165 research outputs found

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    Design of a 12-GHz multicarrier earth-terminal for satellite-CATV interconnection

    Get PDF
    The design and development of the front-end for a multi-carrier system that allows multiplex signal transmission from satellite-borne transponders is described. Detailed systems analyses provided down-converter specifications. The 12 GHz carrier down-converter uses waveguide, coaxial, and microstrip transmission line elements in its implementation. Mixing is accomplished in a single-ended coaxial mixer employing a field-replacable cartridge style diode

    Investigation of coding and equalization for the digital HDTV terrestrial broadcast channel

    Get PDF
    Includes bibliographical references (p. 241-248).Supported by the Advanced Telecommunications Research Program.Julien J. Nicolas

    DSP implementation of OFDM acoustic modem

    Get PDF
    The success of multicarrier modulation in the form of OFDM in radio channels illuminates a path one could take towards high-rate underwater acoustic communications,and recently there are intensive investigations on underwater OFDM. Processing power has increased to a point where orthogonal frequency division multiplexing (OFDM) has become feasible and economical. Since many wireless communication systems being developed use OFDM, it is a worthwhile research topic. Some examples of applications using OFDM include Digital subscriber line (DSL), Digital Audio Broadcasting (DAB),High definition television (HDTV) broadcasting, IEEE 802.11 (wireless networking standard).OFDM is a strong candidate and has been suggested or standardized in high speed communication systems. In this Thesis in first phase ,we analyzes the factor that affects the OFDM performance. The performance of OFDM was assessed by using computer simulations performed using Matlab7.2 .it was simulated under Additive white Gaussian noise (AWGN) ,Exponential Multipath channel and Carrier frequency offset conditions for different modulation schemes like binary phase shift keying (BPSK), Quadrature phase shift keying (QPSK),16 Quadrature amplitude modulation (16-QAM),64-Quadrature amplitude modulation(64-QAM)which are used for achieving high data rates.In second phase we implement the acoustic OFDM transmitter and receiver design of [4,5] on a TMS320C6713 DSP board. We analyze the workload and identify the most timeconsuming operations. Based on the workload analysis, we tune the algorithms and optimize the code to substantially reduce the synchronization time to 0.2 seconds and the processing time of one OFDM block to 2.7235 seconds on a DSP processor at 225 MHz. This experimentation provides guidelines on our future work to reduce the per-block processing time to be less than the block duration of 0.23 seconds for real time operations

    Signals of Opportunity Navigation Using Wi-Fi Signals

    Get PDF
    Since GPS is generally limited to areas with clear sky view, additional methods of navigation are currently being explored. This thesis explores navigation using Signals of Opportunity(SoOP). The signals chosen for evaluation in this thesis are the common Internet IEEE 802.11a/g signals, or Wi-Fi. This thesis presents SoOP navigation based on cross-correlations of received data from multiple Wi-Fi stations. It shows the effectiveness of the methods using collected Wi-Fi signals in a real-world environment. By using simple statistical representations of collected data in large groups, or windows, cross-correlation calculations can produce timing offsets between simulated stations. The timing offsets, or time di erence of arrival (TDOA) calculations, are used to solve nonlinear TDOA equations to determine a position in 3-D space. This thesis shows simulations using different window sizes, noise strengths, and signal magnitudes. The overall conclusion is that Wi-Fi signaling can be exploited and is a viable source for SoOP navigation methods. Results shown in this thesis present a possibility of zero errors in certain noise environments as well as lowered signal magnitudes
    corecore