10 research outputs found

    Achievable Sum Rate Optimization on NOMA-aided Cell-Free Massive MIMO with Finite Blocklength Coding

    Full text link
    Non-orthogonal multiple access (NOMA)-aided cell-free massive multiple-input multiple-output (CFmMIMO) has been considered as a promising technology to fulfill strict quality of service requirements for ultra-reliable low-latency communications (URLLC). However, finite blocklength coding (FBC) in URLLC makes it challenging to achieve the optimal performance in the NOMA-aided CFmMIMO system. In this paper, we investigate the performance of the NOMA-aided CFmMIMO system with FBC in terms of achievable sum rate (ASR). Firstly, we derive a lower bound (LB) on the ergodic data rate. Then, we formulate an ASR maximization problem by jointly considering power allocation and user equipment (UE) clustering. To tackle such an intractable problem, we decompose it into two sub-problems, i.e., the power allocation problem and the UE clustering problem. A successive convex approximation (SCA) algorithm is proposed to solve the power allocation problem by transforming it into a series of geometric programming problems. Meanwhile, two algorithms based on graph theory are proposed to solve the UE clustering problem by identifying negative loops. Finally, alternative optimization is performed to find the maximum ASR of the NOMA-aided CFmMIMO system with FBC. The simulation results demonstrate that the proposed algorithms significantly outperform the benchmark algorithms in terms of ASR under various scenarios

    Non-Orthogonal Multiple Access For Near-Field Communications

    Full text link
    The novel concept of near-field non-orthogonal multiple access (NF-NOMA) communications is proposed. The near-filed beamfocusing enables NOMA to be carried out in both angular and distance domains. Two novel frameworks are proposed, namely, single-location-beamfocusing NF-NOMA (SLB-NF-NOMA) and multiple-location-beamfocusing NF-NOMA (MLB-NF-NOMA). 1) For SLB-NF-NOMA, two NOMA users in the same angular direction with distinct quality of service (QoS) requirements can be grouped into one cluster. The hybrid beamformer design and power allocation problem is formulated to maximize the sum rate of the users with higher QoS (H-QoS) requirements. To solve this problem, the analog beamformer is first designed to focus the energy on the H-QoS users and the zero-forcing (ZF) digital beamformer is employed. Then, the optimal power allocation is obtained. 2) For MLB-NF-NOMA, the two NOMA users in the same cluster can have different angular directions. The analog beamformer is first designed to focus the energy on both two NOMA users. Then, a singular value decomposition (SVD) based ZF (SVD-ZF) digital beamformer is designed. Furthermore, a novel antenna allocation algorithm is proposed. Finally, a suboptimal power allocation algorithm is proposed. Numerical results demonstrate that the NF-NOMA can achieve a higher spectral efficiency and provide a higher flexibility than conventional far-field NOMA

    Power Allocation in Uplink NOMA-Aided Massive MIMO Systems

    Get PDF
    In the development of the fifth-generation (5G) as well as the vision for the future generations of wireless communications networks, massive multiple-input multiple-output (MIMO) technology has played an increasingly important role as a key enabler to meet the growing demand for very high data throughput. By equipping base stations (BSs) with hundreds to thousands antennas, the massive MIMO technology is capable of simultaneously serving multiple users in the same time-frequency resources with simple linear signal processing in both the downlink (DL) and uplink (UL) transmissions. Thanks to the asymptotically orthogonal property of users' wireless channels, the simple linear signal processing can effectively mitigate inter-user interference and noise while boosting the desired signal's gain, and hence achieves high data throughput. In order to realize this orthogonal property in a practical system, one critical requirement in the massive MIMO technology is to have the instantaneous channel state information (CSI), which is acquired via channel estimation with pilot signaling. Unfortunately, the connection capability of a conventional massive MIMO system is strictly limited by the time resource spent for channel estimation. Attempting to serve more users beyond the limit may result in a phenomenon known as pilot contamination, which causes correlated interference, lowers signal gain and hence, severely degrades the system's performance. A natural question is ``Is it at all possible to serve more users beyond the limit of a conventional massive MIMO system?''. The main contribution of this thesis is to provide a promising solution by integrating the concept of nonorthogonal multiple access (NOMA) into a massive MIMO system. The key concept of NOMA is based on assigning each unit of orthogonal radio resources, such as frequency carriers, time slots or spreading codes, to more than one user and utilize a non-linear signal processing technique like successive interference cancellation (SIC) or dirty paper coding (DPC) to mitigate inter-user interference. In a massive MIMO system, pilot sequences are also orthogonal resources, which can be allocated with the NOMA approach. By sharing a pilot sequence to more than one user and utilizing the SIC technique, a massive MIMO system can serve more users with a fixed amount of time spent for channel estimation. However, as a consequence of pilot reuse, correlated interference becomes the main challenge that limits the spectral efficiency (SE) of a massive MIMO-NOMA system. To address this issue, this thesis focuses on how to mitigate correlated interference when combining NOMA into a massive MIMO system in order to accommodate a higher number of wireless users. In the first part, we consider the problem of SIC in a single-cell massive MIMO system in order to serve twice the number of users with the aid of time-offset pilots. With the proposed time-offset pilots, users are divided into two groups and the uplink pilots from one group are transmitted simultaneously with the uplink data of the other group, which allows the system to accommodate more users for a given number of pilots. Successive interference cancellation is developed to ease the effect of pilot contamination and enhance data detection. In the second part, the work is extended to a cell-free network, where there is no cell boundary and a user can be served by multiple base stations. The chapter focuses on the NOMA approach for sharing pilot sequences among users. Unlike the conventional cell-free massive MIMO-NOMA systems in which the UL signals from different access points are equally combined over the backhaul network, we first develop an optimal backhaul combining (OBC) method to maximize the UL signal-to-interference-plus-noise ratio (SINR). It is shown that, by using OBC, the correlated interference can be effectively mitigated if the number of users assigned to each pilot sequence is less than or equal to the number of base stations. As a result, the cell-free massive MIMO-NOMA system with OBC can enjoy unlimited performance when the number of antennas at each BS tends to infinity. Finally, we investigate the impact of imperfect SIC to a NOMA cell-free massive MIMO system. Unlike the majority of existing research works on performance evaluation of NOMA, which assume perfect channel state information and perfect data detection for SIC, we take into account the effect of practical (hence imperfect) SIC. We show that the received signal at the backhaul network of a cell-free massive MIMO-NOMA system can be effectively treated as a signal received over an additive white Gaussian noised (AWGN) channel. As a result, a discrete joint distribution between the interfering signal and its detected version can be analytically found, from which an adaptive SIC scheme is proposed to improve performance of interference cancellation

    Spectral Efficiency Maximization of a Massive Multiuser MIMO System via Appropriate Power Allocation

    Get PDF
    Massive multiuser multiple-input multiple-output (MU-MIMO) systems are being considered for the next generation wireless networks in view of their ability to increase both the spectral and energy efficiencies. For such systems, linear detectors such as zero-forcing (ZF) and maximum-ratio combining (MRC) detectors on the uplink (UL) transmission have been shown to provide near optimal performance. As well, linear precoders such as ZF and maximum-ratio transmission (MRT) precoders on the downlink (DL) transmission offer lower complexity along with a near optimal performance in these systems. One of the most challenging problems in massive MU-MIMO systems is obtaining the channel state information (CSI) at the transmitter as well as the receiver. In such systems, the base station (BS) obtains CSI using pilot sequences, which are transmitted by the users. Due to the channel reciprocity between the UL and DL channels in the time-division duplex (TDD) mode, BS employs CSI obtained to precode the data symbols in DL transmission. To accurately decode the received symbols in the DL transmission, the users also need to acquire CSI. In view of this, a beamforming training (BT) scheme has been proposed in the literature to obtain the estimates of CSI at each user. In this scheme, BS transmits a short pilot sequence to the users in a way such that each user estimates the effective channel gain. Conventionally, the power of the pilot symbols has been considered equal to the power of data symbols for all the users. In this thesis, we pose and answer a basic question about the operation of a base station: How much the spectral efficiency could be improved if the transmit power allocated to the pilot and data symbols of each user are chosen in some optimal fashion? In answering this question and in order to maximize the spectral efficiency for a given total energy budget, some methods of power allocation are proposed. First, we derive a closed-form approximate expression for the achievable downlink rate for the maximum ratio transmission precoder based on small-scale fading in order to evaluate the spectral efficiency in the BT scheme. Then, we propose three methods of power allocation in order to maximize the spectral efficiency for a given total power budget among the users. In the first proposed method, we allocate equal pilot power as well as equal data power for all users in order to maximize the spectral efficiency. In the second proposed method, we allow for the allocation of different data powers among the users, whereas the pilot power for each user is kept the same and is specified. In the third method, we optimally allocate equal pilot power and a different data power for each user in such a way that the spectral efficiency is maximized. Numerical results are obtained showing that all the three proposed methods are superior to the existing methods in terms of spectral efficiency. In addition, they also show that the third proposed method of power allocation outperforms the other two proposed methods in terms of the spectral efficiency. Next, we derive a closed-form approximate expression for the achievable downlink rate for the maximum ratio transmission precoder based on large-scale fading in order to evaluate the spectral efficiency in the BT scheme. Then, we propose four methods of power allocation in order to maximize the spectral efficiency for a given total power budget among the users. In the first method, power is allocated among the pilot and data symbols in such a way that the pilot power as well as the data power for each user is the same. In the second method, power is allocated among the data symbols of the various users, whereas the pilot power for each user is the same and is specified. In this method, the data power for each user is optimally determined to maximize the spectral efficiency. In the third method, power is allocated among the pilot and data symbols of the various users, whereas the pilot power for each user is the same but determined. In this method, the same pilot power along with the various data powers is optimized to maximize the spectral efficiency. Finally, in the fourth method, power is allocated optimally among each of the pilot and data symbols of the various users so as to maximize the spectral efficiency. Numerical results are obtained showing that the performance of the first proposed method is approximately the same as that of the conventional approach. In addition, they also show that the second, third and fourth methods of power allocation yield similar performance in terms of spectral efficiency, and that the spectral efficiency of these methods is much superior to that of the first method or of the conventional method. Finally, we investigate the spectral efficiency of massive MU-MIMO systems on an UL transmission with a very large number of antennas at the base station serving single-antenna users. A practical physical channel model is proposed by dividing the angular domain into a finite number of distinct directions. A lower bound on the achievable rate of the uplink data transmission is derived using a linear detector for each user and employed in defining the spectral efficiency. The lower bound obtained is further modified for the maximum-ratio combining and zero-forcing receivers. A power control scheme based on the large-scale fading is also proposed to maximize the spectral efficiency under the peak power constraint. Experiments are conducted to evaluate the lower bounds obtained and the performance of the proposed method. The numerical results show that the proposed power control method provides a spectral efficiency which is the same as that of the maximum power criterion using the ZF receiver. Further, the proposed method provides a spectral efficiency that is higher than that provided by the maximum power criterion using the MRC receiver

    Resource allocation techniques for spectral and energy-efficient next generation wireless networks

    Get PDF
    Efficient utilization of wireless resources is mandated to fulfill the requirements of the sixth-generation (6G) wireless networks, such as high data rates, low latency, and ubiquitous connectivity. The word "resource" implies quantities such as bandwidth, power, and time. Efficiently allocating such limited resources is an effective means to enhance the wireless systems’ performance. Specifically, resource allocation intends to assign limited resources to users, maximizing the utilization of these resources, and attaining the best system performance. In this line, in this dissertation, low-complexity and efficient resource allocation strategies in networks assisted by various technologies, including nonorthogonal multiple access (NOMA), reconfigurable intelligent surface (RIS), full-duplex (FD), cell-free massive multiple-input multiple-output (CFmMIMO), and integrated sensing and communication (ISAC) are developed and investigated. The first part of the dissertation focuses on analyzing the outage and throughput performances, as well as optimizing the sum rate for an FD NOMA-assisted cooperative spectrum-sharing network. The second part develops novel user clustering and resource allocation algorithms to boost the sum spectral efficiency of a CFmMIMO-NOMA system. Besides, novel lowcomplexity resource allocation algorithms for optimizing the energy efficiency and total transmit power of RIS-aided CF and RIS-enabled federated learning (FL) networks are proposed. The third part examines the application of RIS and FD in ISAC networks to improve the transmission rate and sensing performance. Finally, the last part draws concluding remarks and discusses several topics for future investigation

    NOMA-Aided Cell-Free Massive MIMO Systems

    No full text

    Power efficient designs for 5G wireless networks

    Get PDF
    In this dissertation, to step forward towards green communication, we study power efficient solutions in three potential 5G wireless networks, namely an asynchronous multicarrier two-way Amplify-and-Forward (AF) relay network, a multi-carrier two-way Filter-and-Forward (FF) network, and a massive Multiple Input Multiple Output (MIMO) network using the Non-Orthogonal Multiple Access (NOMA) scheme. In the first network, two transceivers using the Orthogonal Frequency Division Multiplexing (OFDM) scheme communicate through multiple relays in an asynchronous manner. As an attempt to design a simple solution, we assume the AF protocol at the relays. We jointly design the power allocation and distributed beamforming coefficients to minimize the total transmission power subject to sum-rate constraints. We propose an optimal semi-closed form solution to this problem and we show that at the optimum, the end-to-end channel has only one non-zero tap. To extend the first work to high data-rate scenarios, we consider a second relaying-based network which consists of two OFDM-based transceivers and multiple FF relays. We propose two approaches to tackle a total transmission power minimization problem: a gradient steepest descent-based technique, and a low-complexity method enforcing a frequency-flat Channel Impulse Response (CIR) response at the optimum. As the last network, we consider a massive MIMO-NOMA network with both co-located and distributed structures. We study the joint problem of power allocation and user clustering to minimize the total transmit power subject to QoS constraints. We propose a novel clustering algorithm which groups the correlated users into the same cluster and has an unique ability to automatically switch between using the spatial-domain-MIMO and the power-domain-NOMA. We show that our proposed method can substantially improve the feasibility probability and power consumption performance compared to existing methods
    corecore