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Dual Perspectives

Dual Perspectives Companion Paper: The Role of GluN2C-Containing NMDA Receptors in Ketamine’s Psychotogenic
Action and in Schizophrenia Models, by Elizaveta Khlestova, Jon W. Johnson, John H. Krystal, and John Lisman

Ketamine: NMDA Receptors and Beyond

Charles F. Zorumski, Yukitoshi Izumi, and X Steven Mennerick
Department of Psychiatry, Taylor Family Institute for Innovative Psychiatric Research, and Center for Brain Research in Mood Disorders, Washington
University School of Medicine, St. Louis, Missouri 63110

Human studies examining the effects of the dissociative anesthetic ketamine as a model for psychosis and as a rapidly acting antidepres-
sant have spurred great interest in understanding ketamine’s actions at molecular, cellular, and network levels. Although ketamine has
unequivocal uncompetitive inhibitory effects on N-methyl-D-aspartate receptors (NMDARs) and may preferentially alter the function of
NMDARs on interneurons, recent work has questioned whether block of NMDARs is critical for its mood enhancing actions. In this
viewpoint, we examine the evolving literature on ketamine supporting NMDARs as important triggers for certain psychiatric effects and
the possibility that the antidepressant trigger is unrelated to NMDARs. The rapidly evolving story of ketamine offers great hope for
untangling and treating the biology of both depressive and psychotic illnesses.
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Introduction
There is increasing scientific and clinical interest in under-
standing mechanisms underlying the psychiatric effects of ket-
amine and other N-methyl-D-aspartate receptor (NMDAR)
antagonists. Current interest in ketamine stems from seminal
studies of Krystal and colleagues in the early 1990s in which
they demonstrated that a single 40 min infusion of a subanes-
thetic dose of ketamine (0.5 mg/kg) produces transient psy-
chotic symptoms in otherwise healthy adults (Krystal et al.,
1994). Ketamine infusion resulted in sensory illusions, perse-
cutory ideas, and altered cognition, including poor attention,
word finding problems, and acute learning difficulties. These
symptoms were observed during ketamine infusion but aba-
ted within a few hours after the drug infusion was terminated.
Subsequently, Berman et al. (2000) found that this same
infusion of ketamine also produced a slower developing, but
still rapid, antidepressant response in patients with major
depression. This effect was manifest within a few hours after
ketamine infusion and persisted up to a week or so in some
individuals. Importantly, ketamine appears to have ant-
idepressant effects, even in patients with treatment refractory
major depression, including rapid beneficial effects on sui-
cidal ideation (Zarate et al., 2006).

The psychotomimetic and antidepressant effects have spurred
keen interest in how ketamine produces its effects at cellular,
synaptic, and network levels (Abdallah et al., 2015). Studies in the
1980s showed that ketamine is a noncompetitive (uncompeti-
tive) NMDAR antagonist (Anis et al., 1983) that acts by an open
channel block mechanism (MacDonald et al., 1987). Thus, ket-
amine does not bind closed NMDAR channels but rather requires
channels to open to antagonize (MacDonald et al., 1987). Ket-
amine, like its structural analogs phencyclidine and MK-801,
produces a trapping type of open channel block, in which the
drug binds a site that is electrically deep within the ion channel,
occludes the flow of ions through the open channel, and can
remain in the channel when the channel closes (Huettner and
Bean, 1988). This latter property helps account for a long-lived
block that is relieved by channel opening. Membrane depolariza-
tion reduces block, likely by speeding drug dissociation, but the
precise mechanism of voltage dependence remains unclear
and does not appear fully accounted for by an electrostatic model
(MacDonald and Nowak, 1990). Ketamine is less potent than
phencyclidine and MK-801 because of faster dissociation from
the open channel (Johnson and Kotermanski, 2006). Although
ketamine is not selective for NMDARs (Chen et al., 2009) and
recent studies have questioned the role of NMDAR antagonism
in antidepressant actions (Zanos et al., 2016), ketamine’s effects
on NMDARs appear to contribute significantly to anesthetic, an-
algesic, and psychotomimetic, if not also antidepressant, actions
(Kavalali and Monteggia, 2012; Abdallah et al., 2015).

Ketamine and NMDARs: alternative views
Understanding how ketamine produces its effects is an area of
active investigation with important implications for understand-
ing the pathophysiology and treatment of psychotic illnesses and
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mood disorders. Importantly, the psychiatric effects of ketamine
are observed at subanesthetic doses (Li et al., 2010; Abdallah et al.,
2015) that likely achieve brain concentrations in the low micro-
molar range, although actual brain concentrations remain uncer-
tain (Hartvig et al., 1995; Zhao et al., 2012). At low micromolar
concentrations, ketamine inhibits only a fraction of NMDARs
(likely �50% block for most NMDAR subtypes at steady state
under physiological conditions), leaving a significant percentage
of NMDARs unblocked at peak drug effect (Dravid et al., 2007;
Kotermanski et al., 2009). This latter point is important because
prior studies indicate that the antidepressant-like effects of
ketamine in rodents are not observed with anesthetic doses that
block a higher fraction of NMDARs (Li et al., 2010). Further-
more, complete NMDAR block by high concentrations of ket-
amine also eliminates the complex effects of the drug on neuronal
excitability and delayed metaplastic inhibition of LTP in the hip-
pocampus of juvenile rats that are observed at low micromolar
concentrations (Izumi and Zorumski, 2014). These observations
raise the possibility that activation of unblocked NMDARs dur-
ing subanesthetic ketamine administration, perhaps involving
specific subtypes of NMDARs, may be important in determining
ultimate behavioral and network outcomes.

Although ketamine is not selective for specific NMDAR sub-
types, some evidence indicates threefold to fourfold higher po-
tency for NMDARs expressing GluN1/GluN2C subunits that are
preferentially expressed on GABAergic interneurons (Monyer et
al., 1994; Kotermanski and Johnson, 2009). The increased po-
tency of ketamine for GluN2C NMDARs was observed in the
presence, but not absence, of extracellular Mg 2�. The increased
potency thus does not arise as a result of differences in inherent
ketamine affinity for different GluN subunits; rather, the differ-
ence appears to reflect interactions between Mg 2� and ketamine
in the channel pore (Kotermanski and Johnson, 2009; Koterman-
ski et al., 2009). If ketamine achieves low micromolar conce-
ntrations in the brain during infusions, however, other
Mg 2�-sensitive subtypes of NMDARs will also show significant
block and contribute to changes in behavior and neuronal
function. In particular, some effects of ketamine, including
antidepressant-like effects in mice and effects on signaling path-
ways thought to contribute to antidepressant actions, overlap
strongly with NMDARs that express GluN2B subunits (Miller et
al., 2014), and more selective GluN1/GluN2B antagonists have
antidepressant-like effects in rodents (Poleszak et al., 2013) and
humans (Preskorn et al., 2008). Indeed, deletion of GluN2B from
a subset of cortical principal neurons mimics and occludes ket-
amine’s antidepressant-like and synaptic effects (Miller et al.,
2014). Furthermore, some evidence using recombinant NMDAR
subunits expressed in Xenopus oocytes indicates that the po-
tency of ketamine (in the nominal absence of Mg 2�) is higher
at GluN2B-expressing receptors than GluN2A, GluN2C, or
GluN2D (Dravid et al., 2007). Factors contributing to NMDAR
subtype preference remain poorly understood, but extracellular
Mg 2� and H� likely contribute (Dravid et al., 2007; Kotermanski
and Johnson, 2009). Other work suggests that antidepressant-like
effects of NMDAR antagonists in rodents are observed with an-
tagonism of either GluN2A- or GluN2B-type receptors, whereas
psychotomimetic-like effects (stereotypies) are observed with
blockade of both GluN2A and GluN2B (Jiménez-Sánchez et al.,
2014). This latter finding may not translate to humans because a
selective GluN2B antagonist produces dissociative symptoms in
humans at higher doses (Preskorn et al., 2008).

Balanced against studies suggesting preferential GluN subunit
involvement in ketamine’s antidepressant actions are other stud-

ies suggesting that drugs ostensibly very similar to ketamine lack
antidepressant actions. For instance, the drug memantine is
pharmacodynamically similar to ketamine but does not share
strong antidepressant-like actions (Gideons et al., 2014). Me-
mantine may preferentially target extrasynaptic over synaptic
NMDARs (Xia et al., 2010), although this likely arises as a result
of phasic versus tonic patterns of channel opening at synaptic and
extrasynaptic NMDAR populations, respectively, rather than
from subunit selectivity (Wroge et al., 2012). Ketamine and me-
mantine have indistinguishable effects on NMDARs under basal
conditions in cultured hippocampal neurons, but differences in
effects emerge with increases in the open channel probability of
NMDARs in the presence of positive allosteric NMDAR modu-
lators or under pathological conditions, such as oxygen-glucose
deprivation, where small differences in the voltage dependence of
the drugs become evident (Emnett et al., 2013, 2015). Ketamine
and memantine may also differ in their interactions with
Mg 2� at NMDARs and in their effects on spontaneous NMDAR-
mediated transmission (Gideons et al., 2014); memantine also
differs from ketamine in engaging a more superficial site within
the NMDAR channel in addition to the electrically deep site
that underlies ketamine’s effects (Kotermanski et al., 2009).
Thus, understanding differential effects of ketamine and other
NMDAR antagonists on NMDARs and on alternative targets may
be important for unraveling both the psychotomimetic and an-
tidepressant actions of ketamine.

Two cellular hypotheses have been offered to explain subse-
quent persistent increases in glutamate release that apparently
help to sustain antidepressant action following ketamine treat-
ment (Miller et al., 2016). First, the indirect hypothesis alluded to
above suggests preferential effects on NMDARs of GABA-ergic
interneurons. This hypothesis is consistent with studies demon-
strating that ketamine has disinhibitory effects in neocortex re-
sulting in enhanced activity of excitatory pyramidal neurons
and increases in extracellular glutamate levels (Behrens et al.,
2007; Homayoun and Moghaddam, 2007; Schobel et al., 2013).
Second, a direct hypothesis suggests that ketamine inhibition of
NMDARs on principal cells alters ongoing cellular signaling
pathways to trigger synaptic plasticity. This hypothesis is sup-
ported by recent evidence that deletion of GluN2B from cortical
principal neurons mimics the effect of ketamine (Miller et al.,
2014).

Regardless of initial cellular locus, because ketamine’s antide-
pressant effects outlive both its psychotomimetic effects and its
physical presence in brain, it is likely that ketamine triggers per-
sistent biochemical, synaptic, and network effects. Consistent
with this idea, ketamine has been shown to persistently enhance
AMPAR-mediated excitatory synaptic function in frontal cortex
and hippocampus (Li et al., 2010; Autry et al., 2011; Nosyreva et
al., 2013). These latter effects may result from different actions in
different brain regions but appear to involve activation of the
mechanistic target of rapamycin (mTOR) kinase, inhibition of
eukaryotic elongation factor 2 kinase and enhanced signaling by
BDNF through trk B receptors (Li et al., 2010; Autry et al., 2011;
but see Murrough, 2016). Other work indicates that effects of
ketamine on GABAergic interneurons in cortex may involve pro-
duction of reactive oxygen species via NADPH oxidase (Behrens
et al., 2007), whereas network effects of ketamine in the juvenile
hippocampus involve nitric oxide synthase (Izumi and Zorum-
ski, 2014). Studies in adult hippocampus also suggest that ket-
amine may trigger signaling events via preferential inhibition of
NMDARs activated by spontaneous (rather than evoked) synap-
tic transmission (Autry et al., 2011; Nosyreva et al., 2013).
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Ketamine and brain maturation: a window on
psychiatric effects?
An intriguing feature of ketamine that remains poorly understood is
that the psychotomimetic and likely antidepressant effects change
over the course of postnatal maturation; these developmental
changes may be critical for understanding the role of NMDARs in
psychiatry. In particular, ketamine-induced psychosis is observed in
adult humans but is rare in children (Olney and Farber, 1995). Rea-
sons for this developmental change are uncertain, but similar
developmental changes have been observed in rodents for patho-
morphological effects of ketamine and other NMDAR antagonists.
Olney et al. (1989) found that ketamine produces vacuolar changes
in posterior cingulate and retrosplenial cortices (among other re-
gions). These vacuoles involve swelling of mitochondria and endo-
plasmic reticulum, and appear to result from disinhibitory effects
and excessive excitation of pyramidal neurons (Farber et al., 2002).
Similar to human psychiatric symptoms, vacuoles in rodent brain
are rare before postnatal day 30 (PND30) (late childhood/early ad-
olescence) but reliably observed in adulthood (Olney et al., 1991;
Farber et al., 1995). It is important to note that vacuolar changes
induced by ketamine in rodents are observed at higher doses than
antidepressant-like effects (40 mg/kg s.c. single dose vs 3–10 mg/kg
i.p. single dose) (Olney et al., 1989; Li et al., 2010; Autry et al., 2011).
Further complicating these observations is the uncertainty in esti-
mating the concentrations of ketamine that are achieved in brain
with various doses and administration routes. Nevertheless, the ob-
servations highlight developmental changes that parallel those un-
derlying ketamine psychotomimetic effects in humans.

Interestingly, treatments that dampen the neuropathological ef-
fects in rodents, including agents that enhance the actions of GABA-
type A receptors (GABAARs), antimuscarinics, and �-adrenergic
agonists, also dampen psychotomimetic-like effects in animals (Ol-
ney et al., 1991; Olney and Farber, 1995). It is less clear whether these
protective agents alter antidepressant effects, although a recent study
found that clonidine, an �2 adrenergic agonist, dampened psychotic
symptoms, but not antidepressant effects, in humans during 96 h
ketamine infusions (Lenze et al., 2016).

Consistent with the above developmental changes, the ability
of ketamine both to produce antidepressant-like behavioral ef-
fects in rodents and to enhance hippocampal synaptic transmis-
sion may depend on postnatal developmental age (Izumi and
Zorumski, 2014; Nosyreva et al., 2014). Young rodents show nei-
ther antidepressant-like effects (PND30) nor synaptic enhance-
ment (PND14 and PND30), whereas both effects are observed in
young adult mice (6 – 8 weeks of age) (Nosyreva et al., 2014).
Factors underlying these maturational differences are not certain
but raise questions about changes in expression of NMDAR sub-
units and the possibility of alternative mechanisms that are age
dependent.

Are NMDARs the entire ketamine story?
Although NMDARs are the most obvious candidates to trigger an-
tidepressant effects, recent data cast some doubt on the NMDAR
hypothesis. The role of NMDARs in the psychotomimetic effects of
ketamine is less controversial and is consistent with numerous stud-
ies indicating that NMDAR hypofunction may be an important con-
tributor to schizophrenia and other psychotic illnesses (Olney and
Farber, 1995; Schobel et al., 2013). Several NMDAR channel-
blocking drugs, including phencyclidine and MK-801, reproduce
the psychotomimetic effects of ketamine in humans and animals
(Wiescholleck and Manahan-Vaughan, 2013). Furthermore, the
acute psychotomimetic effects more closely parallel ketamine’s
pharmacokinetics and dissipate with ketamine clearance and metab-

olism. In contrast, a recent report by Zanos et al. (2016) raises im-
portant questions about whether NMDAR blockade is critical for the
slower-onset and longer-lived antidepressant-like actions. This
work provides evidence that a ketamine metabolite (2S,6S;2R,6R-
hydroxynorketamine (HNK) and more specifically, 2R,6R-HNK)
may be the key mediator of effects on mood-related behaviors and
the CA1 hippocampal network in rodents, even though HNK does
not affect NMDARs. Intriguingly, HNK, particularly 2R,6R-HNK,
may also lack the psychosis-inducing properties of ketamine. This
recent study pursues the fact that ketamine used in clinical practice
in the United States is a mixture of R,S-enantiomers, and earlier
studies found that R-ketamine has more potent antidepressant-like
effects in rodents than S-ketamine (Zhang et al., 2014; Yang et al.,
2015), although the opposite is true at NMDARs (Liu et al., 2001).
This enantioselectivity provides circumstantial evidence that
NMDARs may not be the relevant trigger for antidepressant effects
and prompted the focus on 2R,6R-HNK. It remains uncertain how
HNK produces its effects on behavior, AMPA receptor-mediated
synaptic transmission, and biochemical signaling pathways in the
hippocampus, although AMPA receptors, BDNF, and eukaryotic
elongation factor 2 kinase appear to be key mediators just as they are
for ketamine. Despite considerable interest generated by this recent
work (Zanos et al., 2016), it remains unclear whether the doses and
concentrations of ketamine metabolites that produce effects in ro-
dents are relevant to antidepressant studies in humans (Zarate et al.,
2012). Further complicating the translation of this work to humans
is a recent report showing that intravenous administration of S-
ketamine has potent antidepressant effects in humans with treat-
ment-resistant depression (Singh et al., 2016). Again, these recent
findings highlight the major challenges in translating rodent studies
of complex behaviors, particularly behaviors such as depression and
psychosis, to humans.

Earlier studies reported that other ketamine metabolites, in-
cluding 2S,6S-HNK and (R,S)-norketamine (NK), can activate
signaling pathways, such as mTOR, thought to underlie ket-
amine’s effects in prefrontal cortex (Paul et al., 2014). The
potency of HNK and NK for activating mTOR in PC12 cells
paralleled the effectiveness of these metabolites as antagonists at
�7 neuronal nicotinic receptors (Moaddel et al., 2013), possibly
implicating nicotinic receptors as important antidepressant trig-
gers. However, dehydronorketamine is also a potent �7 nicotinic
antagonist (Moaddel et al., 2013), but subsequent studies indi-
cated that dehydronorketamine lacks antidepressant-like effects
in rodents (Salat et al., 2015). Thus, the evidence for nicotinic
receptor involvement remains equivocal. At a minimum, this set
of studies raises important questions about the role of NMDAR
inhibition in triggering the antidepressant actions of ketamine. If
HNK proves to be a key mediator of antidepressant effects while
having no psychotomimetic actions, these studies may provide
ways to more definitively disentangle the two complex psychiat-
ric effects of ketamine, perhaps even strengthening the hypothe-
sis that NMDAR antagonism contributes to psychosis.

Because ketamine is an ion channel blocker with active
metabolites, it is not surprising that the drug has actions on se-
veral receptors and channels. In particular, hyperpolarization-
activated cyclic nucleotide gated cationic (HCN) channels that
express the HCN1 subunit have been found to be a potential
target underlying ketamine’s effects on neural networks and cer-
tain clinical-like actions. HCN1-containing channels contribute
to pacemaker firing in some brain regions and to the dendrosomatic
coupling by which synaptic inputs in dendrites are conducted to
neuronal cell bodies and axon initial segments to modulate spike
firing. Ketamine inhibits HCN1-expressing channels at clinically rel-
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evant concentrations with a half-maximal effective concentration of
�10 �M and greater potency of S-ketamine over R,S-ketamine
(Chen et al., 2009). Mice with conditional forebrain knock-out of
HCN1 in cortex and hippocampus show diminished sedation by
ketamine (Zhou et al., 2013). It is presently unclear whether effects of
ketamine on HCN1 contribute to psychiatric effects, and the IC50 for
HCN block is greater than for effects at NMDARs and �7 nicotinic
receptors. Nonetheless, changes in dendrosomatic integration ap-
pear to contribute to some hippocampal network effects observed in
the hippocampus of juvenile rats, although these effects have not
been directly linked to changes in HCN function (Izumi and Zo-
rumski, 2014).

Beyond ion channels, ketamine also has significant effects on
aminergic, opioid, and cholinergic systems that could contribute
to behavioral and neural network changes (Sleigh et al., 2014).
Effects on dopamine turnover and opiate receptors may be par-
ticularly important for understanding the drug’s various behav-
ioral properties as a psychotomimetic, antidepressant, and agent
of abuse (Sanacora and Schatzberg, 2015).

Intracellular drug accumulation: an alternative hypothesis
As noted, studies of ketamine to date have largely focused on
actions at NMDARs and downstream effects on synapses and
networks thought to arise from initial NMDAR block, followed
by increased extracellular glutamate levels and activation of in-
tracellular signaling pathways. Lester et al. (2012, 2015) have
raised a provocative alternative in which ketamine, a lipophilic
weak base, accumulates in neurons via acid trapping in intracel-
lular organelles and exerts its more persistent (antidepressant-
like) effects via direct actions on intracellular signaling molecules
independent of NMDAR block. Intracellular accumulation oc-
curs with many CNS-active drugs because of their high mem-
brane permeability and ability to cross the blood– brain barrier.
Many psychotropic drugs are weak bases and therefore expected
to accumulate in intracellular organelles with high acidity, such
as lysosomes and synaptic vesicles (Sulzer and Rayport, 1990;
Tischbirek et al., 2012). Actions at lysosomes could trigger mTOR
signaling independent of NMDARs (Lester et al., 2015). Other
direct intracellular targets of ketamine could include endoplas-
mic reticulum and Golgi. In these organelles, ketamine could
perhaps act as a chaperone for NMDARs or other receptors, as
has been shown for nicotine at nicotinic receptors (Srinivasan et
al., 2011). Ketamine may also dampen endoplasmic reticulum-
related stress (Lester et al., 2012), and other studies indicate
that effects on cell death in some systems can be NMDAR-
independent (Braun et al., 2010; Baker et al., 2016).

The direct intracellular hypothesis of ketamine takes on new
meaning in light of the NMDAR-independent antidepressant-
like effects of HNK described above (Zanos et al., 2016). Further
tests of this hypothesis would benefit from ketamine and HNK
analogs that can be tracked for intracellular localization and ac-
tivity. One possibility that is currently being explored is to use
norketamine derivatives that have an alkyne substitution allow-
ing intracellular visualization with azide-alkyne condensation
click chemistry (Emnett et al., 2014), ideally in combination with
photoaffinity labeling of specific targets (Lapinsky, 2012; Peyrot
et al., 2014; Jiang et al., 2016). A similar tandem photoaffinity
labeling/click chemistry purification strategy could also be used
biochemically to isolate novel ketamine protein targets (Lapin-
sky, 2012). Although the idea for non–NMDAR-related targets,
including intracellular targets, is intriguing, ultimately these hy-
potheses have to contend with the data cited above suggesting
that NMDAR antagonists chemically unrelated to ketamine, pre-

sumably with different cellular metabolites, different off-target
effects, and different intracellular partitioning patterns, also trig-
ger ketamine-like antidepressant effects.

In conclusion, there is little doubt that human studies of the
psychotomimetic and antidepressant effects of ketamine have
had a major impact on current thinking about the neuroscience
and therapeutics of psychiatric illnesses. Studies of ketamine are
spurring a host of new ideas about mood and psychotic illnesses,
including the potential role of NMDARs and the implementation
of other novel treatment strategies (Drevets et al., 2013; Nagele et
al., 2015). Although the prominent effects of ketamine on
NMDARs have formed the basis for much of this work and con-
tribute to many of the major psychiatric effects of ketamine and
other NMDAR antagonists, it is clear that alternative targets must
be considered, including targets not involving NMDARs. These
newer lines of work will benefit from better understanding of the
developmental factors that contribute to ketamine’s actions as
well as the time course of ketamine’s psychotomimetic and anti-
depressant actions, including efforts to understand how to pro-
long the mood-altering effects in patients with refractory major
depression. The time course of ketamine’s effects following a
single infusion can also be highly instructive. Perhaps the psy-
chotic symptoms involve initial block of NMDARs that abate
over the course of a few hours while the antidepressant effects
become manifest. The longer-lived changes that likely underlie
the antidepressant actions may not only lead to better ways to
treat depression, but also to better therapeutic interventions for
psychotic illnesses, perhaps reflecting ways that neural networks
correct the errors in cognition, emotion, and motivation that
drive the initial psychosis. Whether these two aspects of ket-
amine’s actions in humans can be completely disentangled re-
mains uncertain at present. These are exciting possibilities,
however, that could revolutionize the treatment of devastating
and highly disabling common clinical illnesses.

Response provided by Dual Perspectives Companion
Authors–Elizaveta Khlestova, Jon W. Johnson, John H.
Krystal, and John Lisman

Dr. Zorumski and coauthors have discussed many of the
complexities in understanding how ketamine brings about
psychotogenic action and relieves depression. We agree
that there are likely to be multiple molecular targets in-
volved. We nevertheless think it is important to understand
which NMDARs are most affected by ketamine. It is fortu-
nate that quantitative information on the pharmacological
action of ketamine on NMDARs is available, and that previ-
ous studies also permit a reasonable estimate of ketamine
concentration in brain during human administration.
With such information, we have calculated that GluN2C-
containing NMDARs are preferentially inhibited at psy-
chotogenic doses of ketamine. Dr. Zorumski and coauthors
do not contradict this conclusion but raise one point to
which we reply. They note that, in the absence of Mg 2�,
ketamine does not preferentially block GluN2C-containing
receptors, and we agree. However, Mg 2� is normally pres-
ent in vivo; and under these conditions, ketamine’s block
will be selective for GluN2C-containing receptors. This is an
understandable finding because ketamine acts competi-
tively with Mg 2� (MacDonald et al., 1991); thus, ketamine’s
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preferential block of GluN2C-containing NMDARs can be
largely attributed to the weaker Mg 2� binding to GluN2C-
containing NMDARs compared with GluN2A/B-containing
NMDARs.

It may be that, if the ketamine concentration was high enough,
it could also have psychotogenic effects via GluN2A/B-contain-
ing NMDARs. However, experiments with an antagonist spe-
cific for GluN2B-containing NMDARs that might provide
evidence for such action remain equivocal. The authors of the
only study (Preskorn et al., 2008) of this issue in humans made
no claims regarding psychotogenic effects of the GluN2B-
selective antagonist CP-101,606, even though psychotogenic
effects were observed in some subjects at the highest concen-
tration that was used; the reason for caution is that such effects
were also sometimes observed in placebo controls.

Dr. Zorumski and coauthors cite important work from
Olney and collaborators (Olney et al., 1989) demonstrating
the neurotoxicity of ketamine on some cortical regions: vac-
uolar changes and even cell death were observed. Subse-
quent studies indicated that these cortical changes were not
the result of ketamine action directly on cortex but rather
stemmed from ketamine action in the thalamus (for review,
see Sharp and Hendren, 2007). Such remote action seems
surprising, but recent results (Zhang et al., 2012) provide a
plausible explanation: ketamine action in the thalamus
evokes � frequency bursting that is then transmitted to hip-
pocampus and cortex; this strong bursting may then pro-
duce the observed cortical damage.

The task of elucidating the network and pharmacological
mechanisms that underlie schizophrenia is extremely chal-
lenging, and it is important to seek converging hints using
multiple approaches. We have described in our Perspec-
tives article converging evidence that the psychotogenic ac-
tion of ketamine may result from preferential inhibition of
GluN2C-containing NMDARs and that the critical site of ac-
tion may be the thalamus, where the inhibition evokes �
frequency oscillations (Zhang et al., 2012). Such oscillations
may be transmitted to cortex and hippocampus and pro-
duce psychotogenic effects. Related processes could cause
the elevated � power in the EEG of patients with schizophre-
nia (Lehmann et al., 2014). Understanding these processes
may be key to developing treatments for the disease.
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