in time and/or frequency).

On the other hand, if the point processes are less similar, there may be clusters with fewer

events, and the events within each cluster may be less similar and may occur at substantially

different times. In summary, the similarity of point processes can be characterized by the

average number of events per cluster, and the timing dispersion and similarity of the events

within each cluster.

We will give a full mathematical development of bivariate and multivariate SES in the

next sections.
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Figure 6-4: Five bump models on top of each other (N = 5), each color corresponds to one
model; the dashed boxes indicate clusters, the dashed ellipses correspond to exemplars;
cluster 1, 5 and 6 contain bumps from all 5 models, cluster 2, 4 and 7 contains bumps from
3, 4, and 2 models respectively, and cluster 3 consists of a single bump.
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6.3 A class of statistical model measuring similarity between

two point processes

6.3.1 Bivariate SES

In this section, we will focus on the interdependence of two multi-dimensional point pro-

cesses (the special case of two one-dimensional point processes in R benefits from a great

deal of additional structure, and is thoroughly studied in [DVWC09]). As a concrete ex-

ample, we will consider multi-dimensional point processes in the time-frequency domain,

in particular bump models; the proposed algorithm, however, is not restricted to that

particular situation, and will be clearly generalizable to any pair of k-dimensional point

processes.

Suppose that we are given a pair of continuous signals, e.g., EEG signals recorded from

two different channels, each converted into a bump model. Each bump is described by

five parameters: time X, frequency F, width AX, height AF, and amplitude W. The

resulting bump models Y = ((X, F1, AX, AF, W1 ), .. . , (Xn, Fn, AXn, AFn, Wn)) and

'= ((Xi, Fj, AX(, AF, W), ... , (X',, F',, AX',, AF',, W',)) represent the most promi-

nent oscillatory activity in the signals at hand. In the statistical model we expose in this

section, the heights, widths, and amplitude actually will actually play no role, and Y and

Y' could be considered two-dimensional point process (bumps positions). However, for the

application of early diagnosis of AD, we will use a slight variation of this model which

does involve these variables; for the sake of consistency, we will keep widths, heights and

amplitudes as data points of our processes.

The development of SES was derived from the following observation (see Fig. 6-3):

bumps in one time-frequency map may not be present in the other map ("non-coincident"

or orphan bumps); other bumps are present in both maps ("coincident or matched"), but

appear at slightly different positions on the maps. The black lines in Fig. 6-3 connect

the centers of matched bumps, and hence, visualize the offsets between pairs of matched

bumps.

Statistical model

SES is intrinsically a measure of statistical similarity. We assume that the data at hand

was generated from a statistical model whose parameters need to be inferred from MAP
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Figure 6-5: Generative model

estimation (given appropriate priors). These parameters form the set of SES metrics. Let

us now describe the generative model of the observed data. We assume that there exists

a hidden, unobserved point process V - the mother process - from which we obtain

by perturbation the two observed processes Y and Y'. We make the following statistical

assumptions about V, Y and Y':

The mother process V has f events, where f is a geometric random variable with

intensity A:

P(f) = (1 - A)Ae. (6.1)

Let V = ((X 1 ,F 1, AX 1.AF 1, W1),... I(X,F 1 , AX.AF1, W)) and let us first suppose

that the experiment goes over a period of time of length To, i.e., for any bump, X E [0, Tol-
The centers (z4, fk) are uniformly distributed over a period of time [0, To] and a frequency

band [fmin, fma]; and as a consequence:

~ 1
P(z, fle) = , (6.2)

TO(fma - fmin)

The amplitudes and widths (in time and frequency) of the bumps V are independently

and identically distributed according to distributions pw, pAx and pAf respectively (once
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again, let us mention that because of the perturbation model used, these distributions do

not affect the resulting SES metrics).
From the mother bump process V, the bump processes Y and Y' are then generated

as follows:

1. Two identical copies Z and Z' of bump model V are made.

2. For every i = 1, ... , E, the bumps Z2 and Z are randomly removed. More precisely,

each bump is deleted with probability Pd, independently of the other bumps. The

results of the deletions are the two point processes Z and Z'.

3. The heights Afk, widths Azxk, and amplitudes wk of all remaining bumps in Z and

Z' are randomly perturbed; more precisely, they are redrawn independently from the

priors pw, pAx and pAf respectively.

4. The bump sequence Y (resp. Y') is obtained by shifting the position of the bumps

Zk and Z' by (- 2, -jL) and (2, AL), and by adding small random perturbations to

the position of the bumps Yk and Y' (cf. Fig. 6-5), modeled as zero-mean Gaussian

random vectors with diagonal covariance matrix (st, sf):

Joint distribution of the hidden process and observed samples

Let us detail some notations. Let n uble be the number of double deletions, i.e., the

number of bumps of V for which the copies in Z and Z' both were deleted. Let ndel (resp.

ndei) be the number of deleted bumps of Z (resp. Z') for which the other bump was not

deleted (single deletions). By definition,

nldel+fn+udel = £, (6.3)

and likewise:

ndel + n' + nduble = , (6.4)

and the total number of deleted bumps is therefore given by:

ntot ndel + +2 double = 2f -n - /, (6.5)

Note that the bump parameters w, Ax, Af are generated independently for each bump,
and therefore, they do not provide any information about bump matchings. As a result,
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the SES inference algorithm (see Section 6.3.2) does not depend on the specific choice of

the priors pw, PAX and pAf. Without loss of generality, we will adopt improper priors

Pw = PAx = PAf 1.

Since there is a total of 2f bumps and 2f - n - n' deleted bumps, and since each bump

is deleted with i.i.d. probability Pd, the joint probability of V, Z, Z' and f is:

P(v, z, z', 1) = P(f)P(v I f)P(z, z' v, f) (6.6)

= )n+n'p-n-n. (6.7)( -) fTolu(ma - fmin) d

By introducing parameters # and -y:

# d = (6.8)
tot f ax fmin)

S=(1 - A) , d)nn (6.9)
Pd

we can rewrite (6.7) as:

P(v, z, z', l) = Y #2. (6.10)

Finally, we use the relation 2f = n + n' + ndel + n' el + 2nduble to obtain:

P(v, z, z', 1) = dy'l2l ble/nacd-i-nlel, (6.11)

with y' = O #n+n'.

Before we can write down the complete model (including Y and Y'), we need to in-

troduce some more notation. We attach to each bump Y a binary variable Bi, which

indicates whether Y has a matching bump in Y'. In particular, Y is equal to one iff the

corresponding bump in Y' was deleted. Along the same lines, we associate variables B,

to each bump Yi'. Furthermore, we introduce binary variables Ckk' for any k and k': the

variables Ckk, are equal to one if bumps Yk and Y', are matched (i.e., copies of the same

bump in V), and 0 otherwise. Since each bump Yk in Y is either unmatched (i.e., Bk = 1)

162



or corresponds to exactly one bump in Y', the following matching constraints hold:

n'

Vk, c, C + bk = 1 (6.12)
k' 1

n

Vk', kk + b'k (6.13)
k=1

Note also that EZk bk = n',, and Ek, b', = nde1. Therefore, the exponent n',,i + nde of #
in Equation (6.11) can be written in terms of B and B':

ndel + ndel bk + E bk'- (6.14)
k k'

Finally, let ik be the index of the bump in V that generated Yk, and similarly, i', stands

for the index of the bump in V that generated Yk',. Note that if Ckkk 1, we have ik = '.
Finally, let 6 = (6t, St, 6f, sf), and let P(6) denote the prior on 9, on which we will later

elaborate. In this representation, the joint probability of the entire set of random variables

(f, V, Y, Y', C, C', B, B') of the global statistical model is given by:

P(t, v, y, y', c, c', b, b', 9) cX P(9) #3Zk bk+Ek, b,

n ni ckk'

- 1 ( P~xk -- Xz, ;-612, stn2) 'i , - t1, t/ 2 , st|2

HH (P(fk - fzik; f2S/2 k' - -Iik;6f s/)k=1 k'=1n nn ckk'HH (pfk -- fik -6f /, sf ()[bk - fik; f /], s(6.15k=1 k'=1
bk

pl (Xk - Z ik; -- 6t12, st|2) p fk - fik ; -- 6f /2, sf |2
k

p k -. V ; ,-&1t2, st|2) p fk, -|f|,; -6f /, sf b',

n/ n n n'

- (6[bk' + 1:Ckk' - 1] f 6bk + Y ckk'1]) (6.15)
k'=1 k=1 k=1 k'=1

where p(x, m, s) represents the density of a normal variable with mean m and standard

deviation s at point x, and 6 the dirac function equal to 1 if its argument is zero, and 0
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otherwise. The variables Ckk', Bk, and Bk, are binary. The first four factors in (6.15) cor-

respond to bump pairs (Yk, Y',) (with Ckk' = 1); the next four factors correspond to orphan

bumps (Bk = 1 and B , = 1). The last two factors in (6.15) encode the constraints (6.12).

Our objective is to estimate the parameters 0 and alignment variables C and C', since

those quantities contain information about the similarity of Y and Y'. We integrate over the

structural variables V, B and B', and after some straightforward algebraic manipulations,
we eventually obtain:

n n' kk,

Pp(y, y', c, 0) o rfl (z(X'l - Xk; 6t, st)p(fk, - fA; 3f, sfg-2
k=1 k'=1

-P(0)I(c), (6.16)

where I(c) is equal to 1 if and only if for all k, Ek' ckk' E {0, 1} and for all k', Ek ckk' E
{O, 1}. The factor I(c) encodes the partial matching constraints (6.12).

We now comment on the priors of the parameters 0 = (6 t, st, 6 f, sf). Since we usually

we do not need to encode prior information about 6t and of, we may choose improper

priors p(6 t) = 1 = p(6 f). On the other hand, one may have prior knowledge about st and

sf. For example, in the case of spontaneous EEG (see Section 6.5), we a priori expect st

to be larger than sf: we expect bumps to appear at about the same frequency in both

time-frequency maps, but there might be a delay of up to about 500ms between them.

Indeed, frequency shifts can only be caused by non-linear transformations, which are hard

to justify from a physiological perspective; on the other hand, signals may propagate over

large distances in the brain, and therefore, time shifts arises quite naturally. For example,
bump nr. 1 in Fig. 6-3(a) (t = 10.7s) should then be paired with bump nr. 3 (t = 10.9s)
and not with nr. 2 (t = 10.8s), since the former is much closer in frequency than the latter.

One may encode such prior information by means of conjugate priors for st and s, i.e.,
scaled inverse chi-square distributions:

t (so,tvt/2)t/2 e-vtso,t/2st (6.17)pS) F(vt/2) 1+v,/2
St

- (sojfvf /2)vf/2 e-vso,f/2sfP(sf) - F(vf /2) 1 (6.18)
f

where vt and Vf are the degrees of freedom and 1(x) is the Gamma function. In the
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example of spontaneous EEG, the widths so,t and so,f are chosen such that so,t > So,f,
since sf is expected to be smaller than st.

6.3.2 Statistical inference for bivariate SES

As previously described, our two point processes Y and Y' will intuitively be considered as

synchronous when they are identical with a few exceptions: (i) Small time and frequency

shifts 6t and 6f; (ii) small deviations in the event occurence times ("event timing jitter")

and in the frequencies; (iii) a few event insertions and/or deletions. More precisely, the

event timing jitter should be significantly smaller than the average inter-event time, and

the number of deletions and insertions should only comprise a small fraction of the total

number of events.

Armed with the stochastic model of section 6.3.1, we are now in a position to rigorously

define Stochastic Event Synchrony (SES): given two point processes y, and y', SES is defined

as the triplet (6t, st, p), where:

p = = d k- bk +. (6.19)
n + n' n + n'

The estimates (2, 9) are obtained by maximum a posteriori (MAP) estimation:

(e, 0) = argmaxeO P(c, 0|y, y'). (6.20)

Since for given y and y', the factor p(c, 0|y, y') is proportional to p(y, y', c, 0) (cf. (6.16)),
we can rewrite (6.20) as:

(8, 9) = argmaxcO P(y, y', c, 6). (6.21)

The MAP estimate (6.21) is hard to compute, and we obtain it by coordinate descent:

first, the parameters 0 are initialized (e.g., 3(0) 0 = 6(o) ,() = so,t, and s(0) = so,f),6t _ f ' St 8 f ~)
then one alternates the following two update rules until convergence (or until the available

time has elapsed):

= argmaxe P(y, y', c, $)) (6.22)

= argmaxo P(y, y', (+l), 0). (6.23)
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Update of the continuous parameters

The estimate 5(+1 (6.23) is available in closed-form; indeed, it is easily verified that the

point estimates 5t(+) andi+1) are the (sample) mean of the timing and frequency offset

respectively, computed over all pairs of matched events:

+ -( i11) (i+1) _ ki+1)) (6.24)

k=1

E +A 1 (( + _i+)) (6.25)
k=1

where n(i+) is the number of coincident bump pairs in iteration i + 1, and where we used

the shorthand notation ±+) and ^'(i) to represent the times of kth matched pair during
k(i+1) (i+1)

the ith iteration of the algorithm, and likewise for f(±) and f' Using the conjugate

priors, the estimates s i+1) and s(+1) are obtained as:

(i+1 t,samplevot + n0+1) +(6.26)
vt + n(+1) + 2

f+1 o n+ fapie (6.27)
vf + n0+1) + 2 '

where vt, vf, so,t and so,f are the parameters of the conjugate priors (6.17) and (6.18),
and st,sample and sf,sample are the (sample) variance of the timing and frequency offset

respectively, computed over all pairs of coincident events.

Update of the discrete parameters

We now address the update (6.22), i.e., finding the optimal bivariate alignment C for given

values P0) of the parameters 6. In the following, we will show that it is equivalent to a

standard problem in combinatorial optimization, i.e., max-weight bipartite matching (see,
e.g., [Ger95, Pul, BSS08, BBCZ08, HJ07, San07, San07]).

First, note that the maximization (6.22) is equivalent to:

a(+' = argmaxe log p(y, y', c, 0)). (6.28)
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Using (6.16), we can rewrite (6.28) as:

argmaxe Wkk' ckk' + log I(c), (6.29)
kk'

with

Wkk' k - Xk - )2 (f' f + 2 logo3
2st 2 sf

- 1/2 log 27rst - 1/2 log 2 7rsf, (6.30)

where the weights wkkf can be positive or negative. Bump pairs (Yk, Yk,) with large weights

wkk' are likely to be matched to each other. The closer the bumps (Y, Yk,) on the time-

frequency plan, the larger their weight Wkk'. From the definition of / (6.8), we can also

see that the weights increase as the deletion probability Pd decreases. Indeed, if Pd is large,
a significant number of bumps from Y cannot be matched with bumps from Y' and vice

versa. In addition, the weights Wkk, are large if the concentration of bumps on the time-

frequency plane, i.e., the ratio A/S with S = To(fmax - fm in), is small. Indeed, if there are

few bumps in each model (per square unit) and a bump Y of Y happens to be close to a

bump Y , of Y', they are most likely a matched bump pair.

The term log(I(c)), on the other hand, is equal to 0 if and only if for all k and k',
both Zk' Ckk, and Ek Ckk, are either zero or one (binary), and is equal to -oc otherwise

(infeasible solution). Therefore, the maximization problem is equivalent to finding:

max E Wkk'Ckk'
k,k'

s.t.

Vk, E Ckk E {0, 1}
k'

Vk',3 Ckk'e {0, 1}. (6.31)
k

This is exactly the formulation of the imperfect, bipartite, maximum-weight matching

(IBMWM) problem. Note that if wkk' < 0, since it is an imperfect matching problem,
we know that ckk1 = 0 in the optimal solution, and the corresponding variable can be

removed. In practice, this will make the matching problem very sparse, since for a given
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bump, only neighboring bumps (in the time-frequency plane) will have positive weight and

be considered for matching. As a result, this observation naturally transforms our general

optimization problem into an optimization problem in a graphical model, where two bumps

k and k' are neighbors if and only if they are from a different process and WkkI > 0.

The IBMWM problem can be solved (in polynomial time) by at least three different

methods:

" by the Edmond-Karp [Edm69] or auction algorithm [TB89],

" by using the tight LP relaxation to the integer programming formulation of bipartite

max-weight matching [Ger95, Pul],

" by applying the max-product algorithm [BSS08, BBCZ08, HJ07, San07].

The Edmond-Karp [Edm69] and auction algorithm [TB89] both result in the optimum

solution of (6.29). The same holds for the linear programming relaxation approach and

the max-product algorithm as long as the optimum solution is unique. If the latter is not

unique, the linear programming relaxation method may result in non-integer solutions and

the max-product algorithm may not converge, as shown in [San07]. Note that in many

practical problems, the optimum matching (6.29) is unique with probability one. This is

in particular the case for the bump models described above. Each method was tested, and

the message-passing paradigm was found to be very efficient for several reasons:

" It does not require a complex, potentially commercial LP solver.

" It is a very simple iterative algorithm, and takes natural advantage of the sparsity of

the underlying bipartite graph. For example, note that if wkkf < 0, the edge between

bumps Yk and Y' can be removed.

" It is very modular: simple modifications of the model often translate into simple mod-

ifications of the iterative equations. Convergence and optimality may not be guar-

anteed anymore, but in practice the algorithm has very good performance, whereas

specialized combinatorial algorithms may fail.

Finally, we note that the SES inference algorithm is guaranteed to converge. Indeed, this

algorithm is an instance of coordinate descent, which is guaranteed to converge if the

iterated conditional maximizations have unique solutions. This holds for the SES inference

algorithm: the conditional maximization (6.23) has unique solutions (cf. (6.24)), and the
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same also holds for (6.22) in most practical applications, in particular, the application

considered in Section 6.5.

We close this section by mentioning that not all statistical assumptions made were

necessary. As a matter of fact, the only assumptions necessary for tractability are the geo-

metric number of mother bumps, and the uniform (or at least piecewise uniform) location

of these bumps. All other assumptions can be generalized; in particular, the assumption

of Gaussian deviations, while convenient and plausible, is not required.

6.4 Comparing multiple point processes at the same time

We now consider the extension of SES from pairs of point processes to collections of point

processes. We will do so in a fully general framework. Consider N > 2 signals Si, ... , SN

from which we extract point processes Y1,..., YN by some method. Each point process

Y is a list of ni points (or events) in a given multi-dimensional set S C RM, i.e., Y

{Y, 1,Yi, 2 ,... ,Yi,n} with Yi,k E S for k = 1,... , ni and i = 1... N. By analogy with

the previous section, we will call events "bumps". Intuitively speaking, N bump models

Y may be considered well-synchronized if bumps appear in all models (or almost all)

simultaneously, potentially with some small offset in time and frequency. In other words, if

one overlays N bump models (cf. Fig. 6-4 with N = 5), bumps naturally appear in clusters

that contain precisely one bump from all (or almost all) bump models. In the example

of Fig. 6-4, clusters 1, 5 and 6 contain bumps from all five models Y, clusters 2, 4 and

7 contains bumps from 3, 4, and 2 models respectively, and cluster 3 consists of a single

bump.

6.4.1 Principle of multivariate SES

This intuitive concept of similarity may be translated into a generative stochastic model

in the same spirit as section 6.3. In that model, the N point processes Y are treated as

independent noisy observations of a hidden "mother" process X. An observed sequence Y

is obtained from X by the following three-step procedure:

1. COPY: generate a copy of the mother bump model X,

2. DELETION: delete some of the copied mother bumps,

169



3. PERTURBATION: slightly alter the position and shape of the remaining mother

bump copies, resulting in the bump model Yi.

As a result, each sequence Y consists of "noisy" copies of a non-empty subset of mother

bumps. The point processes Y may be considered well-synchronized if there are only a

few deletions (cf. Step 2) and if the bumps of Y are "close" to the corresponding mother

bumps (cf. Step 3). One way to determine the synchronicity of given point processes Y

is to first reconstruct the hidden mother process X, and to next determine the number of

deletions and the average distance between the point processes Y and the mother process

X. When comparing more than two point processes, inferring the mother process is a high-

dimensional estimation problem, as the underlying probability distribution typically has a

large number of local extrema. Therefore, we will use an alternative procedure: we will

assume that each cluster contains one identical copy of a mother bump; the other bumps

in that cluster are noisy copies of that mother bump. The identical copy, referred to as

exemplar, plays the role of "center" or "representative" of each cluster (see Fig. 6-4). We

will assume, without loss of generality, that there is one exemplar for each mother bump.

Note that under this assumption, the mother process X is equal to the list of all exemplars.

The exemplar-based formulation amounts to the following inference problem: given the

point processes Y (with i = 1, 2,... , N), we need to identify the bumps that are exemplars

and those that are noisy copies of some exemplar, with the constraint that an exemplar and

its noisy copies all stem from different point processes. Obviously, this inference problem

also has potentially many locally optimal solutions. However, in contrast to the original

(continuous) inference problem, we can in practice find the global optimum by message-

passing and integer programming (see sections 6.4.3). This model choice is related to

exemplar-based approaches for clustering such as affinity propagation [FD07, FD06] and

the convex clustering algorithm of [LG07]. As we will see, the exemplar-based formulation

will allows us to extend the bivariate similarity to multivariate similarity measures.

6.4.2 Stochastic model for multivariate SES

We now describe the underlying stochastic model in more detail. The mother process

X = {X 1,..., XM}, which is the source of all points in Y1, Y2, .. . YN, is modeled as follows:

* The number M of points in X is geometrically distributed with parameter A vol(S):

P(M) = (1 - A vol(S))(A vol(S)) M , (6.32)
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where vol(S) is the multi-dimensional volume of set S.

* Each point zm for m = 1,... ,M is uniformly distributed in S:

P(z|M) = vol(S)-M. (6.33)

With those two choices, the prior of the mother process X equals:

P(z, M) = P(M)P(z|IM) = (1 - A vol(S))AM . (6.34)

For convenience we will in the following use the short-hand notation p(z) for p(z, M), i.e.,
we will not explicitly mention the dependency on M.

From the mother process X, the point processes Y for i = 1, . . . , N are generated

according to the following steps:

" For each event Xm in the mother process X, one of the point processes Y with

i E {1, ... , N} is chosen at random, denoted by Yi(m), and a copy of mother event Xm
is created in Yi(m); this identical copy is referred to as "exemplar". For convenience,
we will adopt a uniform prior P(i(m) = i) = 1/N for i = 1,... )N. Next, for each

event Xm in the mother process X (with m = 1, ... , M), a "noisy" copy may be

created in the point processes Y with j # i(m), at most one copy per point process

Yj; the latter restriction ensures that all events in a cluster come from different point

processes (cf. Fig. 6-4). The noisy copies are modeled as follows.

* The number Cm of copies is modeled by a prior P(cm|6c), parameterized by 6c, which

in turn has a prior p(Oc). As a priori for Cm, we take a binomial distribution with

N - 1 trials and probability of success ps, and adopt the beta distribution B(x, A)

as a conjugate prior for ps Note that a binomial prior Bi(p,) for Cm is equivalent

to deleting copies of the mother events independently with probability 1 - p, (cf.

DELETION step). In appendix D, we show how to extend the binomial distribution

to a multinomial distribution Mult(-y) with parameter -y and conjugate Dirichlet Di(()

respectively.

" Conditional on the number Cm of copies, the copies are attributed uniformly at

random to other signals Y, with the constraints of at most one copy per signal

and j N i(m); since there are (I-1) possible attributions Am c {1,... , i(m) -



1,i(m) + 1, ... , N} with |AmI = cm, the probability mass of an attribution Am is

p(Amcm) = (N-1)-1

* The process of generating a noisy copy Yi,r from a mother bump Xm is described by

a conditional distribution px(xi,r zm;0'), parameterized by some vector 6 that may

differ for each point process Yi.

In the case of bump models (cf. Fig. 6-4), a simple mechanism to generate copies is

to slightly shift the mother bump center while the other mother bump parameters

(width, height, and amplitude) are drawn from some prior distribution, independently

for each copy. The latter four bump parameters could be taken into account in a

less trivial way, but we omit such extensions here, as they are not required for the

application at hand. The center offset may be modeled as a bivariate Gaussian

random variable with mean vector (6t,i, 6 f,i) and diagonal non-isotropic covariance

matrix V = diag(st,i, sf,i), and hence, O = (6 t,i, 3 f,i, s,i, sf,i). For simplicity, we

will assume that st,i = st and sf,i = sf for all i. We adopt the improper priors

p(6t,i) = 1 = p(3 f,i) for 6 t,i and 6 f,i respectively, and conjugate priors for st and sf,
i.e., scaled inverse chi-square distributions:

P(st) = (sotvt/2)ut/2 evtot/ 28t (6.35)

= (sof vf /2)vf/2 eVfso,f1/2sf

P(sf IF(vf/2) s1+vj/2 '
f

where vt and Vf are the degrees of freedom, and so,t and so,f are the width of the

scaled inverse chi-square distributions, and F(x) is the Gamma function.

Joint distribution

For later convenience, we will introduce some more notation. The exemplar associated to

the mother event Xm is denoted by Yi(m),k(m), it is the event k(m) in point process Yi(m).

We denote the set of pairs (i(m), k(m)) by Iex. A noisy copy of Xm is denoted by Yj(m),j(m),
it is the event f(m) in point process Yj(m) with j(m) E Am. We denote the set of all pairs

(j(m), f(m)) associated to im by 2'm, and furthermore define IcOPY = Topy U ... u AMy
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and I = Iex u IcoPY. In this notation, the overall probabilistic model may be written as:

M

IP(X, X,, ) = p(Oc)p(Ox)(1 - A vol(S))A-/N-M 17 6(Xi(m),k(m) - zm)
m=1

-C pNm|c 1) P p(zi~jzm I 6 X). (6.37)
(ij)E PY

Given point processes X = (Y, . . . , YN), we wish to infer I and 6, since those variables

contain information about similarity. In particular, we are interested in the timing jitter

st and the number of events per cluster; the latter is given by cm + 1, i.e., there is one

exemplar in each cluster and cm noisy copies. The smaller the timing jitter st and the

more events contained in each cluster, the more similar the point processes are considered

to be. The parameter st is part of 6, and the variables cm can be directly extracted from

I. (Note: in section 6.5, we will denote the average number of events per cluster by nc.)

6.4.3 Statistical inference for multivariate SES

By considering the minus logarithm of the above stochastic model:

- logp(X, XI, ) = -logp(Oc) - logp(O6) - log(1 - Avol(S)) - Mlog -
N

M 1)

- log 6(Xi(m),k(m) -- zm) -- log p(CM|Xc) c
m=1

- S log px(Xi,jICm, Ox). (6.38)
(i,j) clog If1O

The term - log px(xi,j 1zm, Ox) may be interpreted as a measure of the distance between

xi,j and zm; note that this measure is not necessarily symmetric or non-negative. If px is

a Gaussian distribution (as in the case of bump models), this measure is nothing but the

Euclidean distance. In other applications, non-Euclidean distances may be more appro-

priate. The proposed algorithm can straightforwardly handle arbitrary distance measures.

Let us now consider specific choices for p(cmlOc); if the latter is a binomial distribution

with N - 1 trials and probability of success ps, and the prior for p, is a beta distribution
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B(i, A), we have:

A
- log p(X, X, I, 0) - log B(ps; r,, A) - log p(6,) - log(1 - A vol(S)) - M log

M

- log6(xi(m),k(m) zm) - M(N - 1) log 6
m=1

- (N-1-cm)log 'P1

PSm=1
-z

(ij)EcOPY

which we can rewrite as:

- log p(,X, I. 0) = - log B(p,; K, A) - log p(Ox) - log(1 - A vol(S)) + aM

M M

- log (Xi(m),k(m) - ziim) + # (N - 1 - cm)
m=1 m=1

- log px(Xi,jIzm, OX),
(ij) EIcpy

a = -log - (N - 1) logp, and # =log .)

A reasonable approach to infer (1, 0) is maximum a posteriori (MAP) estimation:

(1, 6) = argmax(_,1 ) log p(X, X, I, 0). (6.42)

As there exists no closed form expression for (6.42), we need to resort to numerical methods.

A simple technique to try to find (6.42) is coordinate descent: We first choose initial values
(O), and then perform the following updates for r > 1 until convergence:

Z(r) = argmaxi logp(X, X, ,(-1))
$(r) = argmaxo log p(Z, X, i(r), 0).

(6.43)

(6.44)

First we consider the update (6.43), which we will carry out by integer programming. Next,
we treat the update (6.44) of the parameters 0.
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Integer Program

We write the update (6.43) as an integer program, i.e., a discrete optimization problem

with linear objective function and linear (equality and inequality) constraints. To this end,
we introduce the following variables:

* Si,k is a binary variable equal to one iff the k-th event of Y is an exemplar.

* Ci,k,i',k' is a binary variable equal to one iff the k-th event of Y is copy of exemplar

Yi,kt .

* Mi,il,kl is a binary variable equal to one iff no event of Y is a copy of exemplar Y2 ,k'.

Note that ci,k,i,k' = 0 for all k and k' and mi,i,k; = 1 for all i and k', since Y must not

contain a noisy copy of a mother event Xm if it already contains the exemplar associated

to Xm.

First assume that the parameters Ox and ps of the binomial prior are constant. By

substituting (6.40) in (6.43), it can be easily shown that with the above choice of variables

b, the conditional maximization (6.43) may be cast as the following integer program in b:

min &(r-1) E Si,k + (r-1) mi,i',k'
b

i,15ki i,i'fAi,1<k'<ig

- Ci,k,i',k' logp2(Xi,klXi',k'; $(r-1)) + C (6.45)

ii',1<k<ni,1<k'<ng

subject to

Vi, k, E ci,k,i',k + si,k = 1 (6.46)
i',k'

Vi, i' $ i, k', mi,i,k' si,,kt - ci,k,i',k', (6.47)

where C is an irrelevant constant, and

&(r-1) -log A (N - 1) log f(,r1) (6.48)
N

(r-1)
r-1) log r-1) (6.49)

(1 -fps
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The sum Ei,k bi,k in (6.45) is equal to the number of exemplars M; therefore, the first

term in (6.45) assigns a cost a to each exemplar. The second term in (6.45) associates a

cost # to every deletion. Indeed, if (i', k') is not an exemplar, Ei bi,i',k' is equal to zero;

if (i', k') is the exemplar associated to the m-th mother event, Ei bi,ir,k' = (N - 1 - cm),
which is the number of deletions in the m-th cluster. The third term assigns a cost to each

copy (i, k) of exemplar (i', k'), proportional to the "distance" - log px between both events.

The constraint (6.46) ensures that each event is either an exemplar or a copy of an

exemplar. The constraint (6.47), combined with the fact that bi,i',k' is a binary variable,
encodes the following:

" ci,k,i',kl can only be equal to one if Si',k' is equal to one, i.e., (i, k) can be a copy of

(i', k') iff (i', k') is an exemplar,

" at most one event in Y can be a copy of (i', k'),

* mi,i',k' is one iff (i', k') is an exemplar but has no copy in Yi.

The discrete optimization problem (6.45)-(6.47) is an integer program in b, since the ob-

jective function (6.45) and constraints (6.46) (6.47) are linear in the variables b.

This optimization problem may be solved by max-product message-passing on a sparse

graph of p(X, X, I, 0) (6.37), along the lines of the algorithm of [DVW+09]. We imple-

mented this approach for the problem described in Section 6.5, and found that Belief

Propagation converged in about 70% of instances. In those instances it converged, it found

a solution which was always optimal or near-optimal. In the remaining 30% of instances,
BP either diverged, or converged to an extremely poor solution (choosing every single

bump to be an exemplar). Visual inspection of the instances for which BP converged and

those where BP did not surprisingly did not reveal any qualitative differences between the

bump profiles. As a result, we opted for the following scheme for optimization: we first run

the BP algorithm, inspect the resulting solution, and, if poor, use an integer programming

algorithm (CPLEX) to solve the instance. CPLEX was in fact found to solve most of these

instances fairly fast.

6.5 Application to early diagnosis of Alzheimer's disease

In this last section, we investigate the applicability of both bivariate and multivariate SES

to the problem of early prediction of Alzheimer's disease.
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6.5.1 EEG Data

The EEG data used here has been analyzed in previous studies concerning early diagnosis

of Alzheimer's disease (AD) [CNM+07, CSM+05, HSK+03, MAY+02, VCD+05]. They

consist of rest, eyes-closed EEG data recorded from 21 sites on the scalp based on the 10-

20 system (see Fig. C-2)). The sampling frequency f, was 200Hz, which allowed for signals

of up to 100Hz to be represented. As in [CNM+07, CSM+05, HSK+03, MAY+02, VCD+05],
the signals were band-pass filtered between 4Hz and 30Hz using a third-order Butterworth

filter.

The subjects comprised two study groups. The first consisted of a group of 25 patients

who had complained of memory problems. These subjects were then diagnosed as suffering

from mild cognitive impairment (MCI) and subsequently developed mild AD. The criteria

for inclusion into the MCI group were a mini mental state exam (MMSE) score = 24,
though the average score in the MCI group was 26 (SD of 1.8). The other group was a

control set consisting of 56 age-matched, healthy subjects who had no memory or other

cognitive impairments. The average MMSE of this control group was 28.5 (SD of 1.6). The

ages of the two groups were 71.9 ± 10.2 and 71.7 ± 8.3, respectively. Finally, it should be

noted that the MMSE scores of the MCI subjects studied here are quite high compared to

a number of other studies. For example, in [HSK+03] the inclusion criterion was MMSE

= 20, with a mean value of 23.7, while in [CNM+07], the criterion was MMSE = 22 (the

mean value was not provided); thus, the disparity in cognitive ability between the MCI and

control subjects was comparatively small, making the present classification task relatively

difficult.

All recording sessions were conducted with the subjects in an awake but resting state

with eyes closed.

After recording, the EEG data was carefully inspected. Indeed, EEG recordings are

prone to a variety of artifacts, for example due to electronic smog, head movements, and

muscular activity. The EEG data has been investigated independently by three EEG

experts. EEG segments were considered as artifact-free if all three experts agreed. We

retained in our analysis only those subjects whose EEG recordings contained at least 20s

of artifact-free data. Based on this requirement, the number of subjects in the two groups

described above was further reduced to 22 and 38, respectively.

We first applied bivariate SES to the 10 region pairs, and averaged the results over

those pairs, resulting in one set of (average) bivariate-SES parameters per subject. Then,
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we applied multivariate SES to the 5 regions simultaneously. Besides SES, we applied a

large variety of classical approaches, as we will explain in the following section.

Methods and Statistics

We studied the following statistics, directly extracted from the bump model:

" AT: average width of bumps,

" AF: average height of bumps,

" F: average frequency of bumps.

From bivariate SES, we obtained the following statistics:

*2D: jte
SstD: timing jitter variance,

" p: fraction of unmatched ("orphan") bumps.

From multidimensional SES, we obtained:

" st: variance in time domain ("time jitter"),

* pi: the fraction of clusters with i bumps (for each i = 1, . . . , N),

" nc: average number of bumps per cluster.

We also consider the linear combination he of all parameters p' that optimally separates

both subject groups, obtained through leave-one-out cross-validation.

Besides SES, we applied a variety of classical synchronicity measures to the EEG data:

" Pearson cross-correlation coefficient [NS06],

" mean-square and phase coherence [NS06],

" Granger causality [KL05], in particular, Granger coherence, partial coherence, partial

directed coherence (PDC), directed transfer function (DTF), full-frequency directed

transfer function (ffDTF), and direct directed transfer function (dDTF),

e the recently proposed corr-entropy coefficient and wave-entropy coefficient [XBCP06],
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" phase synchronicity indices derived from the Hilbert transform and time-frequency

maps [LRMV99], global field synchronization (GFS) [KLS+O1b], evolution map ap-

proach (EMA), and the instantaneous period approach (IPA) [RCB+02],

" mutual information, both in time domain (I) [KSG04] and time-frequency domain

(Iw) [Avi05],

" information-theoretic divergence measures [Avi05] (in time-frequency domain), in

particular, Kullback-Leibler, Renyi, Jensen-Shannon, and Jensen-Renyi divergence,

" state space based measures, in particular, the non-linear interdependence indices Nk,

Sk, Hk [QQKKG02], and the S-estimator [CKIDF05].

For the sake of brevity, we will not expand on the technical details here (see [DVMC] for

a study based on those measures), and instead only discuss the results.

6.5.2 Results and Discussion

The main results are summarized in Table 6.1, which shows the sensitivity of the syn-

chronicity measures for diagnosing MCI. More precisely, it contains p-values obtained by

the Mann-Whitney test. This test indicates whether the statistics at hand, in particular,
the synchronicity measures, take different values for the two subject populations: low p-

values indicate large difference in the medians of the two populations. Note that while a

low p-value does not necessarily imply small classification error, it is a necessary condition

for good classification, and an indicator of the classification strength. We therefore use

p-values as a way to identify potentially good features for classification; we investigate

classification in the following section.

Note that the p-values in Table 6.1 need to be statistically corrected. Indeed, since we

consider many different measures simultaneously, it is likely that a few of those measures

have small p-values due to stochastic fluctuations and not due to systematic difference

between MCI patients and control subjects. Therefore, the p-values need to be corrected

accordingly, for example, by means of Bonferroni [Bon36] or Sidak [Sid67] post-correction

or step-down methods [Hoc88, Hol79]. In the most conservative Bonferroni post-correction,
the p-values of Table 6.1 need to be multiplied by the number of synchronicity measures. As

was shown in [DVMC], however, many synchronicity measures are strongly correlated: one

can distinguish a small number of families of synchronicity measures. As a consequence,
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Measure Cross-correlation Coherence Phase Coherence Corr-entropy Wave-entropy
p-value 0.028* 0.060 0.72 0.27 0.012*I

References [NS06] [XBCP06]
Measure Granger coherence Partial Coherence PDC DTF ffDTF dDTF
p-value 0.15 0.16 0.60 0.34 0.0012**T 0.030*

References [KL05]

Measure Kullback-Leibler Renyi Jensen-Shannon Jensen-Renyi Iw I
p-value 0.072 0.076 0.084 0.12 0.080 0.060

References [AviO5] [KSG04]

Measure N k H S-estimator 

p-value 0.032* 0.29 0.090 0.33

References [QQKKG02] [CKIDF05]

Measure Hilbert Phase Wavelet Phase Evolution Map Instantaneous Period GFS
p-value 0.15 0.082 0.072 0.020* 0.51

References [LRMV99] [RCB402] [KLS01b]

Bump AT AF F

p-value 2.3.104**t 0.023* 2.10-3**
2D)-SES s8 2tp

p-value 0.12 0.00041**t
multi-SES p! p.2 p _ __ _ _

p-value 0.016* 2.9 1 0 4**t 0.089 0.59 0.0054*
multi-SES ne he sI

p-value 1.10-s**t 1.10-4**t 0.46

Table 6.1: Sensitivity of average synchronicity for early prediction of AD (p-values for
Mann-Whitney test; * and ** indicate p < 0.05 and p < 0.005 respectively; t indicates
p-values that remain significant after post-correction).

a less conservative but arguably more reasonable approach is to multiply the p-values of

Table 6.1 by the number of synchronicity measure families (four or five). The p-values

in Table 6.1 that remain significant after post-correction are indicated by t, i.e., wave-

entropy (p = 0.012), full-frequency DTF (0.0012), p (p = 0.00041), p2 (p = 2.9 10-4), ne

(p = 110-3), and AT (p = 2.3 10-4). Note that even after the most conservative Bonferroni

post-correction, the most discriminative SES measures (p, p , ne) remain significant. In

figures D-1 and D-2, we show boxplots for these synchronicity measures.

The strongest observed effect is a significantly higher degree of non-correlated activ-

ity in MCI patients, more specifically, a high number of non-coincident, non-synchronous

oscillatory events, as quantified by the statistics (p, p , nc); in MCI patients, there is an

increase in the fraction p of orphan events (see Fig. D-1(d)), a decrease in the average

number of bumps per cluster (see Fig. D-1(e)), an increase in the number of clusters with

1 and 2 bumps (see Fig. D-2(a) and D-2(b)), and a decrease in the number of clusters of

size 4 and 5 (see Fig. D-2(d) and D-2(e)). Interestingly, we did not observe a significant

effect on the timing jitter st of the coincident events (see Fig. D-1(c)). In other words, MCI

seems to be associated with a significant increase of non-coincident background activity,
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while the coincident activity remains well synchronized. Of course, those observations beg

for a physiological explanation. However, this clearly goes beyond the scope of the present

study.

We verified that the SES measures are not correlated with other synchronicity measures

(Pearson r, p > 0.10). In contrast to the classical measures, SES quantifies the synchronicity

of oscillatory events instead of more conventional amplitude or phase synchronicity, and

therefore provides complementary information about EEG synchronicity.

6.5.3 Classification

Combining the SES parameters (p, pc, he, nc) with ffDTF or bump parameters (e.g.,
AT) yields good classification of MCI vs. control patients; some examples are shown

in figures 6-6, 6-7, and 6-8. The classification error, determined by leave-one-out cross

validation, was found to be between 10% and 15%. These results are promising, as

there are currently very few methods to reliably predict the onset of MCI. The meth-

ods of [CNM+07, CSM+05, HSK+03, MAY+02, VCD+05], applied to the same EEG data,
have significantly higher classification errors and use vastly more features and thus are

more prone to over-fitting. In addition, the classical synchronicity measures lead to poorer

classification performance. For instance, the classical measure ffDTF, which is the most

discriminative classical synchronicity measure for the EEG data at hand, leads to classifi-

cation errors of about 30% (obtained through leave-one-out cross validation). Combining

ffDTF with SES parameters leads to vastly better results; this can be explained by the fact

that SES provides complementary information about synchronicity.

However, the classification errors we obtained are admittedly still too large to allow

us to predict AD reliably. To this end, we would need to combine those synchronicity

measures with complementary features, perhaps from different modalities such as PET,
MRI, or biochemical indicators. We wish to point out, however, that in the data set at

hand, patients did not carry out any specific task. In addition, we considered recordings

of 20s, which is very short. It is plausible that the sensitivity of EEG synchronicity could

be further improved by increasing the length of the recordings and by recording the EEG

before, during, and after patients carry out specific tasks, e.g., working memory tasks. As

such, the separation shown in Fig. 6-6, 6-7, and 6-8 might be applied to screen a population

for MCI, since it requires only an EEG recording system. The latter is a relatively simple

and low-cost technology, at present available in most hospitals. Moreover, the iterative



algorithms developed to perform inference are simple and have very efficient running time,
so that no additional equipment would be needed to analyze the EEG data.

6.6 Conclusions

In this chapter, we introduced an alternative method to quantify the similarity of time se-

ries, referred to as stochastic event synchrony (SES). As a first step, the algorithm extracts

events from the time series, resulting in point processes. These events are then optimally

aligned. The better the alignment, the more similar the original time series are considered

to be.

Obviously, it is important to extract meaningful events from the given time series. In

the case of spike trains, individual spikes can naturally be considered as events. Note that

for certain neurons, however, it may actually be more appropriate to define a burst of

spikes as a single event. As we have shown, for spontaneous EEG signals, it is natural to

consider oscillatory events from the time-frequency representation. However, even in this

case there might be interesting alternatives, depending on the nature of the EEG.

Since the proposed similarity measure does not take the entire time series into account

but focuses exclusively on certain events, it provides complementary information about

synchronicity. Therefore, we believe that it may prove to be useful to blend our similar-

ity measure with classical measures such as the Pearson correlation coefficient, Granger

causality, or phase synchronicity indices.

We have applied the proposed approach to the problem of diagnosing Alzheimer's dis-

ease (AD) at an early stage based on electroencephalograms (EEG). We demonstrated that

the SES measures are sensitive to AD-induced perturbations in EEG synchronicity; they

allow an improvement of early diagnosis of AD, by combining those novel measures with

classical measures.

The SES model is very modular and can be extended in several different ways. For

instance, in the present study, the SES parameters are assumed to be constant in time.

By considering time-varying parameters, we are able to study neural response to timed

stimuli.
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Figure 6-6: Combining bivariate-SES parameter p
crosses: MCI.
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Figure 6-7:
Combination of two features; (top, middle) multivariate-SES parameters combined with
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Appendix A

Glossary

Chapter 1

g = (V, E. <b, X)

y
T

Jg, (x)
Bg;,v(x)

Bg.v,

pU -v(X, B)

Decision network
Set of interaction and potential functions
Decision set: {0, 1, ... , T - 1}
Number of actions
Value function of network g

Value function when nodes in v are constrained to take decisions x
Bonus of node v when taking action x
Bonus of node v when taking action 1, when O {, 1} (Bg,v E R
in this case)
partial cavity function sent v to u : maxy(<Du,v(x, y) + B(y)) -

max. (<D 1,v (0, y) + B(y))

Chapter 2

g \ {u} Subnetwork induced by removal of node a
g(7, j, X) jth modified subnetwork of g with action x, see section 2.2.2, Equa-

tion (2.1)
B(g, u, r) Approximation of the cavity function Bg,u with depth r, see section

2.3
C Boundary condition for the Cavity Expansion algorithm
CE[g, u, r, x, C] Cavity Expansion for network g, node u, depth r, action x, see

section 2.3.1
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p(r)
Kc, ac

g

xvu
U

d

gi

ni
C, C'
B(r)
B'(r)
Bj(r - 1)

Bj(r - 1)
B(r - 1)
B'(r - 1)

Bjk(r - 2)

B (r-2)

Bj(r - 2)

B (r - 2)

pu+-vj (z)
I

1 Vj +-Vj k (Z)

uv
(J2
u'v

04)vXu,vYu,v

E-,, (x, x')
Eu'V(x, z')
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Chapter 3

Correlation decay rate
Exponential correlation decay parameters
Bound on the density of the cavities
argmaxXCE[g, v, r, x]
node of interest
neighbors of u
number of neighbors of u
g(u, j, 1)
neighbors of vy in g (i.e., neighbors of vj in 9, except for u)
number of neighbors of 7vj in g
Two different boundary conditions
CE[g, u, r, 1, C]
CE[g, u, r, 1, C']
CE[Gj, vy, r - 1, 1, C]
CE[gg , vy, r - 1, 1, C']
(Bj(r - 1))1j d
(Bj(r - 1))1 jd
CE[gj (vy, k, 1), og, r - 2, 1, C]

CE[9j (vj , k, 1), vy , r - 2,1,7 C']
(Bjk(r - 2))1skrnj
(B', - 2))15k5nj(Bk(r-

pa<_-vi(1, Z)

Nu,o(1, 0) - <Du,v(1, 1), for any (u, v)
<Ds,,(0, 0) - <Du,v(0, 1), for any (u, v)
<D, (1, 1) - <Dsv(0, 1), for any ('i, v)

u),v + uv2

<b2,o - <I I = <DU,, (1, 1) - <DU,v (1, 0) - <D%,v (0, 1) + <Du,v (0, 0)
<bV (0) - <D (1)
{x > Do + max(<DI, <b_)} n {x' 8<Dv + max(<D _v, <I&e)}

{x 8<D + min(v), n {x' < <Do + min(<D _v, 2<eV)}
Euc (x, x') U E-o(x, x')



Chapter 4

W(U) Weight of set U: EUE TV
M(g) Size |g| of graph 9
a(g) Independence number of 9
I8 Maximum Independent set of 9
I* Maximum Weighted Independent Set of g
I Independent set output by the PTAS

(Og(i) Censored cavity of node i in graph 9 = max(Bg(g), 0)
C-(i, r) Lower bound and approximation of Cg(i) resulting from the CE of

depth r
C(i(i, r) Upper bound and approximation of Cg(i) resulting from the CE of

depth r
' 2/2

I(r, ) {i I Cg-,) (i, r) > 0}
9(e) Graph obtained from the original graph g after removing each node

with probability c'
Subgraph of 9(e)

I0* MWIS of 9(e)

Mg (i) E[exp(-Cg (i))]

Mg1- (i, t) E [exp(-Cg-(i, t))]

Mig , t) E [exp(-Cg (i, t))]

MN~i) E[exp(-aj C-H))

M11 (i, t) E [exp(-aj C (i, t))]

M]'wl,j t) E [exp(-aj Cw' (i, t))]
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Chapter 5

188

(bs UPayoff function of player u
sU Strategy of player u
s Strategy profile

S(x) strategies over the set x
BR Best-response function

<u+-v contribution of agent v to the payoff of agent u, in a decomposable
game

Zgy Nash cavity function
'R Graphical model derived from graphical game 9
ZV In a directed tree game, optimal decision of agent v

# branching rate
av (d) Dobrushin coefficient for correlation decay in graphical games of

degree d



Chapter 6

p Fraction of orphan bumps
it Average time offset
6f Average frequency offset
ot Variance of the time offset
of Variance of the frequency offset
I Number of bumps in the mother process
A Exponential parameter for I
TO Measurement time

fnin Minimum frequency sampled

finax Maximum frequency sampled
Y,Y' Observed bump processes
Z, Z' Processes obtained after bumps deletion

ndel, ndd Number of deletions in Z, Z'
nouble Number of double deletions(ie1

pA Probability of deletion
(1 - A)( P )fn+n'

Pd
ckk' Indicator variable of assignment of bump k to bump k'
bk Indicator variable of orphan bump
AT average width of bumps
AF average height of bumps
F average frequency of bumps
St Variance in time domain
pi Fraction of clusters with i bumps

nc average number of bumps per cluster
he Best linear combination of nes
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Appendix B

Notions in complexity theory and

approximation algorithms

In this appendix, we will give a very brief primer on the main notions of complexity

theory used in the rest of the thesis. The first section deals with the P and NP classes

in optimization and the notion of approximation algorithm, and the second deals with the

PPAD class used in game theory.

We refer the reader to Sipser's book [Sip96] on complexity theory and computation for

more details on these topics.

B.1 The P and NP classes, approximation algorithms

A decision problem is defined as a set P A (I, v), where I is a set of instances, and v a

function from I to {0, 1}. The objective is to compute the function v(i) for any i E I. An

algorithm A for the decision problem P is a sequence of non-ambiguous instructions which

can be simulated on a Turing machine, takes as input an instance i and outputs the value

v(i). The running time of the algorithm is the number of steps the Turing machine takes

in order to produce an answer.

Optimization problems are similary defined. An optimization problem is a set P A

(I, f, v), where I is a set of instances, f is a feasibility function, and v a value function.

For any i, f(i) is the set of feasible solution, and v(i, .) is a function from f(i) to R. The

objective is to find for any i a solution X E f(i) which maximizes the function v(i, .), or

in other words, finding x c f(i) n argmax,(v(i, y)). Such a solution x is called optimal.
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An algorithm A for problem P is a sequence of non-ambiguous operations which can be

simulated on a Turing machine, which takes as input an instance i and outputs a candidate

solution x E f(i). A is said to be optimal if it always outputs an optimal solution.

In many optimization problem, we can define a natural size of the instance M(i). We

will often be interested in upper bounding the running time of an algorithm A as a function

of the size of the instance it is running on.

P and NP

An algorithm A is said to be running in polynomial time if its computation takes a number

of steps at most polynomial in the size of the input.

The set of all decision problems for which there exists a polynomial time algorithm is

called P. Similarly, we will also call P the set of all optimization problems for which there

exists a polynomial time running algorithm. P is, in essence, the set of all problems for

which there exists "fast" or "efficient" algorithms.

Because it proved hard to rigorously show that problems do not belong to P, researchers

introduced new complexity classes of problems which are believed to be strict supersets of

P.

Perhaps the most famous such class is NP. A decision problem is said to be in NP if

for all problems which have answer 'yes', the answer can be verified in polynomial time.

In other words, a decision problem is in NP if for all its positive instances, there exists a

polynomial checkable certificate of positivity (i.e., a "short proof' that the answer is, in

fact, 'yes'). Formally, a problem is in NP if it can be simulated on a non-deterministic

Turing machine).

For any optimization problem P = (I, f, v), define a corresponding decision problem

P' = (I', v'), where I' = (I, R), and where for any i E I and a E R, v' is the answer to the

question "does there exist a solution x such that f(x) > a?". Then, we say that P is in

NP if and only if P' is.

A reduction from a problem P = (I, v) to P' = (I', v') is a function g from I to I' such

that for any i C I, g(i) E I', and v(i) = v'(g(i)). A reduction is said to be polynomial if

the size of g(i) is always polynomial in the size of i, and g E P. If there exists a polynomial

reduction from P to P, this means that problem P' is in some sense harder than P, since

we can always solve the decision problem P through its reduction g.

A reduction from an optimization problem P = (I, f, v) to P' = (I', f', v') is a pair of
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functions (g, h), where g is a function from P to P' and a h a function from {i', f(i')} to

{i, f(i)}, such that for any i E I, an optimal solution x of g(i) can be converted through h

into an optimal solution h(x) of i.

Finally, a decision or optimization problem P is said to be NP-hard if for any problem

P' in NP, there exists a polynomial reduction from P' to P. In other words, NP-hard

problems are harder than all problems in NP, since if we can solve an NP-hard problem,

we can solve any NP problem. A problem is NP-complete if it is both NP-hard and in

NP. Most computer scientists believe that P#NP, implying that there exists no polynomial

time algorithms for NP-hard problems.

Randomized algorithms

Intuitively, a randomized algorithm A is a sequence of non-ambiguous instructions which

can be simulated on a Turing machine, with the additional assumption that the Turing

machine can read from an infinitely long tape which contains a sequence of random bernoulli

numbers drawn independently with probability 1/2.

Approximation algorithm

An approximation algorithm A for a problem P with additive error E is an algorithm which

for any i E I, outputs a solution A(i) such that for all i, Imaxy v(i, y) - v(i, A(i)) I e E.

For a problem P such that for all i, v(i) is a positive function, an approximation

algorithm A for a problem P with approximation ratio p is an algorithm which for any

i E I, outputs a solution A(i) such that for all i, max <'") < p. We also say that A is a

p-factor approximation algorithm for P.

A polynomial-time approximation scheme (PTAS) is a parametrized algorithm A(E),
such that for for every E > 0, A(E) is an (1 + E)-factor approximation algorithm which

runs in polynomial time. A similar notion can be defined for the additive error, where an

algorithm A(e) is called a PTAS if for any e > 0 it is an AS with additive error E.

An efficient polynomial-time approximation scheme (EPTAS) is a PTAS whose running

time is upper bounded by some h(e) no(l), where n is the size of the input.

Finally, a fully-polynomial-time approximation scheme (FPTAS) is a PTAS whose run-

ning time is a polynomial in n and E, where n is the size of the input.

Approximation schemes which use randomized algorithms can also be defined, in which

case they are respectively called randomized approximation scheme, polynomial-time, ran-
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domized approximation scheme (PRAS), efficient polynomial-time, randomized approxi-

mation scheme (EPRAS), and fully polynomial-time, randomized approximation scheme

(FPRAS).

Specific notions for approximation algorithms in decision networks

We give here give a specific definition of approximation algorithm in the context used by

the main body of this thesis. Note that since our problem is non-standard (random input),
our definition slightly differ from classical ones.

For any network g, we call M(9) = max(IVI, lEl, lxi) the size of the network. Since

we will exclusively consider graphs with degree bounded by a constant, for all practical

purposes we can think of IVI as the size of the instance. We will say that an algorithm is an

additive (resp. multiplicative) PTAS with high probability if for all e > 0 it outputs in time

polynomial in lVI a solution I such that P(IJg - F(s)| > c) < e (resp. P( J9 > 1+e) <e).

EPTAS and FPTAS with high probability are similarly defined, as are their randomized

counterparts.

B.2 The PPAD class

We closely follow the exposition of Daskalakis et al. [DGP09])

A search problem is defined as P = (I, S), where I is a set of instances, and S is a

function from I to a set of candidate solutions (for simplicity, the set of all finite binary

strings). The objective is, for all i E I, to find an element x E S(i). A total search problem

is a search problem for which S(i) is nonempty for all i.

As an example, finding a pure Nash equilibrium is a search problem, where the set of

solutions is the set of all decisions vectors which are in best response to the complement

decision vectors (see Chapter 5, Equation 5.2); it is not necessarily total.

In contrast, finding an approximate Nash equilibrium is, by Nash's Theorem, a total

search problem.

PPAD can intuitively be defined as the set of all total search problems whose totality

can be established by the following argument: in any directed graph, if there exists an

imbalanced node (a node whose outdegree is different from its indegree), then there exists

another imbalanced node.
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Formally, a problem in PPAD is defined by two functions P, S from {0, 1}" to {0, 1}"

(n is the size of the input), such that P(On) = 0n f S(O,); the search problem consists in

finding x E {0, 1}' such that P(S(x)) # x or S(P(x)) # x # 0,.
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Appendix C

Preprocessing of brain data:

Wavelet Transform and Bump

Modeling of EEG data

This appendix is based on work by F. Vialatte

We successively apply the following transformations to the EEG signals:

1. wavelet transform,

2. normalization of the wavelet coefficients,

3. bump modeling of the normalized wavelet representation,

4. aggregation of the resulting bump models in several regions.

As previously explained, as soon as the EEG is transformed through an appropriate

wavelet, discrete patterns of activity become apparent. However, before extracting bump

models from the time-frequency maps, it is necessary to normalize the latter. EEG signals

have a very non-flat spectrum with an overall 1/f shape, disrupted by state-dependent

peaks at specific frequencies [NS06]. Therefore, most energy of the time-frequency maps is

located at low frequencies f. If we directly apply bump modeling to the (unnormalized)

time-frequency maps, most bumps will be located in the low-frequency range; in other

words, the high-frequency range will be under-represented. Since relevant information

might be contained at high frequency, we normalize the map S(t, f) before extracting the
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bump models. As a result, the bumps are more or less uniformly distributed on the time-

frequency maps. (In the statistical model underlying SES, we use a uniform prior for the

bump position (see Appendix 6.3)).

After normalization, we extract a bump model from each EEG channel; since there

are typically many EEG channels (usually at least 20), we aggregate the models in several

regions (see, e.g., Fig. C-2), resulting in one bump model per region. In principle, one may

apply SES to the original bump models, but it is computationally attractive to first reduce

the number of models. This aggregation procedure is the last pre-processing step. Next,
SES is applied to the bump models of each region.

Eventually, we compute the SES parameters for each pair of aggregated bump models.

In the following, we detail each of those five operations.

Wavelet Transform

In order to extract the oscillatory patterns in the EEG, we apply a wavelet transform.

More specifically, we use the complex Morlet wavelets [GGM84, DEG+92]:

(t) = A exp (- t2/2o) exp(2iirfot), (C.1)

where t is time, fo is frequency, -o is a (positive) real parameter, and A is a (positive)

normalization factor. The Morlet wavelet (C.1) has proven to be well suited for the time-

frequency analysis of EEG (see [TBBDP96]). The product wo = 27rfo - oo determines the

number of periods in the wavelet ("wavenumber"). This number should be sufficiently

large (;> 5), otherwise the wavelet @(t) will not fulfill the admissibility condition:

/|V(t)|12dt < oo, (C.2)
t

and as a result, the temporal localization of the wavelet becomes unsatisfactory [GGM84,
DEG+92]. In the present study, we choose a wavenumber wo = 7, as in the earlier stud-

ies [TBBDP96, VMD+07]; this choice yields good temporal resolution in the frequency

range we consider in this study.

The wavelet transform X(t, s) of an EEG signal X(t) is obtained as:

K

X~~t,~ s) 7 ~ ' *t-t (C.3)
t'=1
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where V/(t) is the Morlet "mother" wavelet (C.1), s is a scaling factor, and K = fsT, with

f, the sampling frequency and T the length of the signal. For the EEG data at hand, we
have T = 20s and fs = 200Hz and hence K = 4000. The scaled and shifted "daughter"

A
wavelet in (C.3) has center frequency f = fo/s. In the following, we will use the notation

X(t, f) instead of X(t, s).

Next we compute the squared magnitude S(t, f) of the coefficients X(t, f):

S(t, f) A IX(t, f)12 . (C.4)

Intuitively speaking, the time-frequency coefficients S(t, f) represents the energy of os-

cillatory components with frequency f at time instances t. It is noteworthy that S(t, f)
contains no information about the phase of that component.

It is well known that EEG signals have very non-flat spectrum with an overall 1/f shape

(besides state-dependent peaks at specific frequencies). Therefore, the map S(t, f) contains

most energy at low frequencies f. If we directly apply bump modeling to the map S(t, f),
most bumps will be located in the low-frequency range, in other words, the high-frequency

range would be under-represented. Since relevant information might be contained at high

frequency, we normalize the map S(t, f) before extracting the bump models.

Normalization

The coefficients S(t, f) are centered and normalized, resulting in the coefficients Z(t, f):

A S(t, f) - ms(f)

Z(tf) = as(f) ' (C.5)

where ms(f) is obtained by averaging S(t, f) over the whole length of the EEG signal:

K

ms(f) = E S(t, f). (C.6)
t=1

Likewise, os(f) is the variance of S(t, f):

U(f) = 1  (S(t, f) - ms(f)) 2. (C.7)
t=1
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In other words: the coefficients Z(t, f) encode fluctuations from the baseline EEG power

at time t and frequency f. The normalization (C.5) is known as z-score [BC02). The

coefficients Z(t, f) are positive when the activity at t and f is stronger than the baseline

ms(f) and negative otherwise. In the application of diagnosing AD (see Section 6.5),
we concentrate on regions in Z(t, f) with large activity, so-called oscillatory events. For

convenience, we shift the coefficients (C.5) in the positive direction before bump modeling

by adding a constant a, the remaining negative coefficients are set to zero:

a +[S(t, f) - ms(f)Z(t, f) = [2(t, f) + a + = [ (f) + a , (C.8)

where Fx]+ = x if x > 0 and [x] + = 0 otherwise. In our experiments (see Section 6.5), we

set a = 3.5, and as a consequence, virtually all values of Z(t, f) + a are then positive. The

top row of Fig. 6-2 shows the normalized wavelet map Z (C.8) of two EEG signals.

Bump Modeling

Next, bump models are extracted from the coefficient maps Z (see Fig. 6-2 and [VMD+07]).

We approximate the map Z(t, f) as a sum Zbump(t, f, 9) of a "small" number of smooth

basis functions or "bumps" (denoted by fbump):

Nb

Z(t, f) Zbump(t, f, 9) > fbump(t, f, k), (C.9)
k=1

'A

where Bk are vectors of bump parameters and 9 = (01, 2,... ,N,). The sparse bump

approximation Zbump(t, f, 9)-represents regions in the time-frequency plane where the EEG

contains more power than the baseline; in other words, it captures the most significant

oscillatory activities in the EEG signal.

We choose half-ellipsoid bumps since they are well-suited for our purposes [Via05,
VMD+07] (see Fig. C-1). Since we wish to keep the number of bump parameters as

low as possible, the principal axes of the half ellipsoid bumps are constrained to be parallel

to the time-frequency axes. As a result, each bump is described by five parameters (see

Fig. C-1(a)): the coordinates of its center (i.e., time xk and frequency fk), its amplitude

wk > 0, and the extension Axk and Afk in time and frequency respectively, in other words,
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(a) Parameters

Adaptation
go

Initialisation After adaptation
(b) Learning the parameters

Figure C-1: Half ellipsoid bump.

Ok = (xk, fk, Wk, AXk, Afk). More precisely, the ellipsoid bump function fbump(t, f, Ok) is

defined as:

Wk ={W 1- (t, f, k)
hbump (ti f, Ok) =

for 0 < n < 1

for K> 1,

(t-Xk)
2  (f _ fk) 2

n(t, f, Ok) = 2 +
A2Xk A2 fk
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For the EEG data described in Section 6.5.1, the number of bumps Nb (cf. (C.9)) is typi-

cally between 50 and 100, and therefore, Zbump(t, f, 6) is fully specified by a few hundred

parameters. On the other hand, the time-frequency map Z(t, f) consists of between 104

and 105 coefficients; the bump model Zbump(t, f, 0) is thus a sparse (but approximate)
representation of Z(t, f).

The bump model Zbump(t, f, 6) is extracted from Z(t, f) by the following algorithm [Via05,
VMD+07]:

1. Define appropriate boundaries for the map Z(t, f) in order to avoid finite-size effects.

2. Partition the map Z(t, f) into small zones. The size of these zones depends on the

time-frequency ratio of the wavelets, and is optimized to model oscillatory activities

lasting 4 to 5 oscillation periods. Larger oscillatory patterns are modeled by multiple

bumps.

3. Find the zone Z that contains the most energy.

4. Adapt a bump to that zone; the bump parameters are determined by minimizing the

quadratic cost function (see Fig. C-1(b)):

E(01) (Z(t, f) - fbump(t, f, Ok)2. (C. 12)

t,fez

Next withdraw the bump from the original map.

5. The fraction of total intensity contained in that bump is computed:

F = ,fECZ bump (t, f, Ok)

t,f ez Z(t, f)

If F is smaller than a threshold G E R+ for three consecutive bumps, and hence those

bumps contain only a small fraction of the energy of map Z(t, f), stop modeling and

proceed to (6), otherwise iterate (3).

6. After all signals have been modeled, define a threshold T > G, and remove the bumps

with least energy until F < T. This allows us to trade off the information loss and

modeling of background noise.
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In the present application, we used a threshold G = 0.05. With this threshold, each bump

model contains many bumps. Some of those bumps may actually model background noise.

Therefore, we further pruned the bump models (cf. Step 6). We tested various values of

the threshold T C [0.05,0.4]; the results presented did not depend much on the specific

choice of T. We refer to [Via05, VMD+07] for more information on bump modeling. In

particular, we used the same choice of boundaries (Step 1) and partitions (Step 2) as in

those references.

Eventually, we obtain 21 bump models, i.e., one per EEG channel. In the following, we

describe how those models are further processed.

Aggregation

As a next step, we group the 21 electrodes into 5 regions, as illustrated in Fig. C-2. From

the 21 bump models obtained by sparsification (cf. Section C), we extract a single bump

model for each of the 5 zones by means of the aggregation algorithm described in [VMD+07].

This vastly reduces the computational complexity: instead of computing the bivariate-SES

parameters between all possible pairs of 21 electrodes (210 in total), we compute those

parameters for all pairs of 5 regions (10 in total). Next, we average the SES parameters

over those 10 pairs, resulting in a triplet (p, 6 t, st) for each subject. On the other hand,
we apply multivariate SES to all 5 bump models simultaneously.

203



Figure C-2: The 21 electrodes used for EEG recording, distributed according to the 10-20

international placement system [NS06]. The clustering into 5 zones is indicated by the

colors and dashed lines (1 = frontal, 2 = left temporal, 3 = central, 4 = right temporal

and 5 = occipital).
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Appendix D

Complements on multivariate SES

and additional graphs

D.1 Computational hardness of multivariate SES

The combinatorial problem (6.43) is very similar to solving a maximum weighted N-

dimensional matching. For the purpose of understanding the combinatorial hardness of

the problem, we show that for N > 5, the maximum 3-dimensional matching problem

can be reduced to (6.43) when forgoing the euclidean costs assumptions. Since maxi-

mum 3-dimensional matching is NP-hard, it results that (6.43) (with general costs) is also

NP-hard. Therefore, the extension of SES from 2 time series to more than 2 is far from

trivial.

Proposition 22. The combinatorial problem (15) is NP-hard if N > 5.

We include a sketch of the proof; it is based on a reduction from maximum weighted 3-

dimensional matching optimization, which is known to be NP-hard and APX-hard [Kan9l] [GJB+].

Proof. Let T C X x Y x Z, where X, Y, Z are disjoint sets. Let us construct an instance

of problem (6.43) which can be used to reconstruct the optimal 3-dimensional matching of

T. Since finding maximum cardinality 3-dimensional matching is NP-hard, so is problem

(XXX). As a first set, let us create empty sets X', Y', Z', T', U', which will serve as con-

tainers for carefully chosen "bumps" (points). In the rest of the proof denote SOb the cost

of assigning bump a to exemplar bump b (i.e., the cost of the variable ba,b).
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For every x E X (resp. y E Y, z E Z), create two corresponding bumps x E X' and i E U'

(resp. y E Y', z E Z', y E U, z E U') and for every t = (x, y, z) E T, create two bumps

t E T' and i E U'.

Then, let us choose the cost function as follows:

" Ps = 1 - E, where E is an extremely small positive constant (practically equal to 0)

" A= N exp(1)

" For any t = (x, y, z) E T, let sx,t = sy,t = sz,t = 0. For any bump b E X'UY'U Z'U T',
let sb b = #. For any other two bumps bi, b2 , let sb1 ,b2 be equal to M, where M is a

very large positive constant (practically, +oo).

The first two assumptions effectively set a to -1 and # to a very large constant. Since

for any bump u E U', and for any other bump b, su,b is infinite, bumps in U' can never

be assigned to any other bump, and all have to be exemplars.The total cost of bumps in

U' being exemplars is therefore an additive constant which does not change the solution.

Moreover, for any bump u E U', there exists a unique bump b E X' U Y' U Z' U T' that

can be assigned to it (i.e., it is the unique bump b such that sbu < +oc). Denote f((u) the

unique bump b of X' U Y' U Z' U T' such that sb,u < +oo. Then, if f(u) is assigned to u,
the assignment cost sb,u is equal to #, and since it is the only bump which can be assigned

to U, three bumps will be missing, for an extra cost of 30. The total cost of the cluster is

therefore 4/. On the other hand, if f(u) is not assigned to u, the cluster of exemplar u

does not contain any other bumps - 4 bumps are missing, for a total cluster cost again

equal to 4#. Therefore, the cluster costs of bumps in U' are additive constants, and bumps

in X' U Y' U Z' U T' can be assigned to their corresponding exemplar in U' for no extra

cost. For this reason, exemplars in U' can be considered as "fake exemplars" (they serve

as bins for unmatched bumps in X', Y', Z' and T').

The next step consists in observing all other exemplars have to be in T'. Indeed, for any

bump bi E X' U Y' U Z', and any other bump b2, 8b2 ,b1 is infinite. It results that bumps in

X' U Y' U Z' can never be exemplars.

Since a = -1, the optimization effectively aims at maximizing the number of exemplars in

T'. Finally, because the cost of missing bumps # is very large, all clusters with exemplars

in T' have to contain a bump from each time series X', Y', Z'. Let t = (x, y, z) E T. Then

the only possible cluster for exemplar t E T' consists of the corresponding bumps x, y, z in

X', Y', Z' (all other assignments bring the cost up to infinity). Finally, since each bump in
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X', Y', Z' can only be assigned to one exemplar in T', the clusters differ in each coordinate.

It finally follows that the set of real clusters is the maximum 3-dimensional matching of

TcXxYxZ.

D.2 Extension of multivariate SES to the multinomial prior

First we assume that the parameters 0_ and -y of the multinomial prior are constant. If

p(cm I0c) is a multinomial distribution Mult(y) with parameter -y, and the prior for -y is a

Dirichlet distribution Di((), the expression (6.38) becomes:

- logp(X, X,I, 9) = - log Di(y; () - logp(92) - log(1 - Avol(S)) + #M

M

- log 6(Xi(m),k(m) - zm) + g(cm)
m=1

- log px (Xi,jIzm, Ox). (D.1)

(i'j)E log IfOP

where # = -log , and the non-linear function g is defined as:

NN

g(cm) = - log 7m + log N 1). (D.2)

Next we consider a multinomial prior for Cm, which results in a non-linear objective

function. By introducing auxiliary variables, this objective function can be written as a lin-

ear function in the resulting augmented parameter space, and the associated combinatorial

optimization problem can be formulated as an integer program (see Section D.2).

By substituting (D.1) in (6.43), the conditional maximization (6.43) results in the

following combinatorial optimization problem:

min # b + bi',k' 9(r-1) (N - 1 - 3 bi,i',k')
i,lski i',15k'<ig i~i'

- bi,k,i',k' log px(Xi,klxi',k'; 9(r-1)) + 0, (D.3)
i,i',1 ksni,1<k'<n,

subject to the constraints (6.46) (6.47), where C is an arbitrary constant and and the
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non-linear function g(-) is defined as:

y(r-1)(c) - log r-1) + log (N - 1), (D.4)

for c = 0, 1, . . . , N - 1. Note that the objective function (D.3) is non-linear in b since it

involves the non-linear function g. We will now introduce auxiliary variables such that the

objective function (D.3) is linear in those variables; we will then reformulate (D.3) as an

integer program in the augmented space of variables.

Let us first point out that for an arbitrary function f we can always write:

f (X) = 3f (x')6[ - z'],
x'eX

(D.5)

with discrete (finite or infinite) set X. By introducing variables Dxr, we can rewrite (D.5)

as:

(D.6)f (x) = E f(x')d',,
X'CX

with the constraint dx' = 6[x - x'). The key observation here is that (D.6) is linear in Dr'.

In this vein, we introduce the binary variables d,,i',k' and rewrite the objective func-

tion (D.3) as:

min # bi,k +
i,1ksni ovi,1<k'<ni,

- b>,3,i ,kl logPx(Xi,klXi2 ,k; 0) + C,
i,i',1<k~ni,1<k'<ni,

(D.7)

gr1 = g(r-1) (N - 1 - v). This alternative formulation is equivalent to the original

expression (D.3) iff d,,i',k' equals one if both v = Egg bi,i',k' and bi',k' = 1, and is zero

208

9$r-1) dv,ii,,k



otherwise. We express those constraints on dv,itkf as follows:

v - Zbi,i,k' < av,i,,', (D.8)
i#i,

bi& i' k' - v <Kvik (D.9)

av,i, ,k < N (1 - dv,i,k'), (D.10)

dv,il,kl bir,, (D. 11)
V

where av,i',k' are additional auxiliary binary variables. The first two constraints encode

that av,i,,k' ;> Iv - Eji, bi,i',k'I; note that as a consequence, av,ilk' is non-negative. If

v # Eigg bi,irak the variable av,i,k is strictly positive, and from the third inequality

it follows that dv,i',k' equals zero. On the other hand, if v = Eigg bi,i/,k', the first two

constraints no longer force av,i,i,' to be non-zero, and they do not impose any constraint

on dv,i,,k'. However, from the fourth constraint it follows that if bi',k' 1 and hence if (i', k')

is an exemplar, one of the dv,i',k' (with fixed i' and k') is equal to one. By setting dv,i,k'
equal to one if v = Eigg bi,i',k' and zero otherwise, one fulfills then all four constraints. If

bi,,k' = 0 and hence if (i', k') is not an exemplar, all dv,i',k' (with fixed i' and k') are equal

to zero. By setting all dv,i',ki equal to zero, all four constraints are then fulfilled.

In summary: the non-linear combinatorial optimization problem with objective (D.3)

and constraints (6.46) (6.47) is equivalent to the integer program with objective (D.7) and

constraints (6.46) (6.47) combined with (D.8)-(D.11).

D.3 Extra figures
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Figure D-1: Box plots for the most discriminant classical measures (wave-entropy WE and
full-frequency directed transfer function (ffDTF)) and the bivariate-SES parameters st and
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