244,013 research outputs found

    Interferometry of a Single Nanoparticle Using the Gouy Phase of a Focused Laser Beam

    Get PDF
    We provide a quantitative explanation of the mechanism of the far-field intensity modulation induced by a nanoparticle in a focused Gaussian laser beam, as was demonstrated in several recent direct detection studies. Most approaches take advantage of interference between the incident light and the scattered light from a nanoparticle to facilitate a linear dependence of the signal on the nanoparticle volume. The phase relation between the incoming field and the scattered field by the nanoparticle is elucidated by the concept of Gouy phase. This phase relation is used to analyze the far-field signal-to-noise ratio as a function of exact nanoparticle position with respect to the beam focus. The calculation suggests that a purely dispersive nanoparticle should be displaced from the Gaussian beam focus to generate a far-field intensity change

    Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels

    Get PDF
    Polymer hydrogelshave shown to exhibit improved properties upon the addition of nanoparticles; however, the mechanical underpinnings behind these enhancements have not been fully elucidated. Moreover, fewer studies have focused on developing an understanding of how polymer parameters affect the nanoparticle-mediated enhancements. In this study, we investigated the elastic properties of silica nanoparticle-reinforced poly(acrylamide) hydrogels synthesized using crosslinkers of various lengths. Crosslinker length positively affected the mechanical properties of hydrogels that were synthesized with or without nanoparticles. However the degree of nanoparticle enhancement was negatively correlated to crosslinker length. Our findings enable the understanding of the respective roles of nanoparticle and polymer properties on nanoparticle-mediated enhancement of hydrogels and thereby the development of next-generation nanocomposite materials

    Nanoparticle Classification in Wide-field Interferometric Microscopy by Supervised Learning from Model

    Full text link
    Interference enhanced wide-field nanoparticle imaging is a highly sensitive technique that has found numerous applications in labeled and label-free sub-diffraction-limited pathogen detection. It also provides unique opportunities for nanoparticle classification upon detection. More specif- ically, the nanoparticle defocus images result in a particle-specific response that can be of great utility for nanoparticle classification, particularly based on type and size. In this work, we com- bine a model based supervised learning algorithm with a wide-field common-path interferometric microscopy method to achieve accurate nanoparticle classification. We verify our classification schemes experimentally by using gold and polystyrene nanospheres.Comment: 5 pages, 2 figure

    Highly luminescent perovskite–aluminum oxide composites

    Get PDF
    In this communication we report on the preparation of CH3NH3PbBr3 perovskite/Al2O3 nanoparticle composites in a thin film configuration and demonstrate their high photoluminescence quantum yield. The composite material is solution-processed at low temperature, using stable alumina nanoparticle dispersions. There is a large influence of the alumina nanoparticle concentration on the perovskite morphology and on its photoluminescence

    Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media

    Get PDF
    We demonstrate focusing coherent light on a nanoparticle through turbid media based on digital optical phase conjugation of second harmonic generation (SHG) field from the nanoparticle. A SHG active nanoparticle inside a turbid medium was excited at the fundamental frequency and emitted SHG field as a point source. The SHG emission was scattered by the turbid medium, and the scattered field was recorded by off-axis digital holography. A phase-conjugated beam was then generated by using a phase-only spatial light modulator and sent back through the turbid medium, which formed a nearly ideal focus on the nanoparticle
    • …
    corecore