12,639 research outputs found

    Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition

    Full text link
    We describe the CoNLL-2003 shared task: language-independent named entity recognition. We give background information on the data sets (English and German) and the evaluation method, present a general overview of the systems that have taken part in the task and discuss their performance

    Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition

    Full text link
    We describe the CoNLL-2002 shared task: language-independent named entity recognition. We give background information on the data sets and the evaluation method, present a general overview of the systems that have taken part in the task and discuss their performance.Comment: 4 page

    Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug-drug interactions

    Full text link
    Background. Drug-drug interaction (DDI) is a major cause of morbidity and mortality. [...] Biomedical literature mining can aid DDI research by extracting relevant DDI signals from either the published literature or large clinical databases. However, though drug interaction is an ideal area for translational research, the inclusion of literature mining methodologies in DDI workflows is still very preliminary. One area that can benefit from literature mining is the automatic identification of a large number of potential DDIs, whose pharmacological mechanisms and clinical significance can then be studied via in vitro pharmacology and in populo pharmaco-epidemiology. Experiments. We implemented a set of classifiers for identifying published articles relevant to experimental pharmacokinetic DDI evidence. These documents are important for identifying causal mechanisms behind putative drug-drug interactions, an important step in the extraction of large numbers of potential DDIs. We evaluate performance of several linear classifiers on PubMed abstracts, under different feature transformation and dimensionality reduction methods. In addition, we investigate the performance benefits of including various publicly-available named entity recognition features, as well as a set of internally-developed pharmacokinetic dictionaries. Results. We found that several classifiers performed well in distinguishing relevant and irrelevant abstracts. We found that the combination of unigram and bigram textual features gave better performance than unigram features alone, and also that normalization transforms that adjusted for feature frequency and document length improved classification. For some classifiers, such as linear discriminant analysis (LDA), proper dimensionality reduction had a large impact on performance. Finally, the inclusion of NER features and dictionaries was found not to help classification.Comment: Pacific Symposium on Biocomputing, 201

    Extracting adverse drug reactions and their context using sequence labelling ensembles in TAC2017

    Full text link
    Adverse drug reactions (ADRs) are unwanted or harmful effects experienced after the administration of a certain drug or a combination of drugs, presenting a challenge for drug development and drug administration. In this paper, we present a set of taggers for extracting adverse drug reactions and related entities, including factors, severity, negations, drug class and animal. The systems used a mix of rule-based, machine learning (CRF) and deep learning (BLSTM with word2vec embeddings) methodologies in order to annotate the data. The systems were submitted to adverse drug reaction shared task, organised during Text Analytics Conference in 2017 by National Institute for Standards and Technology, archiving F1-scores of 76.00 and 75.61 respectively.Comment: Paper describing submission for TAC ADR shared tas
    • …
    corecore