1,394 research outputs found

    NIST Post-Quantum Cryptography- A Hardware Evaluation Study

    Get PDF
    Experts forecast that quantum computers can break classical cryptographic algorithms. Scientists are developing post quantum cryptographic (PQC) algorithms, that are invulnerable to quantum computer attacks. The National Institute of Standards and Technology (NIST) started a public evaluation process to standardize quantum-resistant public key algorithms. The objective of our study is to provide a hardware comparison of the NIST PQC competition candidates. For this, we use a High-Level Synthesis (HLS) hardware design methodology to map high-level C specifications of selected PQC candidates into both FPGA and ASIC implementations

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    Migrating to Post-Quantum Cryptography: a Framework Using Security Dependency Analysis

    Full text link
    Quantum computing is emerging as an unprecedented threat to the current state of widely used cryptographic systems. Cryptographic methods that have been considered secure for decades will likely be broken, with enormous impact on the security of sensitive data and communications in enterprises worldwide. A plan to migrate to quantum-resistant cryptographic systems is required. However, migrating an enterprise system to ensure a quantum-safe state is a complex process. Enterprises will require systematic guidance to perform this migration to remain resilient in a post-quantum era, as many organisations do not have staff with the expertise to manage this process unaided. This paper presents a comprehensive framework designed to aid enterprises in their migration. The framework articulates key steps and technical considerations in the cryptographic migration process. It makes use of existing organisational inventories and provides a roadmap for prioritising the replacement of cryptosystems in a post-quantum context. The framework enables the efficient identification of cryptographic objects, and can be integrated with other frameworks in enterprise settings to minimise operational disruption during migration. Practical case studies are included to demonstrate the utility and efficacy of the proposed framework using graph theoretic techniques to determine and evaluate cryptographic dependencies.Comment: 21 Page

    HLS-based HW/SW co-design of the post-quantum classic McEliece cryptosystem

    Get PDF
    While quantum computers are rapidly becoming more powerful, the current cryptographic infrastructure is imminently threatened. In a preventive manner, the U.S. National Institute of Standards and Technology (NIST) has initiated a process to evaluate quantum-resistant cryptosystems, to form the first post-quantum (PQ) cryptographic standard. Classic McEliece (CM) is one of the most prominent cryptosystems considered for standardization in NIST’s PQ cryptography contest. However, its computational cost poses notable challenges to a big fraction of existing computing devices. This work presents an HLS-based, HW/SW co-design acceleration of the CM Key Encapsulation Mechanism (CM KEM). We demonstrate significant maximum speedups of up to 55.2 ×, 3.3 ×, and 8.7 × in the CM KEM algorithms of key generation, encapsulation, and decapsulation respectively, comparing to a SW-only scalar implementation.This research was supported by the European Union Regional Development Fund within the framework of the ERDF Operational Program of Catalonia 2014-2020 with a grant of 50% of the total cost eligible, under the DRAC project [001- P-001723]. It was also supported by the Spanish goverment (grant RTI2018-095094-B-C21 “CONSENT”), by the Spanish Ministry of Science and Innovation (contracts PID2019- 107255GB-C21, PID2019-107255GB-C21) and by the Catalan Government (contracts 2017-SGR-1414, 2017-SGR-705). This work has also received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No. 871467. V. Kostalabros has been partially supported by the Agency for Management of University and Research Grants (AGAUR) of the Government of Catalonia under "Ajuts per a la contractació de personal investigador novell" fellowship No. 2019FI B01274. M. Moreto was also partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under "Ramón y Cajal" fellowship No. RYC-2016-21104.Peer ReviewedPostprint (author's final draft

    Performance Analysis of NIST Round 2 Post-Quantum Cryptography Public-key Encryption and Key-establishment Algorithms on ARMv8 IoT Devices using SUPERCOP

    Get PDF
    With tens of billions of new IoT devices being utilized, and the advent of quantum computing, our future and our security needs are rapidly changing. While IoT devices have great potential to transform the way we live, they also have a number of serious problems centering on their security capabilities. Quantum computers capable of breaking today’s encryption are just around the corner, and we will need to securely communicate over the internet using the encryption of the future. Post-quantum public-key encryption and key-establishment algorithms may be the answer to address those concerns. This paper used the benchmarking toolkit SUPERCOP to analyze the performance of post-quantum public-key encryption and key-establishment algorithms on IoT devices that are using ARMv8 CPUs. The performance of the NIST round 2 algorithms were found to not be significantly different between the two ARMv8 devices

    Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks

    Get PDF
    [Abstract] Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in the last years and their use has been suggested for numerous applications due to their ability to provide transparency, redundancy and accountability. In the case of blockchain, such characteristics are provided through public-key cryptography and hash functions. However, the fast progress of quantum computing has opened the possibility of performing attacks based on Grover's and Shor's algorithms in the near future. Such algorithms threaten both public-key cryptography and hash functions, forcing to redesign blockchains to make use of cryptosystems that withstand quantum attacks, thus creating which are known as post-quantum, quantum-proof, quantum-safe or quantum-resistant cryptosystems. For such a purpose, this article first studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs. Moreover, the most relevant post-quantum blockchain systems are studied, as well as their main challenges. Furthermore, extensive comparisons are provided on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains. Thus, this article seeks to provide a broad view and useful guidelines on post-quantum blockchain security to future blockchain researchers and developers.10.13039/501100010801-Xunta de Galicia (Grant Number: ED431G2019/01) 10.13039/501100011033-Agencia Estatal de InvestigaciĂłn (Grant Number: TEC2016-75067-C4-1-R and RED2018-102668-T) 10.13039/501100008530-European Regional Development FundXunta de Galicia; ED431G2019/0

    A Hardware Implementation for Code-based Post-quantum Asymmetric Cryptography

    Get PDF
    This paper presents a dedicated hardware implementation of the LEDAcrypt cryptosystem, which uses Quasi-Cyclic Low-Density Parity-Check codes and the Q decoder for the decryption function. The designed architecture is synthesized for both FPGA and ASIC technologies, featuring an intrinsic scalability over a wide range of parallelism degrees, which makes it possible to target multiple application scenarios, with different trade-offs between decryption latency and implementation complexity. The proposed system achieves a large speed-up over both software execution and a previous hardware implementation, with a the decryption latency as low as 3.16 ms for the FPGA version, and 1.2 ms when synthesized for a 65 nm CMOS technology
    • …
    corecore