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Brief Communications

Ethanol Enhances Neurosteroidogenesis in Hippocampal
Pyramidal Neurons by Paradoxical NMDA Receptor
Activation

Kazuhiro Tokuda,1 Yukitoshi Izumi,1 and Charles F. Zorumski1,2

Departments of 1Psychiatry and 2Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110

Using an antibody against 5�-reduced neurosteroids, predominantly allopregnanolone, we found that immunostaining in the CA1
region of rat hippocampal slices was confined to pyramidal neurons. This neurosteroid staining was increased following 15 min admin-
istration of 60 mM but not 20 mM ethanol, and the enhancement was blocked by finasteride and dutasteride, selective inhibitors of
5�-reductase, a key enzyme required for allopregnanolone synthesis. Consistent with a prior report indicating that N-methyl-D-aspartate
(NMDA) receptor (NMDAR) activation can promote steroid production, we observed that D-2-amino-5-phosphonovalerate (APV), a
competitive NMDAR antagonist, blocked the effects of 60 mM ethanol on staining. We previously reported that 60 mM ethanol inhibits the
induction of long-term potentiation (LTP), a cellular model for memory formation, in the CA1 region. In the present study, LTP inhibition
by 60 mM ethanol was also overcome by both the 5�-reductase inhibitors and by APV. Furthermore, the effects of ethanol on neurosteroid
production and LTP were mimicked by a low concentration of NMDA (1 �M), and the ability of NMDA to inhibit LTP and to enhance
neurosteroid staining was reversed by finasteride and dutasteride, as well as by APV. These results indicate that ethanol paradoxically
enhances GABAergic neurosteroid production by activation of unblocked NMDARs and that acute LTP inhibition by ethanol represents
a form of NMDAR-mediated metaplasticity.

Introduction
During acute ethanol intoxication, individuals can perform complex
acts for which they have no recollection, a state referred to as a
“blackout” (White, 2003). Understanding how this dense amnesia
occurs is important for understanding alcoholism as a neurocogni-
tive disorder. Ethanol is thought to impair memory by inhibiting
long-term potentiation (LTP), a form of synaptic plasticity associ-
ated with memory processing (Bliss and Collingridge, 1993; Martin
et al., 2000). Although ethanol is a partial N-methyl-D-aspartate
(NMDA) receptor (NMDAR) antagonist (Izumi et al., 2005), etha-
nol’s effects on LTP involve enhanced GABA-mediated inhibition
via 5�-reduced neurosteroids, including 3�-hydroxy-5�-prenan-
20-one (allopregnanolone) (Izumi et al., 2007). It is presently un-
clear which neural cells are responsible for neurosteroidogenesis and
how ethanol promotes steroid production.

In this study, we pursued the hypothesis that ethanol’s effects
on LTP represent a form of metaplasticity involving unblocked
NMDARs (Izumi et al., 1992a,b). We based these studies on the
findings that ethanol alters extracellular glutamate levels (Moghad-
dam and Bolinao, 1994; Chefer et al., 2011) and is a partial

NMDAR antagonist in the hippocampus (Izumi et al., 2005). We
found that both the enhancement of neurosteroid levels and in-
hibition of LTP by ethanol in CA1 hippocampal pyramidal neu-
rons involve NMDAR activation, not inhibition, and that a low
micromolar concentration of NMDA mimics the effects of etha-
nol on neurosteroidogenesis and LTP.

Materials and Methods
Animals. Protocols for animal use were approved by the Washington
University Animal Studies Committee in accordance with the NIH
guidelines for care and use of laboratory animals.

Hippocampal slice preparation. Hippocampal slices were prepared as
descried previously (Zorumski et al., 1996) from postnatal day 30 –32
male Sprague Dawley rats purchased from Harlan. Rats were anesthe-
tized with isoflurane and decapitated. Slices were cut transversely into
500 �m slices using a rotary slicer in artificial CSF (ACSF) containing the
following (in mM): 124 NaCl, 5 KCl, 2 MgSO4, 2CaCl2, 1.25 NaH2PO4, 22
NaHCO3, and 10 glucose, bubbled with 95% O2/5% CO2 at 4 – 6°C.
Acutely prepared slices were placed on nylon mesh in 10 ml beakers
containing gassed ACSF and maintained for at least 1 h at 30°C before
experiments.

Immunohistochemistry. Hippocampal slices used for immunohisto-
chemistry were initially screened by electrophysiology to diminish
slice-to-slice variability in staining for 5�-reduced neurosteroids. Im-
munostaining was performed as described previously (Tokuda et al.,
2010). Slices were incubated with various reagents in separate 10 ml
beakers. For experiments (including electrophysiology) in which we ex-
amined the role of 5�-reductase in the effects of ethanol or NMDA,
inhibitors of the enzyme were administered for at least 15 min before the
other agents. This was done to allow time for the enzyme inhibitors to
access their intracellular sites of action. Following drug treatment, slices
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were fixed in fresh 4% paraformaldehyde in
PBS for 30 min. Samples were then washed
with PBS and incubated in blocking solution
(1% donkey serum/PBS) for 2 h at 25°C. Slices
were incubated with a primary antibody raised
in sheep against 5�-reduced neurosteroids
diluted 1:2500 in blocking solution for 48 h
at 4°C. The polyclonal antibody against 5�-
steroids has minimal cross-reactivity with
other neurosteroids in rats (Bernardi et al.,
1998).

After incubation with primary antibody,
slices were rinsed with PBS and incubated with
a secondary antibody, Alexa Fluor 488 donkey
anti-sheep IgG (diluted 1:500), for 2 h at 25°C.
After staining, slices were washed with PBS
and mounted onto microscope slides with
Fluoromount-G (Southern Biotech).

Confocal images were obtained using a 60�
objective (1.4 numerical aperture), a C1 laser
scanning confocal microscope, and Z-C1 soft-
ware (Nikon Instruments). All parameters were
kept constant within an experiment. Digital im-
ages were analyzed, and the average intensity of
the tissue was measured using MetaMorph soft-
ware (Universal Imaging).

Extracellular field potential recording. For
electrophysiology, slices were incubated in a
submerged recording chamber with continu-
ous bath perfusion of oxygenated ACSF at 2
ml/min at 30°C. Extracellular recordings were
obtained from the apical dendritic layer of the
CA1 region elicited with 0.1 ms constant current
pulses through a bipolar stimulating electrode
(Rhodes Medical Instruments) in stratum radia-
tum. LTP was induced by applying a single 100
Hz�1 s high-frequency stimulation (HFS) using
a 50% maximal stimulus. Input–output curves
were repeated 60 min following HFS for statisti-
cal comparisons of changes in EPSP slopes at the half-maximal point. Signals
were digitized and analyzed using PCLAMP software (Molecular Devices).

Statistical analysis. All data are expressed as mean � SEM. Student’s t
test was used for comparisons between two groups. If an equal variance
test failed, the nonparametric Mann–Whitney rank sum test was applied.
For multiple comparisons, ANOVA followed by post hoc Holm–Sidak
test was used. Statistical analyses were performed using commercial soft-
ware (Sigma Stat 3.11; Systat Software). p values of �0.05 were consid-
ered statistically significant.

Materials. Finasteride was obtained from Steraloids. Dutasteride was
obtained from AK Scientific. All other chemicals were purchased from
Sigma. Anti-allopregnanolone antisera were purchased from Dr. Robert
Purdy, University of California-San Diego, La Jolla, CA. Alexa Fluor 488
was purchased from Invitrogen.

Results
We initially examined the effects of ethanol on neurosteroid im-
munostaining in the CA1 region of rat hippocampal slices by
using an antibody against 5�-reduced steroids, predominantly
allopregnanolone. Consistent with earlier reports (Saalman et al.,
2007; Tokuda et al., 2010), we found that steroid staining was
largely, if not exclusively, confined to CA1 pyramidal neurons.
Ethanol increased neurosteroid staining in a concentration-
dependent fashion, with significant effects following 15 min
administration of 60 mM (244.7 � 39.5% vs control, n � 5, *p �
0.001) (Fig. 1A,B) but not 20 mM ethanol (108.6 � 7.0%) (data
not shown). The enhanced staining was blocked completely by 1
�M finasteride and 1 �M dutasteride, selective inhibitors of 5�-
reductase, a key enzyme required for neurosteroid synthesis

(97.4 � 16.1% and 107.5 � 14.7%, n � 5, respectively) (Fig.
1A,B) (Aggarwal et al., 2010).

We subsequently sought to understand how ethanol enhances
neurosteroidogenesis. Based on reports indicating that NMDAR
activation promotes steroid production in the hippocampus
(Kimoto et al., 2001) and that ethanol promotes release of gluta-
mate (Chefer et al., 2011), we examined the effects of NMDAR
inhibition on neurosteroid staining. Administration of 50 �M

D-2-amino-5-phosphonovalerate (APV), a broad spectrum com-
petitive NMDAR antagonist, did not alter baseline staining
(93.0 � 11.4% vs control, n � 5) (Fig. 1B) but completely pre-
vented the effects of 60 mM ethanol (88.9 � 12.9%, p � 0.008 vs
60 mM ethanol alone) (Fig. 1A,B).

We also found that 60 mM but not 20 mM ethanol inhibited
LTP induction (Izumi et al., 2005, 2007), and this LTP inhibition
was overcome by 1 �M finasteride (EPSP change: 139.2 � 3.4% of
baseline, n � 5) (Fig. 2A) and 1 �M dutasteride (EPSP change:
154.0 � 8.1% of baseline, n � 5) (Fig. 2A). Exploiting an earlier
observation that ethanol’s block of LTP persists for over an hour
after drug washout (Izumi et al., 2005), we also found that effects
on LTP were reversed by coadministration of 50 �M APV (EPSP
change: 149.5 � 7.6% of baseline, n � 5) (Fig. 2B). Administra-
tion of APV alone 30 min before HFS followed by washout had no
effect on LTP induction (EPSP change: 157.7 � 9.2% of baseline,
n � 5, data not shown).

Because these results indicate that ethanol’s effects on neuro-
steroid production and LTP involve activation of NMDARs, we

Figure 1. Ethanol-mediated neurosteroidogenesis results from activation of NMDARs and 5�-reductase. A, Immunostaining
against 5�-reduced neurosteroids was observed in cell bodies of pyramidal neurons in naive hippocampal slices. The neurosteroid
staining was enhanced by 15 min incubation with 60 mM ethanol but blocked by 1 �M finasteride, 1 �M dutasteride, and 50 �M

APV. Scale bar, 25 �m. B, Summary of immunostaining studies shows fluorescence intensity (arbitrary units) as mean � SEM. p
values are calculated by Holm–Sidek post hoc test, n � 5; *p � 0.001.

9906 • J. Neurosci., July 6, 2011 • 31(27):9905–9909 Tokuda et al. • Neurosteroidogenesis by Ethanol via NMDA Receptor



also examined the effects of a low concentration of NMDA
(Izumi et al., 1992a,b). When administered at 1 �M, NMDA, like
ethanol, enhanced neurosteroid staining in pyramidal neurons
(244.2 � 22.8% vs control, n � 5, *p � 0.001) (Fig. 3A,B). Also
similar to ethanol, the enhancement of neurosteroid staining by
NMDA was reversed by finasteride and dutasteride (102.3 �
8.0% and 110.6 � 6.6%, n � 5, respectively) (Fig. 3A,B). Fur-
thermore, 1 �M NMDA administered before tetanic stimulation
inhibited the induction of LTP (EPSP change: 100.2 � 8.5% of
baseline, n � 5) (Fig. 4A), and this effect was also overcome by
finasteride and dutasteride (EPSP change: 157.6 � 10.9% of base-
line, 153.4 � 5.8% of baseline, n � 5, respectively) (Fig. 4A).
Finally, NMDA also had persistent effects on LTP, lasting at least
30 min following washout (EPSP change: 101.3 � 2.8% of base-
line, n � 5) (Fig. 4B). Again, similar to ethanol, APV coadmin-
istration with NMDA blocked the LTP inhibition (EPSP change:
157.7 � 9.2% of baseline, n � 5) (Fig. 4B).

Discussion
Ethanol has previously been shown to increase neurosteroid lev-
els in the isolated hippocampus (Sanna et al., 2004), although it
has remained unclear which cells are responsible for steroid pro-
duction and how this effect occurs. Pyramidal neurons in the
CA1 region express the machinery for cholesterol trafficking and
neurosteroid synthesis (Kimoto et al., 2001; Agís-Balboa et al.,
2006), and these neurons are the principal if not exclusive cells in
the region that are immunopositive for allopregnanolone and
other 5�-reduced neurosteroids under physiological conditions
(Saalman et al., 2007; Tokuda et al., 2010). We found that CA1
pyramidal neurons are also the cells that show enhanced neuro-
steroid staining following exposure to concentrations of ethanol
that impair LTP. Interestingly, the acute effects of ethanol on

neurosteroidogenesis, like effects on LTP,
require high concentrations with no effect
at 20 mM but significant effects at 60 mM.
Thus, if neurosteroids are involved in the
negative effects of ethanol on cognitive
function, it is likely that only high concen-
trations of ethanol acutely produce these
effects because of the apparent threshold
for neurosteroid synthesis. Based on the
observation that both enhanced steroid
production and LTP inhibition are pre-
vented by 5-� reductase inhibitors (Izumi et
al., 2007), our results provide further sup-
port for the hypothesis that high concen-
trations of ethanol impair hippocampal
LTP and presumably cognitive functions
through neurosteroidogenesis.

The present studies also provide insights
into how ethanol alters neurosteroid levels
and LTP. While it is widely recognized that
ethanol antagonizes NMDARs acutely, its
effects are only partial even at concentra-
tions of 50–100 mM (Lovinger et al., 1989).
We previously found that at concentrations
up to 60 mM ethanol partially depresses
NMDAR-mediated EPSPs in the CA1 re-
gion. These effects are mimicked and oc-
cluded by ifenprodil, a selective NR1/NR2B
antagonist (Izumi et al., 2005), suggesting
that ethanol preferentially antagonizes a
subtype of NMDARs in this region. Inter-
estingly, CA1 LTP is not blocked by ifen-

prodil (Liu et al., 2004, Izumi et al., 2006), and partial (�50%)
inhibition of NMDAR EPSPs does not depress LTP induction
(Izumi et al., 2006). Thus, it is unlikely that ethanol blocks LTP
induction solely through effects on NMDARs. Consistent with this,
ethanol’s block of LTP is prevented by inhibition of GABAA recep-
tors (Izumi et al., 2005).

We previously found that administration of low concentra-
tions of NMDA before tetanic stimulation dampens LTP induc-
tion via a metaplastic effect (Izumi et al., 1992a,b), indicating that
low-level but sustained NMDAR activation paradoxically inhib-
its an NMDAR-dependent form of synaptic plasticity. Based on
studies showing that ethanol can alter extracellular glutamate
(Moghaddam and Bolinao, 1994; Chefer et al., 2011), we postu-
lated that ethanol may produce its effects on LTP by a similar
metaplastic mechanism. How ethanol influences extracellular
glutamate levels remains uncertain. Based on our prior work, it
does not appear that ethanol acutely increases glutamate release
at CA1 synapses, because ethanol does not alter EPSP paired-
pulse plasticity in hippocampal slices (Murayama et al., 2006). It
is possible that ethanol alters extracellular glutamate via release
from glia, as has been shown in hippocampal astrocytes (Salazar
et al., 2008), or by effects on glutamate uptake (Othman et al.,
2002, Melendez et al., 2005).

The present results support the idea that ethanol’s effects on
both neurosteroidogenesis and LTP result from activation of un-
blocked NMDARs. Indeed, we found that both effects of ethanol
were prevented by complete NMDAR inhibition. Moreover, we
observed that brief administration of 1 �M NMDA in the pres-
ence of extracellular magnesium is sufficient to facilitate neuros-
teroidogenesis in CA1 pyramidal neurons and block LTP. While
we did not examine the concentration–response for NMDA’s

Figure 2. Ethanol-mediated LTP inhibition involves activation of NMDARs and 5�-reductase. A, In control slices, LTP is readily
induced (white circles) by a 100 Hz� 1 s high-frequency stimulation (HFS, arrow). Fifteen minute administration of 60 mM ethanol
(black bar) inhibited LTP induction (black circles), while finasteride (red triangles) or dutasteride (pink squares) overcame LTP
inhibition. B, Ethanol’s inhibition of LTP (black triangles) persisted for at least 30 min after washout (black bar). This inhibitory
effect was prevented by coadministration of APV (blue bar) with ethanol (blue triangles). Traces depict EPSPs before (dashed lines)
and 60 min after HFS (solid lines). Calibration, 1 mV, 5 ms.
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effects on steroid immunostaining, we
found that low-level NMDAR activation
is sufficient to increase neurosteroid stain-
ing in pyramidal neurons. Both effects of
NMDA are also reversed by NMDAR
antagonism (Izumi et al., 1992a,b) and
5�-reductase inhibitors, providing strong
parallels to the effects of ethanol. These re-
sults further suggest that low-level but per-
sistent NMDAR activation is an important
regulator of local neurosteroid production
and synaptic plasticity, acting through an as
yet unknown signaling pathway that could
include calcineurin, nitric oxide synthase,
and p38 MAP kinase, molecules previously
linked to NMDAR-mediated LTP inhibi-
tion (Izumi et al., 2008). We note, however,
that a recent study found that ethanol facil-
itates neurosteroid production in vivo
through release of adrenocorticotropic hor-
mone and synthesis of steroidogenic acute
regulatory protein (Boyd et al., 2010). Thus,
mechanisms other than direct regional syn-
thesis via NMDAR activation contribute to
ethanol’s overall effects on neurosteroid
generation. Furthermore, ethanol alters re-
lease of other signaling molecules, including
GABA, and these agents could also contrib-
ute to modulation of LTP (Siggins et al.,
2005). Additionally, the effects of ethanol on
LTP take longer than NMDA (�15 min
compared to 5 min), and thus there are
some differences between these agents in
their metaplastic actions.

We conclude that ethanol, despite being
a partial NMDAR antagonist (Izumi et al.,
2005), inhibits LTP induction via enhance-
ment of neurosteroidogenesis triggered by
activation of unblocked NMDARs in CA1 hippocampal pyramidal
neurons. Thus, acute ethanol-induced LTP inhibition appears to
represent a form of NMDAR-mediated metaplasticity (Izumi et al.,
1992a,b). These results suggest novel strategies to prevent the
cognitive impairment resulting from acute ethanol intoxication
and perhaps to prevent the longer-term cognitive consequences
of alcoholism.
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