3,595 research outputs found

    Continuous variable entanglement enhancement and manipulation by a sub-threshold type-II optical parametric amplifier

    Full text link
    We experimentally demonstrate that the quantum entanglement between amplitude and phase quadratures of optical modes produced from a non-degenerate optical parametric amplifier (NOPA) can be enhanced and manipulated phase-sensitively by means of another NOPA. When both NOPAs operate at de-amplification, the entanglement degree is increased at the cavity resonance of the second NOPA. When the first NOPA operates at de-amplification and the second one at amplification, the spectral features of the correlation variances are significantly changed. The experimental results are in good agreement with the theoretical expectation

    Sub-10 fs pulses tunable from 480 to 980 nm from a NOPA pumped by a Yb:KGW source

    Full text link
    We describe two noncollinear optical parametric amplifier (NOPA) systems pumped by either the second (515 nm) or the third (343 nm) harmonic of an Yb:KGW amplifier, respectively. Pulse durations as short as 6.8 fs are readily obtained by compression with commercially available chirped mirrors. The availability of both second and third harmonic for NOPA pumping allows for gap-free tuning from 520 to 980 nm. The use of an intermediate NOPA to generate seed light at 780 nm extends the tuning range of the third-harmonic pumped NOPA towards 450 nm

    Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier

    Full text link
    We experimentally demonstrated that the quantum correlations of amplitude and phase quadratures between signal and idler beams produced from a non-degenerate optical parametric amplifier (NOPA) can be significantly improved by using a mode cleaner in the pump field and reducing the phase fluctuations in phase locking systems. Based on the two technical improvements the quantum entanglement measured with a two-mode homodyne detector is enhanced from ~ 4 dB to ~ 6 dB below the quantum noise limit using the same NOPA and nonlinear crystal.Comment: 7 pages, 5 figure

    Cascaded Entanglement Enhancement

    Full text link
    We present a cascaded system consisting of three non-degenerate optical parametric amplifiers (NOPAs) for the generation and the enhancement of quantum entanglement of continuous variables. The entanglement of optical fields produced by the first NOPA is successively enhanced by the second and the third NOPAs from -5.3 dBdB to -8.1 dBdB below the quantum noise limit. The dependence of the enhanced entanglement on the physical parameters of the NOPAs and the reachable entanglement limitation for a given cascaded NOPA system are calculated. The calculation results are in good agreement with the experimental measurements.Comment: 5 pages, 4 figure

    Algorithm Portfolios for Noisy Optimization

    Get PDF
    Noisy optimization is the optimization of objective functions corrupted by noise. A portfolio of solvers is a set of solvers equipped with an algorithm selection tool for distributing the computational power among them. Portfolios are widely and successfully used in combinatorial optimization. In this work, we study portfolios of noisy optimization solvers. We obtain mathematically proved performance (in the sense that the portfolio performs nearly as well as the best of its solvers) by an ad hoc portfolio algorithm dedicated to noisy optimization. A somehow surprising result is that it is better to compare solvers with some lag, i.e., propose the current recommendation of best solver based on their performance earlier in the run. An additional finding is a principled method for distributing the computational power among solvers in the portfolio.Comment: in Annals of Mathematics and Artificial Intelligence, Springer Verlag, 201

    Nonlocality of the Einstein-Podolsky-Rosen state in the phase space

    Get PDF
    We discuss violation of Bell inequalities by the regularized Einstein-Podolsky-Rosen (EPR) state, which can be produced in a quantum optical parametric down-conversion process. We propose an experimental photodetection scheme to probe nonlocal quantum correlations exhibited by this state. Furthermore, we show that the correlation functions measured in two versions of the experiment are given directly by the Wigner function and the Q function of the EPR state. Thus, the measurement of these two quasidistribution functions yields a novel scheme for testing quantum nonlocality.Comment: 10 pages LaTeX, contribution to proceedings of 6th central-european workshop on quantum optic
    corecore