8,404 research outputs found
Ketamine: NMDA receptors and beyond
Human studies examining the effects of the dissociative anesthetic ketamine as a model for psychosis and as a rapidly acting antidepressant have spurred great interest in understanding ketamine's actions at molecular, cellular, and network levels. Although ketamine has unequivocal uncompetitive inhibitory effects on N-methyl-d-aspartate receptors (NMDARs) and may preferentially alter the function of NMDARs on interneurons, recent work has questioned whether block of NMDARs is critical for its mood enhancing actions. In this viewpoint, we examine the evolving literature on ketamine supporting NMDARs as important triggers for certain psychiatric effects and the possibility that the antidepressant trigger is unrelated to NMDARs. The rapidly evolving story of ketamine offers great hope for untangling and treating the biology of both depressive and psychotic illnesses
Crosstalk Between Brain-Derived Neurotrophic Factor And N-Methyl-D-Aspartate Receptor Signaling In Neurons
Glutamate is the major excitatory neurotransmitter in brain exerting prosurvival effect on neurons via N-methyl-D-aspartate receptor (NMDAR) signaling under physiological conditions. However in pathological circumstances such as ischemia, NMDARs might have proapoptotic excitotoxic activity. In contrast brain-derived neurotrophic factor (BDNF) signaling via TrkB receptors has been largely considered to promote neuronal differentiation, plasticity and survival during normal development, and protect neurons in pathophysiological conditions antagonizing the NMDAR-mediated excitotoxic cell death. In this review we summarize recent evidence for the existent crosstalk and positive feedback loops between the BDNF and NMDAR signaling and point out some of the important specific features of each signaling pathway
Neuronal oxidative injury in the development of the epileptic disease : a potential target for novel therapeutic approaches
Epileptic diseases affect about 50 million people in the world and approximately 30% of patients diagnosed with epilepsy are unresponsive to current medications. For these reasons, primary prevention of epilepsy represents one of the priorities in epilepsy research. Intracellular oxido-reductive (redox) state is well known to play a crucial role, contributing to the maintenance of the proper function of biomolecules. Therefore, oxidative stress results in functional cellular disruption and cellular damage and may cause subsequent cell death via oxidation of proteins, lipids, and nucleotides. Recently, the role of oxidative stress in the early stage and in the progression of epileptic disorders has begun to be recognized. The early molecular response to oxidative stress represents a short-term reversible phenomenon that precedes higher and irreversible forms of oxidation. This article reviews the current understanding of the epileptogenic phenomena related to seizure-induced oxidative injury as potential “critical period” therapeutic targets for the prevention of chronic epileptic disorder.peer-reviewe
High- and low-conductance NMDA receptors are present in layer 4 spiny stellate and layer 2/3 pyramidal neurons of mouse barrel cortex
NMDA receptors are ion channels activated by the neurotransmitter glutamate
in the mammalian brain and are important in synaptic function and plasticity,
but are also found in extrasynaptic locations and influence neuronal
excitability. There are different NMDA receptor subtypes which differ in their
single-channel conductance. Recently, synaptic plasticity has been studied in
mouse barrel cortex, the primary sensory cortex for input from the animal's
whiskers. Pharmacological data imply the presence of low-conductance NMDA
receptors in spiny stellate neurons of cortical layer 4, but of
high-conductance NMDA receptors in pyramidal neurons of layer 2/3. Here, to
obtain complementary electrophysiological information on the functional NMDA
receptors expressed in layer 4 and layer 2/3 neurons, single NMDA receptor
currents were recorded with the patch-clamp method. Both cell types were found
to contain high-conductance as well as low-conductance NMDA receptors. The
results are consistent with the reported pharmacological data on synaptic
plasticity, and with previous claims of a prominent role of low-conductance
NMDA receptors in layer 4 spiny stellate neurons, including broad integration,
amplification and distribution of excitation within the barrel in response to
whisker stimulation, as well as modulation of excitability by ambient
glutamate. However, layer 4 cells also expressed high-conductance NMDA
receptors. The presence of low-conductance NMDA receptors in layer 2/3
pyramidal neurons suggests that some of these functions may be shared with
layer 4 spiny stellate neurons
In vivo evidence for NMDA receptor mediated excitotoxicity in a murine genetic model of Huntington Disease
N-methyl-D-aspartate receptor (NMDAR) mediated excitotoxicity is implicated as a proximate cause of neurodegeneration in Huntington Disease (HD). However, this hypothesis has not been tested rigorously in vivo. NMDAR NR2B-subunits are the predominant NR2 subunit expressed by the striatal medium spiny neurons that degenerate in HD. To test this hypothesis, we crossed a well validated murine genetic model of HD (Hdh(CAG)150) with a transgenic line overexpressing NMDAR NR2B-subunits. In the resulting double mutant line, we show exacerbation of selective striatal neuron degeneration. These results provide the first direct in vivo evidence of NR2B-NMDAR mediated excitotoxicity in the context of HD. Our results are consistent with prior suggestions that direct and/or indirect interactions of mutant huntingtin with NMDARs are a proximate cause of neurodegeneration in HD
The prion protein regulates glutamate-mediated Ca2+ entry and mitochondrial Ca2+ accumulation in neurons
The cellular prion protein (PrPC) whose conformational misfolding leads to the production of deadly prions, has a still-unclarified cellular function despite decades of intensive research. Following our recent finding that PrPC limits Ca2+ entry via store-operated Ca2+ channels in neurons, we investigated whether the protein could also control the activity of ionotropic glutamate receptors (iGluRs). To this end, we compared local Ca2+ movements in primary cerebellar granule neurons and cortical neurons transduced with genetically encoded Ca2+ probes and expressing, or not expressing, PrPC. Our investigation demonstrated that PrPC downregulates Ca2+ entry through each specific agonist-stimulated iGluR and after stimulation by glutamate. We found that, although PrP-knockout (KO) mitochondria were displaced from the plasma membrane, glutamate addition resulted in a higher mitochondrial Ca2+ uptake in PrP-KO neurons than in their PrPC-expressing counterpart. This was because the increased Ca2+ entry through iGluRs in PrP-KO neurons led to a parallel increase in Ca2+-induced Ca2+ release via ryanodine receptor channels. These data thus suggest that PrPC takes part in the cell apparatus controlling Ca2+ homeostasis, and that PrPC is involved in protecting neurons from toxic Ca2+ overloads
Amyloid-β acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2.
BACKGROUND: It is becoming increasingly evident that deficits in the cortex and hippocampus at early stages of dementia in Alzheimer's disease (AD) are associated with synaptic damage caused by oligomers of the toxic amyloid-β peptide (Aβ42). However, the underlying molecular and cellular mechanisms behind these deficits are not fully understood. Here we provide evidence of a mechanism by which Aβ42 affects synaptic transmission regulating neurotransmitter release.
METHODOLOGY/FINDINGS: We first showed that application of 50 nM Aβ42 in cultured neurones is followed by its internalisation and translocation to synaptic contacts. Interestingly, our results demonstrate that with time, Aβ42 can be detected at the presynaptic terminals where it interacts with Synaptophysin. Furthermore, data from dissociated hippocampal neurons as well as biochemical data provide evidence that Aβ42 disrupts the complex formed between Synaptophysin and VAMP2 increasing the amount of primed vesicles and exocytosis. Finally, electrophysiology recordings in brain slices confirmed that Aβ42 affects baseline transmission.
CONCLUSIONS/SIGNIFICANCE: Our observations provide a necessary and timely insight into cellular mechanisms that underlie the initial pathological events that lead to synaptic dysfunction in Alzheimer's disease. Our results demonstrate a new mechanism by which Aβ42 affects synaptic activity
Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation
Using an antibody against 5α-reduced neurosteroids, predominantly allopregnanolone, we found that immunostaining in the CA1 region of rat hippocampal slices was confined to pyramidal neurons. This neurosteroid staining was increased following 15 min administration of 60 mm but not 20 mm ethanol, and the enhancement was blocked by finasteride and dutasteride, selective inhibitors of 5α-reductase, a key enzyme required for allopregnanolone synthesis. Consistent with a prior report indicating that N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can promote steroid production, we observed that D-2-amino-5-phosphonovalerate (APV), a competitive NMDAR antagonist, blocked the effects of 60 mm ethanol on staining. We previously reported that 60 mm ethanol inhibits the induction of long-term potentiation (LTP), a cellular model for memory formation, in the CA1 region. In the present study, LTP inhibition by 60 mm ethanol was also overcome by both the 5α-reductase inhibitors and by APV. Furthermore, the effects of ethanol on neurosteroid production and LTP were mimicked by a low concentration of NMDA (1 μm), and the ability of NMDA to inhibit LTP and to enhance neurosteroid staining was reversed by finasteride and dutasteride, as well as by APV. These results indicate that ethanol paradoxically enhances GABAergic neurosteroid production by activation of unblocked NMDARs and that acute LTP inhibition by ethanol represents a form of NMDAR-mediated metaplasticity
The gut-brain axis, BDNF, NMDA and CNS disorders
Gastro-intestinal (GI) microbiota and the ‘gut-brain axis’ are proving to be increasingly relevant to early brain development and the emergence of psychiatric disorders. This review focuses on the influence of the GI tract on Brain-Derived Neurotrophic Factor (BDNF) and its relationship with receptors for N-methyl-d-aspartate (NMDAR), as these are believed to be involved in synaptic plasticity and cognitive function. NMDAR may be associated with the development of schizophrenia and a range of other psychopathologies including neurodegenerative disorders, depression and dementias. An analysis of the routes and mechanisms by which the GI microbiota contribute to the pathophysiology of BDNF-induced NMDAR dysfunction could yield new insights relevant to developing novel therapeutics for schizophrenia and related disorders. In the absence of GI microbes, central BDNF levels are reduced and this inhibits the maintenance of NMDAR production. A reduction of NMDAR input onto GABA inhibitory interneurons causes disinhibition of glutamatergic output which disrupts the central signal-to-noise ratio and leads to aberrant synaptic behaviour and cognitive deficits. Gut microbiota can modulate BDNF function in the CNS, via changes in neurotransmitter function by affecting modulatory mechanisms such as the kynurenine pathway, or by changes in the availability and actions of short chain fatty acids (SCFAs) in the brain. Interrupting these cycles by inducing changes in the gut microbiota using probiotics, prebiotics or antimicrobial drugs has been found promising as a preventative or therapeutic measure to counteract behavioural deficits and these may be useful to supplement the actions of drugs in the treatment of CNS disorders
Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium.
Dendritic spines are small subcompartments that protrude from the dendrites of neurons and are important for signaling activity and synaptic communication. These subcompartments have been characterized to have different shapes. While it is known that these shapes are associated with spine function, the specific nature of these shape-function relationships is not well understood. In this work, we systematically investigated the relationship between the shape and size of both the spine head and spine apparatus, a specialized endoplasmic reticulum compartment within the spine head, in modulating rapid calcium dynamics using mathematical modeling. We developed a spatial multicompartment reaction-diffusion model of calcium dynamics in three dimensions with various flux sources, including N-methyl-D-aspartate receptors (NMDARs), voltage-sensitive calcium channels (VSCCs), and different ion pumps on the plasma membrane. Using this model, we make several important predictions. First, the volume to surface area ratio of the spine regulates calcium dynamics. Second, membrane fluxes impact calcium dynamics temporally and spatially in a nonlinear fashion. Finally, the spine apparatus can act as a physical buffer for calcium by acting as a sink and rescaling the calcium concentration. These predictions set the stage for future experimental investigations of calcium dynamics in dendritic spines
- …
