52,749 research outputs found

    Combining centralised and distributed testing

    Get PDF
    Many systems interact with their environment at distributed interfaces (ports) and sometimes it is not possible to place synchronised local testers at the ports of the system under test (SUT). There are then two main approaches to testing: having independent local testers or a single centralised tester that interacts asynchronously with the SUT. The power of using independent testers has been captured using implementation relation \dioco. In this paper we define implementation relation \diococ for the centralised approach and prove that \dioco and \diococ are incomparable. This shows that the frameworks detect different types of faults and so we devise a hybrid framework and define an implementation relation \diocos for this. We prove that the hybrid framework is more powerful than the distributed and centralised approaches. We then prove that the Oracle problem is NP-complete for \diococ and \diocos but can be solved in polynomial time if we place an upper bound on the number of ports. Finally, we consider the problem of deciding whether there is a test case that is guaranteed to force a finite state model into a particular state or to distinguish two states, proving that both problems are undecidable for the centralised and hybrid frameworks

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Ī”3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Alternation-Trading Proofs, Linear Programming, and Lower Bounds

    Get PDF
    A fertile area of recent research has demonstrated concrete polynomial time lower bounds for solving natural hard problems on restricted computational models. Among these problems are Satisfiability, Vertex Cover, Hamilton Path, Mod6-SAT, Majority-of-Majority-SAT, and Tautologies, to name a few. The proofs of these lower bounds follow a certain proof-by-contradiction strategy that we call alternation-trading. An important open problem is to determine how powerful such proofs can possibly be. We propose a methodology for studying these proofs that makes them amenable to both formal analysis and automated theorem proving. We prove that the search for better lower bounds can often be turned into a problem of solving a large series of linear programming instances. Implementing a small-scale theorem prover based on this result, we extract new human-readable time lower bounds for several problems. This framework can also be used to prove concrete limitations on the current techniques.Comment: To appear in STACS 2010, 12 page

    Infinite first order differential systems with nonlocal initial conditions

    Get PDF
    We discuss the solvability of an infinite system of first order ordinary differential equations on the half line, subject to nonlocal initial conditions. The main result states that if the nonlinearities possess a suitable "sub-linear" growth then the system has at least one solution. The approach relies on the application, in a suitable Fr\'echet space, of the classical Schauder-Tychonoff fixed point theorem. We show that, as a special case, our approach covers the case of a system of a finite number of differential equations. An illustrative example of application is also provided.Comment: 12 page
    • ā€¦
    corecore