51 research outputs found

    Design-space exploration of most-recent-only communication using myrinet on SGI ccNUMA architectures

    Get PDF
    technical reportSGI's current ccNUMA multiprocessor architectures offer high scalability and performance without sacrificing the ease of use of simpler SMP systems. Although these systems also provide a standard PCI expansion bus, the bridging between PCI and SGI's ccNUMA architecture invalidates the assumptions typically made by network protocol designers attempting to use Myrinet to reduce communications latencies. We explore the complications introduced by SGI's architecture in the context of designing most-recent-only communications, in which a reader requires only the most recent datum produced by a writer

    Overlapping of Communication and Computation and Early Binding: Fundamental Mechanisms for Improving Parallel Performance on Clusters of Workstations

    Get PDF
    This study considers software techniques for improving performance on clusters of workstations and approaches for designing message-passing middleware that facilitate scalable, parallel processing. Early binding and overlapping of communication and computation are identified as fundamental approaches for improving parallel performance and scalability on clusters. Currently, cluster computers using the Message-Passing Interface for interprocess communication are the predominant choice for building high-performance computing facilities, which makes the findings of this work relevant to a wide audience from the areas of high-performance computing and parallel processing. The performance-enhancing techniques studied in this work are presently underutilized in practice because of the lack of adequate support by existing message-passing libraries and are also rarely considered by parallel algorithm designers. Furthermore, commonly accepted methods for performance analysis and evaluation of parallel systems omit these techniques and focus primarily on more obvious communication characteristics such as latency and bandwidth. This study provides a theoretical framework for describing early binding and overlapping of communication and computation in models for parallel programming. This framework defines four new performance metrics that facilitate new approaches for performance analysis of parallel systems and algorithms. This dissertation provides experimental data that validate the correctness and accuracy of the performance analysis based on the new framework. The theoretical results of this performance analysis can be used by designers of parallel system and application software for assessing the quality of their implementations and for predicting the effective performance benefits of early binding and overlapping. This work presents MPI/Pro, a new MPI implementation that is specifically optimized for clusters of workstations interconnected with high-speed networks. This MPI implementation emphasizes features such as persistent communication, asynchronous processing, low processor overhead, and independent message progress. These features are identified as critical for delivering maximum performance to applications. The experimental section of this dissertation demonstrates the capability of MPI/Pro to facilitate software techniques that result in significant application performance improvements. Specific demonstrations with Virtual Interface Architecture and TCP/IP over Ethernet are offered

    Guaranteed bandwidth implementation of message passing interface on workstation clusters

    Get PDF
    Due to their wide availability, networks of workstations (NOW) are an attractive platform for parallel processing. Parallel programming environments such as Parallel Virtual Machine (PVM), and Message Passing Interface (MPI) offer the user a convenient way to express parallel computing and communication for a network of workstations. Currently, a number of MPI implementations are available that offer low (average ) latency and high bandwidth environments to users by utilizing an efficient MPI library specification and high speed networks. In addition to high bandwidth and low average latency requirements, mission critical distributed applications, audio/video communications require a completely different type of service, guaranteed bandwidth and worst case delays (worst case latency) to be guaranteed by underlying protocol. The hypothesis presented in this paper is that it is possible to provide an application a low level reliable transport protocol with performance and guaranteed bandwidth as close to the hardware on which it is executing. The hypothesis is proven by designing and implementing a reliable high performance message passing protocol interface which also provides the guaranteed bandwidth to MPI and to mission critical distributed MPI applications. This protocol interface works with the Fiber Distributed Data Interface (FDDI) driver which has been designed and implemented for Performance Technology Inc. commercial high performance FDDI product, the Station Management Software 7.3, and the ADI / MPICH (Argonne National Laboratory and Mississippi State University\u27s free MPI implementation)

    Optimizing Communication for Massively Parallel Processing

    Get PDF
    The current trends in high performance computing show that large machines with tens of thousands of processors will soon be readily available. The IBM Bluegene-L machine with 128k processors (which is currently being deployed) is an important step in this direction. In this scenario, it is going to be a significant burden for the programmer to manually scale his applications. This task of scaling involves addressing issues like load-imbalance and communication overhead. In this thesis, we explore several communication optimizations to help parallel applications to easily scale on a large number of processors. We also present automatic runtime techniques to relieve the programmer from the burden of optimizing communication in his applications. This thesis explores processor virtualization to improve communication performance in applications. With processor virtualization, the computation is mapped to virtual processors (VPs). After one VP has finished computation and is waiting for responses to its messages, another VP can compute, thus overlapping communication with computation. This overlap is only effective if the processor overhead of the communication operation is a small fraction of the total communication time. Fortunately, with network interfaces having co-processors, this happens to be true and processor virtualization has a natural advantage on such interconnects. The communication optimizations we present in this thesis, are motivated by applications such as NAMD (a classical molecular dynamics application) and CPAIMD (a quantum chemistry application). Applications like NAMD and CPAIMD consume a fair share of the time available on supercomputers. So, improving their performance would be of great value. We have successfully scaled NAMD to 1TF of peak performance on 3000 processors of PSC Lemieux, using the techniques presented in this thesis. We study both point-to-point communication and collective communication (specifically all-to-all communication). On a large number of processors all-to-all communication can take several milli-seconds to finish. With synchronous collectives defined in MPI, the processor idles while the collective messages are in flight. Therefore, we demonstrate an asynchronous collective communication framework, to let the CPU compute while the all-to-all messages are in flight. We also show that the best strategy for all-to-all communication depends on the message size, number of processors and other dynamic parameters. This suggests that these parameters can be observed at runtime and used to choose the optimal strategy for all-to-all communication. In this thesis, we demonstrate adaptive strategy switching for all-to-all communication. The communication optimization framework presented in this thesis, has been designed to optimize communication in the context of processor virtualization and dynamic migrating objects. We present the streaming strategy to optimize fine grained object-to-object communication. In this thesis, we motivate the need for hardware collectives, as processor based collectives can be delayed by intermediate that processors busy with computation. We explore a next generation interconnect that supports collectives in the switching hardware. We show the performance gains of hardware collectives through synthetic benchmarks

    Designing Efficient Network Interfaces For System Area Networks

    Full text link
    The network is the key component of a Cluster of Workstations/PCs. Its performance, measured in terms of bandwidth and latency, has a great impact on the overall system performance. It quickly became clear that traditional WAN/LAN technology is not too well suited for interconnecting powerful nodes into a cluster. Their poor performance too often slows down communication-intensive applications. This observation led to the birth of a new class of networks called System Area Networks (SAN). The ATOLL network introduces a new optimized architecture for SANs. On a single chip, not one but four network interfaces (NI) have been implemented, together with an on-chip 4x4 full-duplex switch and four link interfaces. This unique "Network on a Chip" architecture is best suited for interconnecting SMP nodes, where multiple CPUs are given an exclusive NI and do not have to share a single interface. It also removes the need for any additional switching hardware, since the four byte-wide full-duplex links can be connected by cables with neighbor nodes in an arbitrary network topology

    Scalable Resource Management in High Performance Computers £

    Get PDF
    Abstract Clusters of workstations have emerged as an importan
    corecore