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This study considers software techniques for improving performance on clusters 

of workstations and approaches for designing message-passing middleware that facilitate 

scalable, parallel processing. Early binding and overlapping of communication and 

computation are identified as fundamental approaches for improving parallel 

performance and scalability on clusters. Currently, cluster computers using the Message-

Passing Interface for interprocess communication are the predominant choice for building 

high-performance computing facilities, which makes the findings of this work relevant to 

a wide audience from the areas of high-performance computing and parallel processing. 

The performance-enhancing techniques studied in this work are presently 

underutilized in practice because of the lack of adequate support by existing message-

passing libraries and are also rarely considered by parallel algorithm designers. 



Furthermore, commonly accepted methods for performance analysis and evaluation of 

parallel systems omit these techniques and focus primarily on more obvious 

communication characteristics such as latency and bandwidth. 

This study provides a theoretical framework for describing early binding and 

overlapping of communication and computation in models for parallel programming. 

This framework defines four new performance metrics that facilitate new approaches for 

performance analysis of parallel systems and algorithms. This dissertation provides 

experimental data that validate the correctness and accuracy of the performance analysis 

based on the new framework. The theoretical results of this performance analysis can be 

used by designers of parallel system and application software for assessing the quality of 

their implementations and for predicting the effective performance benefits of early 

binding and overlapping. 

This work presents MPI/Pro, a new MPI implementation that is specifically 

optimized for clusters of workstations interconnected with high-speed networks. This 

MPI implementation emphasizes features such as persistent communication, 

asynchronous processing, low processor overhead, and independent message progress. 

These features are identified as critical for delivering maximum performance to 

applications. The experimental section of this dissertation demonstrates the capability of 

MPI/Pro to facilitate software techniques that result in significant application 

performance improvements. Specific demonstrations with Virtual Interface Architecture 

and TCP/IP over Ethernet are offered. 
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CHAPTER I 

INTRODUCTION 

Modern science and technology have created opportunities for achieving greater 

productivity and efficiency than ever before. To a large degree, this has become possible 

because of rapid advancements in the simulation and prediction of natural phenomena 

and complex physical processes that have occurred in the past several decades. Major 

facilitators of these advancements have been numerical analysis and high-performance 

computing. Numerical simulation techniques generate large data sets and require 

intensive computations for reaching acceptable levels of precision and speed of 

processing. Increasing computational capabilities is essential for continued progress of 

modern science and technology in all fields. 

Parallel processing has been recognized as one of the fundamental approaches to 

achieving high-performance computing. In past years, the continuous growth of 

computing power of standalone systems has not diminished the importance of parallel 

architectures. On the contrary, with increasing accessibility of commercially available 

computer and network components, a new generation of parallel systems has attracted the 

attention of a broader user base. In the past, only a limited number of government 

laboratories and large businesses had access to high-performance parallel systems, 
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primarily because of the tremendous cost of these systems, both to purchase and to 

operate. Nowadays, with the rapid growth of microprocessor power, reduction of memory 

prices, emergence of high-speed networks, and availability of parallel system and 

application software, building and maintaining parallel systems have become cost 

effective and thus, accessible to a considerably wider range of users. The introduction of 

distributed parallel systems based on groups of networked workstations and personal 

computers, commonly called clusters of workstations, has amplified this recent trend. 

Currently, cluster computing represents one of the fastest growing segments of the high-

performance computing industry. This study focuses on defining, justifying, and 

demonstrating software mechanisms for achieving high-performance, scalable parallel 

computing on clusters of workstations interconnected with high-speed networks. 

In this chapter, background and statement of the problem are presented. Then, the 

objectives and justification of the study are outlined. Finally, the scope of the study and 

plan of presentation are described. 

1.1 Background 

Improving the performance of parallel systems has been a major goal of hardware 

and software designers since the inception of parallel processing. Although the idea of 

using multiple processors for speeding up computations has been adopted since the early 

ages of computers, achieving high-performance, scalable, and efficient computing has 

proven to be an enduringly challenging task. In addition, modeling and performance 

analysis of parallel systems are significantly more complex than in sequential systems. 
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This section reviews fundamental approaches for improving performance and introduces 

key concepts of performance analysis in parallel systems. Furthermore, the importance of 

parallel models and performance metrics is identified. 

Throughout this study, the term "parallel system" is used to represent the 

combination of four components: 

• Processing elements with memory (processors), 

• Network interconnect that provides physical links between processors, 

• Low level system software, such as firmware and device drivers, for performing 

basic data transmission services, and 

• A middle software layer that provides communication abstractions and an 

interface to applications. 

Application-level software and the performance capabilities of the processing elements 

are not among the targets of this study. Rather, attention is focused on the other three 

components of the parallel system, with special emphasis on the performance and 

scalability attributes of the communication middleware layer. An overview of general 

approaches for performance improvement is presented. This overview is used to illustrate 

the general area of focus of this work. 

1.1.1 Approaches for Increasing Parallel Performance 

The approaches for improving parallel performance can be broadly divided into 

two major groups: hardware and software approaches. The hardware approaches are in 

turn divided into approaches that target the performance of computers as standalone 
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components and approaches for improving network performance. Recent advancements 

in microelectronic technologies and processor architectures have led to a rapid increase in 

the computing capabilities of microprocessors. Modern, super-scalar, pipelined processor 

architectures with specialized vector units, such as the Intel Pentium III SSE and 

Motorola PowerPC G4 AltiVec, are among the leading technologies for increasing 

computer performance. New technologies in the area of memory and I/O subsystem 

architectures, such as Rambus and InfiniBand, are also being investigated and applied in 

practice for further improvement of the computing capabilities. 

The networking aspect of hardware optimizations focuses on building scalable 

parallel architectures by employing high-speed communication links and efficient 

topologies. These capabilities have been among the most important technological 

achievements of supercomputers. Massively parallel processor (MPP) platforms, such as 

the Cray T3D/T3E, use multihundred-megabyte-per-second interconnects and multi-

dimensional topologies in order to reduce the communication overhead associated with 

parallel processing (Andersen et al. 1997). The increase of raw link speed reduces 

communication time, thus improving parallel efficiency and overall application 

performance. 

Common choices of MPP network topologies are multi-dimensional meshes and 

hypercubes. Providing multiple communication links per processor minimizes the 

probability of packet conflicts, and thus, reduces the communication overhead and further 

improves performance and scalability. An important hardware architecture that leads to 

the increase of both effective processing power and communication performance is the 
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two-level multicomputer (Boden et al. 1995). This architecture introduces a specialized 

communication processor that offloads the main processor from communication activities 

and also achieves higher sustained communication bandwidth. An example of two-level 

multicomputer system is the Intel Paragon, which is based on compute nodes with two 

i860 processors, one of which is used as a dedicated communication processor (Sprangers 

et al. 1995); other versions of this Paragon architecture have also been developed. 

In the past several years, clustering workstations and personal computers has led 

to broadening the use of low-cost parallel systems. An important factor for achieving 

high computation efficiency in clusters is the performance of the network interconnects. 

Initially, clusters were primarily based on Ethernet and ATM networks using the TCP/IP 

transport. However, the communication capabilities of these networks were soon 

recognized as major performance bottlenecks for clusters. High-speed networks such as 

Myrinet (Boden et al. 1995) and Giganet cLAN (Giganet 1999) emerged to address the 

performance gap between computers and networks. These high-speed networks provide 

an order-of-magnitude increase in communication performance, which has served as a 

main facilitator of high-performance cluster computing. Some of the major architectural 

characteristics of these networks are the use of high-degree, non-blocking cut-through 

switches and I/O-bus-master-capable, intelligent network interface controllers (NIC) 

equipped with on-board direct-memory-access (DMA) engines. Cut-through switches 

introduce minimal hardware overhead during packet switching, thereby facilitating low 

latency and high bandwidth of communication links. The DMA engines allow the NIC to 

access the system memory without the participation of the main CPU and deliver data 
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directly into user buffers. As such, the NIC of high-speed networks serves as a 

communication processor that complements the main CPU, and consequently, allows a 

workstation to be viewed as a two-level multicomputer (Boden et al. 1995). The memory 

hierarchy of modern workstations, and especially its cache coherency, plays an essential 

role in this two-level multicomputer architecture. Cache coherency maintains the 

consistency of user data by invalidating the cache lines that contain memory locations 

modified by the NIC DMA engines. 

The software approaches for increasing parallel performance can also be 

subdivided into two subgroups: application-software and system-software approaches. 

The application software approaches rely on employing parallel algorithms with minimal 

asymptotic complexity of computation as well as a minimum number and/or volume of 

communication transfers. Often, a balance between computation and communication 

performance is necessary in order to achieve optimal overall performance. Another major 

requirement of parallel application development is to preserve maximum portability of 

the code across numerous platforms. These needs have been addressed by parallel 

programming models, such as BSP (Valiant 1990) and LogP (Culler at al. 1996). These 

models help parallel application developers to assess the expected performance of their 

algorithms on different target platforms and evaluate the trade-offs between computation 

and communication performance as well as between performance and portability. 

Another mechanism for improving applications' performance is tuning the 

algorithms to reflect the topology of the hardware platform. This tuning can result in a 

graph of the communication transactions that best matches the network topology. For 



7 

instance, neighbor processes in a virtual Cartesian topology can be mapped to computer 

nodes that are connected to the same network switch, which will result in reduced 

network contention and faster communication. However, parallel applications that reflect 

specifics of the underlying platforms sacrifice code portability. Parallel system software 

can help such applications by creating topology abstractions and portability layers that 

are specifically targeted to different platforms. 

Load balancing is another application software mechanism that is frequently used 

to improve the effective performance of parallel algorithms. This mechanism seeks to 

distribute all of the work among processors more evenly so that idle processor cycles are 

avoided. Load balancing is a mechanism that can also be implemented in system software 

that is transparent to applications. 

Systems software approaches are the second subgroup of software approaches for 

increasing parallel performance. Two of the major goals of parallel system software are 

to provide portable, high-level communication and data-layout abstractions to application 

software and to utilize the capabilities of the hardware resources in an efficient manner 

by achieving low processing overhead. In order to meet the often contradictory 

requirements for performance, scalability, abstraction, portability, and flexibility, parallel 

system software has evolved into two, often disjoint directions: low-level system 

software providing optimized point-to-point data movement and higher-level middleware 

achieving abstraction and portability as well as providing collective communication 

primitives. Examples of low-level software systems are Active Messages (von Eicken et 

al. 1992), U-net (Basu et al. 1995), and Portals (Brightwell and Shuler 1996). Typical 
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representatives of the middleware layer are PVM (Geist et al. 1994) and MPI (Message 

Passing Interface Forum 1994; Gropp, Lusk, and Skjellum 1999). Common system 

software approaches for improving parallel performance and scalability are as follows: 

• reducing communication overhead, 

• eliminating intermediate data copies, 

• minimizing operating system intervention in communication, 

• reducing main processor participation in communication activities, and 

• implementing scalable algorithms for collective operations. 

1.1.2 Parallel Models 

A number of models for representing parallel processing and parallel architectures 

have been used in practice. The first group of models focuses on the methods for 

exchanging data between the processors of a parallel system. Shared memory and 

message passing are the two major models in this group. Distributed shared memory 

systems are a special case of the shared memory architecture. A typical representative of 

the shared memory architecture is the SGI Origin 2000. The IBM SP2 is a distributed 

shared-memory machine while Intel Paragon is representative of message-passing 

architectures. Clusters of workstations also follow the message-passing model for data 

communication between processors. Presently, multiprocessor workstations are becoming 

common for their low cost per processor. A cluster based on multiprocessor nodes may 

exploit both the shared memory model of communication within a node and the message-

passing model between nodes. 
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The second group of models focuses on the relationship between instructions and 

data. The most widely used architectures, according to this group of models, are the 

single instruction multiple data (SIMD) and multiple instructions multiple data (MIMD) 

models. Computers that follow the SIMD model are sometimes also called vector 

processors, and also include large-scale bit-oriented processors. In the “golden ages” of 

parallel processing, vector processors were the predominant architecture. In recent years, 

the MIMD model has gained wider acceptance than the SIMD model. A special case of 

the MIMD model is the single program multiple data (SPMD) architecture, where the 

same parallel program is executed concurrently on multiple processors working on 

different portions of the data set. The SIMD and MIMD architectures follow the data-

parallel model for parallelization. The alternative model is the data-flow model, in which 

parallel processing is implemented through pipelining. 

The third important group of models concentrates on modeling parallel 

programming and is used for performance analysis. These models seek to quantify and 

formalize the characteristics of a parallel platform by using a set of primitives in order to 

describe the computational and communicational processes. The goal of these models is 

the derivation of an expression that can be used to parameterize the performance of a 

parallel algorithm. When this expression is applied to a specific parallel architecture, it is 

expected to provide an accurate performance estimate of the application subjected to 

modeling. Important representatives of these models are the PRAM model (Fortune and 

Wyllie 1978), the BSP model (Valiant 1990), the LogP model (Culler et al. 1996), and 

the LogGP model (Alexandrov et al. 1995). 
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1.1.3 Metrics for Parallel Performance 

Metrics are an important factor for quantitative performance analysis. 

Performance analysis of parallel systems is significantly more complex than the analysis 

of sequential systems. Execution time is the predominant performance metric for 

sequential systems. A broader set of metrics is necessary for precise and meaningful 

analysis of parallel systems. Execution time is still one of the most widely used parallel 

performance metrics. However, execution time alone is insufficient to give insight 

regarding the complex interactions between the hardware and software components of a 

parallel system. For this reason, metrics such as efficiency, scalability, and cost are 

introduced in parallel performance analysis. A more detailed description of these metrics 

is presented in Chapter II. 

Often, parallel performance models use point-to-point metrics, such as round-trip 

time latency and one-way bandwidth, for describing the communication overhead and 

efficiency associated with parallel processing on a given platform. Studying 

communication efficiency is accepted as one of the fundamental approaches to 

understanding and predicting performance and scalability. Therefore, estimations of the 

performance characteristics of a parallel system are frequently based on point-to-point 

latency and bandwidth measurements. Further, it is considerably easier to measure 

latency and bandwidth through simple message exchange experiments between two 

processes, rather than perform a complex investigation and analysis of the behavior of the 

entire parallel system when collective or multiple concurrent pair-wise communication 

transactions are executed. One of the objectives of this work is to demonstrate the limited 
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descriptive power of point-to-point metrics, and especially short-message latency, when 

used as the sole factor in performance analysis of parallel systems. 

1.1.4 Trends in Parallel Processing 

In recent years, clusters of workstations have become the dominant architecture of 

choice for building parallel systems. In the early years of cluster computing, clusters were 

viewed primarily as low-cost architectures for utilizing parallel processing. Today, 

clusters interconnected with high-speed networks demonstrate performance and 

scalability capabilities attributable before only to MPP supercomputers. The low cost and 

performance potential of clusters have shifted the attention of the organizations that rely 

on parallel computing from supercomputing platforms to clusters. This study responds to 

this trend by specifically targeting its theoretical and experimental focus on clusters of 

workstations. 

1.2 Problem Statement 

This work addresses a number of problems in the areas of performance analysis 

on clusters, design and implementation of message-passing middleware systems for 

modern cluster solutions, and design of efficient parallel application software. These 

problems can be divided into the following four categories: 

• insufficient theoretical description of important performance sources, 

• lack of MPI implementations specifically targeted for clusters, 

• legacy MPI codes tightly coupled to specific MPI implementations, and 

• limited validity of common methods for performance analysis. 
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1.2.1 Insufficient Theoretical Description of Performance Sources 

Although clusters resemble traditional MPP platforms, there are a number of 

differences in their characteristics, some of which significantly affect performance and 

scalability. Recent trends show that parallel system and application software are often 

transferred mechanically from MPP systems to clusters. Although this porting approach 

is low cost and allows for a quick transition of important applications to the new 

environment, it does not reflect important differences between clusters and MPP. These 

differences have significant effects on performance. 

New sources of performance improvement must be studied and applied to 

clusters. These sources should revisit strategies abandoned earlier because of past 

inhibiting factors. Some of these sources, such as overlapping and early binding have not 

been theoretically described and quantified to a sufficient degree. The theoretical 

description of these mechanisms requires the development of new models for parallel 

processing. Also, new performance metrics that capture the effects of these mechanisms 

are necessary for meaningful quantitative analysis. 

1.2.2 Lack of MPI Optimizations for High-Speed Clusters 

MPI has become the most widely used interface for writing parallel algorithms 

with the message-passing paradigm. Vendors of major MPP platforms, such as IBM, 

SGI, and HP, offer native, platform-specific implementations of MPI. These 

implementations employ hardware and operating system optimizations that are specific to 

each vendor’s MPP platform. In the public domain, MPICH, which is an implementation 
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from Argonne National Laboratory and Mississippi State University (Gropp et al. 1996), 

has become the implementation with the largest user base. Initially, MPICH was 

implemented with the idea to serve as a reference proof-of-concept MPI implementation 

and also to help refine the MPI specification. 

Vendor-specific MPI implementations, and especially MPICH, are currently 

being ported to clusters with minimal, if any, architectural changes. The changes are 

usually limited to only the lowest software layers that interact with the network transport 

interfaces. These ports do not reflect the new characteristics of clusters and high-speed 

network architectures and as a result they miss opportunities to provide optimizations 

specifically targeted to clusters. New MPI implementations are needed to bridge the 

differences between traditional MPP systems and clusters. Earlier, clusters were viewed 

only as a cheap alternative to multicomputers, and providing a quick port of MPI was 

considered to be an adequate objective. Performance was not necessarily the main goal of 

these early ports. Presently, however, clusters are used as a major parallel platform for 

providing teraflop performance and, in many instances, clusters replace MPP platforms. 

Consequently, MPI implementations that reflect the specific characteristics of clusters are 

needed. This work presents a design and implementation of an MPI implementation that 

specifically targets clusters interconnected with high-speed networks. 

1.2.3 Legacy MPI Codes 

Over the past several years, MPI has become a de-facto standard for writing 

portable parallel applications. A large number of parallel codes have been ported to MPI 
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and, frequently, MPI is the middleware API of choice when new algorithms are to be 

implemented. The development process of parallel applications typically targets a 

specific platform. Thus, the applications naturally reflect the performance characteristics, 

assumptions, and capabilities of the underlying platform and the MPI implementation 

installed on this platform. When these applications are ported to a different platform, 

whether using a port of the same MPI implementation on which they were initially 

created or a new implementation, they continue to use the same performance mechanisms 

that were chosen on the first platform. This porting procedure disregards the fact that 

these mechanisms may not perform as well on the new platform. In fact, different 

mechanisms may provide a far greater opportunity for performance improvement. 

In this manner, many legacy MPI applications have become tightly connected to 

the MPI implementation on which they were first created. As a result, the approaches to 

performance optimizations and the assumptions made in these initial MPI’s have had 

great impact on application programmers and the codes that they have written. 

Consequently, the limitations of specific MPI implementations have been directly 

propagated into applications. Although this does not affect the portability of applications, 

it clearly does affect their performance when executed on different platforms or MPI 

implementations. 

MPICH has provided a great resource to the parallel processing community to 

recognize the abstraction power and performance potentials of MPI. However, MPICH 

did not contemplate all of these potentials nor did it emphasize efficient architectures that 

enable various performance enhancing techniques. This fact has had a significant impact 
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on a large number of legacy MPI applications written using MPICH or MPI 

implementations derived from MPICH. Even widely used parallel benchmarks, such as 

the NAS Parallel Benchmarks (Bailey et al. 1991), are written in a manner that reflects 

these limitations. The limitations of MPICH include following: 

• sub-optimal implementation of collective operations, 

• insufficient optimizations for persistent mode of communication, 

• inability to support multi-threaded user programs, 

• high-overhead derived datatypes engine, 

• sub-optimal implementation of the persistent mode of communication, 

• polling-based message progress engine, and 

• polling method for message-completion notification. 

These limitations lead to minimal or completely absent performance gains from such 

advanced software mechanisms as overlapping of communication and computation, early 

binding, and asynchronous processing. As a result, if an application attempts to use some 

of these mechanisms with MPICH, this application will exhibit minimal or even negative 

performance improvement, regardless of the capability of the underlying hardware 

platform and/or network infrastructure to provide sufficient support for such mechanisms. 

Because overlapping, early binding, and asynchronous processing are among the 

important performance improvement factors of clusters not captured by most other MPI 

implementations, the design and implementation of the new MPI implementation 

presented in this work specifically targets these advanced software mechanisms. This 

work demonstrates that applications that use these software mechanisms on clusters 
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running the new MPI implementation achieve significant performance gain, while 

preserving application portability. Furthermore, algorithms that do not use the 

mechanisms in question experience no performance degradation; hence, the opportunity 

for improving performance of applications that employ early binding, overlapping, and 

asynchronous processing will not result in performance degradation of legacy 

applications. This is an important feature of any high-performance system and is referred 

to as “performance transparency.” Effectively, performance transparent mechanisms 

provide opportunities for “free” performance improvement. 

1.2.4 Limited Validity of Common Performance Analysis Methods 

A variety of metrics are used for evaluating performance of parallel algorithms 

and platforms. Parallel performance metrics can be effectively divided into two groups – 

metrics that measure point-to-point performance and metrics that view the parallel system 

as a whole. The latter group is denoted “aggregate metrics” in this work. Aggregate 

metrics are based on application execution time and reflect the contribution of each 

processor. These metrics not only emphasize absolute performance and but also weigh 

scalability and efficiency, which makes them powerful tools for studying the complex 

interactions in a parallel system. 

Point-to-point metrics emphasize only the communication attributes of the 

parallel system, specifically, latency and bandwidth of interconnection links. 

Traditionally, point-to-point measurements are performed by ping-pong tests between 

two processes. With a little variation, this type of test has also been accepted in the area 
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of cluster computing. Because the asymptotic peak bandwidth of modern high-speed 

networks is usually similar and often bounded by the I/O bus throughput, the 

performance characteristics of the entire cluster are extrapolated solely from the ping-

pong numbers for the message latency; that is, the lower the latency is, the higher the 

performance of the cluster is presumed to be. This approach has limited validity for 

several reasons: 

• Latency affects only the exchange of short messages. Typical parallel applications 

that are based on the message-passing paradigm use medium to coarse-grain data 

parallel algorithms and the messages that they generate are in the range of tens of 

kilobytes to megabytes in length. Latency has minimal impact on such messages. 

The communication performance is determined mainly by bandwidth. 

• It is frequently assumed that the performance parameters of the links, as measured 

by point-to-point metrics, are preserved across the parallel system during the 

execution of applications. This assumption is optimistic for a large number of 

practical systems because it ignores important scalability factors such as network 

contention, bisection bandwidth limitations, and communication and application 

software architectures. 

• Ping-pong tests do not offer any insight about the costs paid by the system and 

applications software for achieving the lowest point-to-point latency. Message-

passing middleware, such as MPI, inevitably makes architectural compromises in 

order to minimize latency. These compromises are not revealed by the ping-pong 

test, so exaggerating the impact of point-to-point latency disregards such sources 
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of performance as overlapping of communication and computation, independent 

message progress, optimized collective algorithms, and low CPU overhead. These 

mechanisms are usually sacrificed by MPI implementations that aim solely at the 

lowest ping-pong latency. 

Point-to-point metrics, and specifically latency, are easy to understand and 

measure, but they do not offer enough insight about parallel performance, scalability, and 

efficiency of the target systems. More elaborate metrics and benchmarks are necessary 

for detailed analysis and comparison. This work addresses this need by providing a set of 

new metrics and methods for obtaining the experimental values of these new metrics. 

Although the concepts of overlapping of communication and computation and 

temporal locality are quite common and have been intuitively used for improving parallel 

performance, few in-depth studies from a theoretical, systematic, and practical point of 

view have been presented. This has resulted in insufficient design support for these 

mechanisms in deployed parallel systems. The emphasis has been primarily on more 

direct performance gains, such as reducing point-to-point latency and increasing 

bandwidth. Often, this has been at the expense of more elaborate architectures that enable 

a high degree of overlapping and early binding. 

More commonly than not, the drive for lowest latency has prevented system 

designers from implementing hardware and software architectures that enable the 

mechanisms studied here. This has naturally led to limited usage of overlapping and early 

binding in application software design. Application designers have not seen a clear 

benefit for optimizing their algorithms with these more sophisticated mechanisms; 



19 

consequently, they have sacrificed the potential performance gain for simplicity of the 

algorithmic implementations. 

1.3 Thesis 

Overlapping of communication and computation, low processor overhead, 

asynchronous processing, and temporal locality are major sources of performance 

improvement, on clusters of workstations interconnected with high-speed networks. The 

overall parallel application performance gain that is afforded by use of these mechanisms 

significantly outweighs any negative impact they may have on-point-to-point latency for 

short messages. Overlapping of communication and computation and early binding can 

be described in theoretical models used for performance evaluation and prediction. These 

models can offer a quantitative analysis of overlapping and early binding. 

Point-to-point performance evaluation schemes that primarily emphasize lowest 

latency are insufficient for describing the complex interactions between hardware and 

software in parallel systems. Together with widely used aggregate metrics, such as 

parallel speedup and efficiency, these interactions can be exposed by new metrics for 

performance evaluation. This work proposes degree of overlapping, processor overhead, 

degree of asynchrony, and degree of persistence as formal metrics for evaluating parallel 

performance. These metrics reveal critical characteristics of parallel systems needed in 

order to support a wide range of performance enhancing software mechanisms. They can 

be used to predict the performance behavior of parallel algorithms using overlapping and 

early binding on clusters with a high degree of precision. 
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In order to deliver the performance benefits of overlapping, temporal locality, and 

asynchrony to application software, the entire communication stack of a parallel system, 

including the message-passing middleware, should be designed specifically in order to 

support these capabilities. Message-passing systems with insufficient provisions for 

overlapping and early binding limit the potential for performance gain of applications that 

use these mechanisms; hence, application programmers are discouraged from designing 

algorithms that utilize more sophisticated approaches to performance optimizations. On 

the contrary, message-passing middleware that accounts for overlapping and early 

binding can deliver a substantial portion of these performance-enhancing mechanisms to 

the application software. 

In summary, this work will show the following: 

• Early binding and overlapping are important performance enhancing mechanisms 

on clusters. 

• Early binding and overlapping can be described in theoretical models for parallel 

computing. 

• New metrics are necessary to describe the complex interactions between software 

and hardware in parallel systems. 

• The message-passing middleware has a critical role for propagating overlapping 

and early binding capabilities of lower layers of the communication stack to the 

application layer. 

• The MPI implementation presented here facilitates overlapping and early binding. 
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1.4 Objectives 

The main objective of this work is to address the problems identified and 

demonstrate the validity of the hypotheses specified in the thesis. These objectives can be 

summarized as follows: 

• Define the parallel environment that is the subject of the study. Although the 

concepts presented here are applicable to a variety of parallel systems, this work 

concentrates on clusters of workstations interconnected with high-speed networks. 

• Identify specific characteristics of clusters and point out the differences between 

clusters and traditional MPP systems. 

• Study the impact of point-to-point latency on applications performance and its 

descriptive power in performance analysis of clusters. Also, investigate the 

hypothesis that a cluster with the lowest point-to-point latency measured with a 

ping-pong test offers the highest performance and degree of scalability. 

• Identify important mechanisms for improving performance of communications 

middleware and parallel applications on clusters. 

• Develop a theoretical description of these mechanisms and present a model for 

formalizing and quantifying their impact on application performance. 

• Study the factors that impact the efficiency of these performance mechanisms. 

• Define new performance metrics, present formal expressions for these metrics, 

validate their descriptive power, and demonstrate experimental methods for 

obtaining their values. 
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• Demonstrate the importance of message-passing middleware for building high-

performance scalable parallel systems. Communication software is one of the 

important components of clusters. It can offer a variety of performance 

mechanisms that propagate the capabilities of the hardware to user processes. If 

designed improperly, message-passing middleware may become a performance 

bottleneck and limit systems scalability. 

• Design and develop an MPI implementation that provides specific optimizations 

for clusters interconnected with high-speed networks. This implementation will be 

used for proving the concepts developed in this work. 

• Re-implement established algorithms to take advantage of this MPI 

implementation and the performance mechanisms identified in this work. Then, 

compare these new algorithms with the original codes and provide analysis of the 

impact on performance and scalability. These results will be used to confirm the 

hypothesis of this work. 

• Develop guidelines for writing optimal parallel algorithms designed to work 

efficiently on a variety of parallel platforms, and specifically on clusters, by using 

overlapping of communication and computation, temporal locality, and 

asynchronous processing. Using these performance-enhancing mechanisms does 

not make the applications less portable or inadequate to traditional MPP systems 

nor does it lead to performance degradation on systems that do not provide 

architectural optimizations that support these mechanisms. 
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1.5 Justification of Study 

Computing is becoming a factor of vital importance to all aspects of the modern 

economy. Government organizations, research laboratories, and businesses of various 

sizes are making large investments to increase their processing capabilities. Computing 

resources are viewed as an important factor to achieving competitive advantage in 

today’s economy. Parallel processing has been accepted as one of the major approaches 

for addressing the global need for increased computing capabilities. For the past few 

decades, MPP systems such as IBM SP, Intel Paragon, SGI Origin, and Cray T3D/T3E 

have been mainly used for high-performance computing. However, historically, the high 

cost of these systems allowed only a small number of organizations, primarily national 

laboratories and large businesses, to access these resources. The low cost of clusters has 

created opportunities for a much wider user base. Presently, clusters of workstations have 

become the most popular architecture for building new parallel computing systems and a 

large number of legacy applications in areas such as biotechnology, seismic exploration, 

weather prediction, protein folding, crack propagation, chemical molecule matching, and 

CFD simulations have been ported from MPP systems to clusters. Cluster computing has 

demonstrated its economic effect and, consequently, studies in this area will potentially 

benefit a large number of users. 

This work describes the specific characteristics of clusters and their differences 

from traditional MPP systems, outlines important requirements for efficient MPI 

implementations on clusters, and demonstrates paths for increasing performance and 

scalability of parallel applications. The results of this work may constitute a significant 
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contribution to parallel processing theory and practice on clusters in the areas of 

performance evaluation, design and implementation of MPI middleware, and writing 

efficient parallel algorithms. Also, the achievements of this work can be extended to 

parallel processing in general, which further widens its expected significance. 

1.6 Scope 

Although the analyses and conclusions of this study can be related to performance 

and scalability on most parallel systems, attention is concentrated on a specific parallel 

environment, processing paradigm, communication model, and mechanisms for 

improving performance. This section describes the scope of these areas for this study. 

1.6.1 Parallel Environment 

The parallel environment studied here is a cluster of workstations interconnected 

with high-speed networks, such as Giganet and Myrinet. These networks feature gigabit-

per-second data-link rates and non-blocking, cut-through switches. The interface 

controllers of these networks are intelligent devices with bus-master capabilities on the 

host peripheral bus. 

The cluster nodes used for the experiments presented in this study are IBM PC 

computers with Intel architecture processors running Linux RedHat or Windows 

NT/2000 operating systems. At present, the combination of these operating systems and 

Intel processors is the main choice for building clusters. Although the number of 

available processor architectures and operating systems is significantly larger, this study 

considers the ones selected here as representative of state-of-the-art technology. 
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1.6.2 Parallel Processing Model and Communication API 

The communication paradigm for exchange of data between processors used in 

this work is message passing. Shared-memory communication is not studied here. The 

parallel processing model is single program multiple data (SPMD), a variation of the 

multiple instructions multiple data (MIMD) model. The API used for inter-process 

communication is MPI. The data-parallel paradigm is used for building the parallel 

algorithms studied in this work. 

1.6.3 Performance Mechanisms 

This work concentrates on specific mechanisms for improving performance: 

overlapping of communication and computation, temporal locality, and asynchronous 

processing. Other performance mechanisms, such as topology awareness, multi-device 

architectures, optimal collective algorithms, and scatter/gather capabilities for non-

contiguous message transmissions are considered outside the scope of this study. Many 

of these would be suitable for related future investigation. 

1.6.4 Parallel Performance Metrics 

Metrics are a fundamental tool for performance analysis of parallel systems. This 

study considers established common performance metrics, such as execution time, 

speedup, parallel efficiency, and CPU overhead, as well as the newly introduced metrics, 

such as degree of overlapping, degree of persistency, segmentation efficiency, and degree 

of asynchrony. The definition of these metrics is provided in Chapter II and Chapter III, 

respectively. Cost efficiency is frequently considered as an important factor when an 
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organization acquires hardware and software for building a cluster. Cost and cost 

efficiency are outside the scope of this study. It is assumed that clusters are generally 

much less expensive than large MPP systems and this, together with their performance 

potentials, makes them the current parallel platform of choice. 

1.7 Audience 

Two major groups of cluster users can be identified. The users of the first group 

have worked on MPP systems in the past and now are upgrading their computing 

capabilities by building new clusters. The low cost of clusters has attracted a new group 

of organizations and individuals to parallel processing. Among these new users are small 

and mid-size businesses, small research groups, and resource-constrained independent 

organizations. 

The two groups of cluster users often have different goals. To help distinguish 

these two groups and define the scope of this study, an evaluation function Fd(P, C) =  

Pq/Cr is used, where P denotes general performance and C denotes cost. The parameters q 

and r represent the relative weights of performance and cost in the evaluation function. 

When selecting a cluster-based architecture, organizations with emphasis on performance 

use q > r, while organizations concerned primarily with price use r > q. This expression 

is a generalization of the widely accepted price-performance metric. By manipulating the 

values of q and r, the above-proposed expression allows for customized evaluation of 

parallel systems according to the specific needs of users. The audience of this study is 

identified as the organizations that give priority to performance (i.e., q > r). The 



27 

professionals that may be interested in the results of this study are parallel application 

programmers, designers of low-level software communication layers, message-passing 

middleware developers, parallel performance theoreticians, and system administrators. 

1.8 Plan of Presentation 

First, a review of literature sources discussing topics related to this study is 

presented. Then, a theoretical framework for quantifying the major sources of 

performance studied here is described. This framework develops a formal representation 

of overlapping of communication and computation and temporal locality. Although these 

mechanisms are familiar to the parallel processing community, no attempt for theoretical 

formalization and quantification of their impact on performance has been made so far. As 

part of the framework, a set of new metrics is defined. These metrics play a central role in 

understanding the importance of the concepts discussed in this study. 

Next, a design of a new MPI implementation with optimizations for high-speed 

networks is presented. This implementation features an architecture that allows for low 

CPU overhead communication and a high degree of overlapping. Specific optimizations 

for temporal locality and asynchronous processing are provided. In order to demonstrate 

the advantages of these mechanisms, the MPI implementation offers an alternative mode 

of operation, which represents traditional approaches for implementing MPI, specifically 

using polling for synchronization and message progress with high CPU overhead. By 

providing these two modes, this implementation creates an opportunity for detailed 

analysis and fair comparison of the performance mechanisms studied in this work. To the 
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best of the author’s knowledge, the MPI implementation presented in this work is the first 

one that offers these two alternative modes of operation to users. 

Further, a study of the impact of the selected mechanisms on parallel applications 

performance is presented. This study uses various techniques for evaluation and analysis. 

Some of these techniques are based on traditional tools and benchmarks, such as point-to-

point latency and bandwidth measurements as well as popular parallel kernel and 

applications suites such as the NAS Parallel Benchmarks (Bailey et al. 1991). Selected 

well-known parallel algorithms are presented and modified to take advantage of the new 

MPI implementation and performance mechanisms to reveal their effects. New 

evaluation procedures are developed from the theoretical framework. These new 

techniques focus on the capability of a parallel system to provide a high degree of 

overlapping of communication and computation, low processor overhead, temporal 

locality utilization, and asynchronous processing. 

Finally, this work presents guidelines for writing parallel algorithms using the 

mechanisms for improving applications performance studied here. These guidelines offer 

techniques that lead to performance enhancement while preserving portability of the 

algorithms and avoiding performance degradation on systems that do not provide these 

performance mechanisms. 



CHAPTER II 

LITERATURE REVIEW 

This chapter presents a review of literature sources that consider issues related to 

the objectives of this study beginning with work in the area of parallel performance and 

scalability analysis. The emphasis here is focused on the definition of performance 

criteria, metrics for quantifying performance, and methods for obtaining the values of 

these metrics experimentally. Next, important models for parallel computation are 

discussed and evaluated with respect to the goal of this work. Among these models are 

the BSP and the LogP models. Furthermore, the architectures of some of the most widely 

used platforms for intensive parallel computing are presented and the characteristics of 

these platforms are compared with the characteristics of clusters. Next, literature sources 

that focus on modern high-speed networks are reviewed. Attention here is concentrated 

on network physical link parameters, topology, interface controllers, software 

communication stacks, and methods for performing and completing transmission 

requests. Thereafter, important software mechanisms for improving parallel performance 

are reviewed. Two groups of software mechanisms are identified: system level and 

application level mechanisms. Special attention is paid to the system level mechanisms. 

Next, review of the Message-Passing Interface and some of its popular implementations 
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are discussed. MPI has become the predominant communications interface for portable 

parallel programming on clusters and studying MPI shows important dependencies 

between the behavior of the parallel applications, the message-passing middleware, and 

the communication infrastructure. Finally, this chapter presents a review on research 

related to improving performance on clusters. Important achievements are identified as 

well as areas that have not been studied in sufficient depth and offer opportunities for 

further research. 

2.1 Parallel Performance Analysis 

Parallel computing has emerged as a method for solving large problems in an 

acceptable amount of time using available processing technologies. The major resources 

of a parallel system are the number of its processing elements and the memory associated 

with each element. It is expected that adding more processors to the configuration of a 

parallel system will lead to an increase in the overall system’s performance. Ideally, the 

speed of processing would be proportional to the number of processors. However, the 

behavior of most practical systems deviates from this ideal, linear scaling. The reasons 

for this behavior include communication and synchronization overheads associated with 

the exchange of data between processors, load imbalances, and the presence of serial 

parts in parallel algorithms (Amdahl 1967). 

Migrating from serial to parallel processing significantly increases the complexity 

of performance analysis. New measures for adequate representation and quantification of 

performance are necessary. As opposed to evaluating performance on serial machines, 
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these measures should reflect factors such as the number of processors, workload, 

characteristics of the communication infrastructure, synchronization, algorithm 

complexity, and impact of software stacks. 

Scalability is among the most widely used measures for performance analysis of 

parallel systems. Scalability can be used to predict whether an existing parallel system 

can be extended with more processors while preserving its performance characteristics, or 

whether a parallel algorithm can be implemented efficiently on a larger system. For a 

given problem size, scalability analysis can determine the maximum achievable increase 

of performance as well as the optimal number of processors in the system. In order to 

reveal the complex processes in a parallel system, elaborate procedures for performance 

and scalability analysis are necessary. The extensive research in the area of parallel 

processing shows that it is difficult to analyze and compare performance and scalability 

across different systems. In addition, users have different perspectives on the 

characteristics that they wish to analyze as well as the criteria they use for assessment. As 

a result, a variety of performance and scalability metrics have been proposed and used in 

the theory and practice of parallel processing. Below, some of the widely accepted 

definitions and metrics are presented. 

• System Size (p): The number of processor elements in a parallel system. 

• Problem Size (W): The number of basic computational operations required for 

solving a problem. Also referred to as work. 

• Serial Time (Ts): The execution time of the best-known serial algorithm for 

solving given problem. 
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• Parallel Time (Tp): The time elapsed from the start of the parallel computation to 

the moment when the last processor finishes (Grama, Gupta, and Kumar 1993). 

• Serial Fraction (s): The ratio of the inherently serial part of an algorithm to its 

execution time on one processor. 

• Degree of Concurrency (C(W)): The maximum number of computation tasks that 

can be executed simultaneously in a parallel algorithm working on workload W 

(Grama, Gupta, and Kumar 1993). 

• Cost (pTp): The product of parallel time Tp and system size p. 

• Speed (V): The amount of work performed for a given unit of time, V =  W/Tp 

(Sun and Rover 1994). 

• Speedup (S): The ratio between the serial time Ts and the parallel time Tp, S =  

Ts/Tp. 

• Efficiency (E): The ratio of the speedup S to the number of processors p used in 

the execution, E = S/p. 

• Parallel Overhead (Tov): The time that all processors spent on overhead 

operations, Tov = pTp – Ts. It is assumed that Ts is spent entirely on useful 

computation. 

The definitions and performance metrics described above will be used in the 

theoretical derivations and performance evaluations throughout this work. A set of new 

metrics will be introduced and defined in Chapter III. These new metrics capture software 
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and hardware interactions that play a critical role in the precise description of early 

binding and overlapping of communication and computation. 

Among the first attempts for describing the behavior of parallel systems is the 

fixed-size speedup analysis presented by Amdahl (1967). He states that the upper bound 

of the speedup of a parallel algorithm with serial portion s is 1/s, where 0 < s < 1. Amdahl 

shows that increasing the number of processors in a system for a given problem size is 

not justifiable beyond a certain limit. However, this fixed-size speedup has been shown to 

be an insufficient performance measure for scalability (Gustafson 1988; Nussbaum and 

Agarwal 1991) and scaled speedup has been proposed instead. Gustafson (1988) is 

among the first to investigate the performance of a parallel system when the problem size 

is increased with the number of processors. He points out that for a certain class of 

applications it is appropriate to increase the problem size with the number of processors 

as long as the total execution time is constant. An example of such an application is the 

weather forecasting, where the size of the problem can grow arbitrarily by increasing the 

grid granularity, the frequency of the time steps, or the volume of air masses. 

Consequently, increasing the problem size in scalability analysis has been shown to be 

both an acceptable and beneficial technique, which is emphasized by the fact that 

multiprocessor platforms are used not only for running the same problems faster, but also 

for running larger problems in the same time (Nussbaum and Agarwal 1991). 

Scaled speedup has served as a basis for one of the most commonly accepted 

definitions of scalability: the performance of a scalable parallel system is linearly 

proportional to the number of processors used in this system (Sun and Rover 1994). 
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Researchers have employed variations of this definition based on different performance 

metrics or on the distinction between parallel systems and algorithms. Using scaled 

speedup as a performance metric, Flatt and Kennedy (1989) investigate the impact of the 

overhead resulting from parallelism on the performance of multiprocessor systems. In 

addition to the upper bounds imposed by the serial portion of parallel algorithms 

according to Amdahl’s law, Flatt and Kennedy (1989) show that for systems on which 

the communication and synchronization overhead grows as fast as Θ(p) the speedup is 

worse than linear. They furthermore show that for overhead growing faster than Θ(p), the 

speedup reaches a peak after which it becomes negative (i.e., a slowdown is observed). 

Hence, for the latter types of overhead, the parallel execution time of an algorithm with a 

given problem size W has a minimum for a certain unique value p = p0. This  value  is  

shown to be the solution of the equation: 

(2.1) 

where: Tov is the overhead expressed as a function of the number of processors p and 

Tp 
min is the minimum execution time. 

Further, Flatt and Kennedy (1989) investigate the parallel cost of the system at the 

optimal point p0. They show that at this point the system efficiency is relatively low -

close to 0.5 (i.e., the parallel system with the specified overhead function works in a non-

cost optimal mode). They then suggest that the optimal point of operation be chosen so 

that the function F(p) = E(p)S(p) is maximized, which is equivalent to minimizing the 

factor pTp
2 . For more precise analysis, Flatt and Kennedy investigate the product of the 
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weighted geometric mean of efficiency and speedup. Minimizing the function F(p) yields 

an optimal value for the number of processors pf. Flatt and Kennedy show that for p < pf 

the relative gain of speedup is higher than the corresponding relative increase of the cost 

while, for p > pf, the relative increase of the cost is higher than the corresponding relative 

gain in speedup. They state that the “marginal value of each processor” is at most half a 

processor if more processors are added after the optimal point pf. 

Gupta and Kumar (1990) assert that the applicability of the analytical results 

presented by Flatt and Kennedy (1989) are unnecessarily limited for systems on which 

the overhead function grows faster than Θ(p). Gupta and Kumar generalize the scalability 

analysis for a broader class of overhead functions than Flatt and Kennedy. Gupta and 

Kumar state that for most practical applications the overhead function Tov can be 

expressed as in the equation: 

n y u x zi i i iTov( p,W ) = ciW (logW ) p (log p) , (2.2) � 
i=1 

where: p is the number of processors, W is the problem size, ci are constants, xi and yi are 

parameters greater than 0, and ui and zi are parameters with possible values of 0 and 1. In 

their scalability analysis, Gupta and Kumar investigate two cases in respect to the growth 

rate of the overhead function. In the first case, the overhead function grows at a rate Tov ≤

Θ(p). Then, the value pmax of p for which the execution time is minimum is determined 

by the degree of concurrency pmax = C(W) and the maximum speedup is expressed by a 

formula of the form Smax= f(W, To, C(W)). In the second case, the rate of growth of the 
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max max overhead function is To > Θ(p). Here, the value p is found as p = min(p0, C(W)) 

where p0 is the solution of the differential equation: 

dTov( p,W ) = Tp . (2.3) 
dp 

For p = p0 the execution time Tp has its analytical minimum. However, Gupta and Kumar 

demonstrate that for certain algorithms, C(W) may have a lower value than p0 and, 

therefore, determine the value of pmax. 

Gupta and Kumar further study a simplified version of the overhead function: 

n yi xiTov( p,W ) = c W p .  (2.4)  � i 
i=1 

Using this simplified function, furthermore assuming that the summation over the index i 

is dominated by the jth term, they find analytical expressions for the optimal number of 

1− yi 1 
iprocessors p0 = k *W x and the optimal parallel efficiency E0 = 1 − . Here, E0 is the 

x j 

system efficiency at the optimal point p = p0 in which Tp has its minimum and S = Smax. 

With their analysis, Gupta and Kumar summarize the importance of the overhead 

function for the scalability analysis of parallel systems. They broaden the definition of 

overhead to incorporate the inherently serial portions of parallel algorithms, 

communication, synchronization, load imbalance, an algorithm’s inherent concurrency, 

and contention for shared resources (Gupta and Kumar 1990; 1993). 

As a scalability metric of parallel systems, Grama, Gupta, and Kumar (1993) 

propose the isoefficiency function. This function reflects the “capacity” of a system to 
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deliver linearly increasing speedup with increasing numbers of processors. This metric is 

also based on the scaled speedup and shows how a system can effectively accommodate 

the addition of more computing resources. Isoefficiency is a quantitative representation of 

the degree of scalability of a parallel system. The isoefficiency function is defined by the 

equation: 

W =  KTo(p,W), (2.5) 

and shows how the problem size W should grow with increasing numbers of processors 

so that the efficiency E is kept at a certain constant level. It is asserted that a small value 

of the isoefficiency function implies that with increasing numbers of processors only 

small increments in W are sufficient to keep the efficiency constant. Such systems are 

called “highly scalable.” On the other hand, a large isoefficiency function reveals a 

poorly scalable parallel system. Systems that do not have isoefficiency functions at all are 

non-scalable and for these systems the efficiency cannot be kept constant with increasing 

the number of processors. 

In the performance analysis provided by Tang and Li (1990), it is shown that 

minimizing pTp
2 , and more generally pTp

r , is equivalent to maximizing the ratio between 

efficiency E and the execution time Tp. In this analysis, the factor r determines the 

relative importance of the execution time and efficiency. A low value of r means that the 

efficiency is more important than the execution time and the optimal point of operation 

will use smaller number of processors having higher efficiency. Higher values of r shift 

the optimal point to a larger number of processors where the execution time is shorter, 

but efficiency is lower. Kumar and Gupta (1990) analytically find the optimal number of 
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processors for minimizing pTp
r and also show that minimizing this metric “is 

asymptotically equivalent to operating at a fixed efficiency that depends only on the 

overhead function” and r. Thus, Kumar and Gupta show that the isoefficiency scalability 

analysis yields equivalent results to the analysis of optimizing the pTp
r metric. 

Using definitions of scalability similar to the ones presented earlier, Sun and 

Rover (1994) introduce a new scalability metric called isospeed. As opposed to previous 

work, however, this metric is not based on speedup – it is based on the measure of 

average unit processor speed obtained as the amount of work W performed in Tp time; 

Sun and Rover consider speedup as an inadequate metric for scalability analysis. The 

isospeed metric shows how the size of a problem should grow from W to W’ with the 

increase of the number of processors from p to p’ so that the average unit speed remains 

constant. The isospeed analysis yields W’ = W(p’/p) for algorithms with ideal scalability, 

equivalent to overhead Tov(p) =  C, and  W’ > W(p’/p) in the general case with Tov(p) =  f(p) 

≠ C. This analysis reveals the interrelation between the problem size W, the system size 

p, and the speed of computation. This interrelation “provides the scalability information 

of the algorithm-machine combination” (Sun and Rover 1994). 

Nussbaum and Agarwal (1991) take a different approach for defining and 

quantifying scalability. Their analysis is based on asymptotic speedup. They do not 

consider cost-effectiveness in their scalability analysis, although it is implicitly reflected 

in the flexibility of increasing the size of a parallel platform. In their analysis, Nussbaum 

and Agarwal introduce the idealized model of an exclusive-read, exclusive-write 

(EREW) parallel random-access machine (PRAM) (this model is reviewed in mode detail 
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in the next section). They make a clear distinction between the scalability of a parallel 

algorithm and the scalability of a parallel architecture and state that the algorithmic 

scalability can be determined through measuring the speedup on a machine with idealized 

communication structure such as PRAM. Their investigation is concentrated on the 

scalability analysis of parallel architectures. Nussbaum and Agarwal define scalability of 

parallel systems for a given algorithm as the ratio of the asymptotic speedup of this 

algorithm when run on a real system and the speedup of the algorithm when run on an 

EREW PRAM. Analytically, the speedup is expressed as: 

S T PRAM 
ψ (W ) = real = p . (2.6) 

S PRAM Tp real 

A larger value of ψ(W) means that the performance of the investigated parallel system 

shows performance closer to the performance of a PRAM and hence, this architecture is 

more scalable. 

Luke, Banicescu, and Li (1998) propose effectiveness as a scalability metric that 

incorporates both cost and performance considerations, similarly to the isoefficiency 

function defined by Kumar and Gupta (1993). As opposed to previous efforts, the 

analysis of the optimal effectiveness is not based on the parallel overhead function, which 

is often a complex function of p, W, and a number of platform-dependent parameters. 

This makes the effectiveness metric relevant to practical applications for which deriving 

theoretical expressions for the overhead and isoefficiency may be an exceedingly 

complex task. 
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Li and Skjellum (1997) investigate a poly-algorithmic approach for solving 

parallel dense matrix multiplication on 2-dimensional virtual process grids. They show 

that for a range of practical environments, the asymptotic analysis yields locally sub-

optimal solutions and that only an implementation based on a combination of algorithms 

can provide global optimality in the entire space of problem size and target platform 

configurations. Li and Skjellum provide a study on the crossover conditions and 

guidelines for efficient implementations of specific algorithms on a variety of target 

platforms. 

2.2 Models for Parallel Computation 

Designing efficient parallel algorithms requires detailed analysis of the 

communication and computation complexity of these algorithms, as well as the low-level 

hardware and software characteristics of the target platforms. Various models for parallel 

computation have been proposed to address these issues. Among the models initially 

proposed is the parallel random-access machine (PRAM) model (Fortune and Wyllie 

1978). PRAM is a simple extension of the von Neumann model of sequential computers 

to parallel systems. PRAM concentrates on the inherent parallelism of the algorithms and 

abstracts the low-level hardware details. While PRAM offers the convenience of high-

level abstractions to the designers of parallel algorithms, it has a limited descriptive 

power because it ignores important performance factors, such as communication 

overhead, network bandwidth, synchronization, contention, and interconnect topology. 

Later models have attempted to address these factors while preserving sufficient 
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abstraction. Specifically, this study reviews the bulk-synchronous parallel (BSP) model 

and the LogP model as instances of models that address the realistic description of the 

complex processes that determine the effective performance of a parallel system. These 

models have been recognized as the most successful models in the area of distributed 

parallel processing with message passing communication. The BSP model is proposed as 

a bridging model between algorithms and hardware on parallel platforms, by capturing 

common performance characteristics of a wide range of practical systems (Valiant 1990). 

The computation in BSP is represented by a series of “supersteps” separated by a 

global synchronization phase. Each superstep is divided into a local computation phase 

and a communication phase. During the communication phase, the processors exchange 

all messages that belong to the superstep. A superstep completes when the local 

communication and computation have finished on all nodes. Supersteps cannot be 

overlapped; consequently, the total execution time is the sum of the execution times of all 

supersteps. The BSP model offers a simple characterization of the interconnection 

network by using two parameters: per-processors throughput (g) and synchronization 

latency (L). Using the BSP model, Bilardi et al. (1996) express the time of a superstep as 

the sum of three components: Tsuperstep = w + gh + L, where  w is the maximum time spent 

on local computation and h is the maximum number of messages exchanged during the 

superstep by any processor. 

Valiant (1990) identifies a number of algorithms that can be accurately described 

by the BSP model, specifically matrix multiplication, Fast Fourier Transform, and certain 

sorting algorithms. However, this model does not adequately capture asynchronous 
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processing and, for a number of algorithms, it enforces unnecessary synchronization. 

Asynchronous processing can be especially beneficial to algorithms with naturally 

asynchronous computation patterns, such as master-slave and unstructured data-parallel 

algorithms or to parallel systems on which the processors tend to work asynchronously 

even when the algorithms suggest synchronous processing. As shown later, clusters are 

an instance of parallel systems with such characteristics. Although not explicitly 

modeled, the BSP model allows for overlapping of communication and computation if 

the local communication and computation phases within a superstep can be pipelined. 

The LogP model provides a more detailed view of the communication 

characteristics of distributed systems (Culler et al. 1996). This model focuses on 

presenting a precise, formal description of the communication performance of a wide 

range of parallel platform interconnects. LogP uses four parameters for representing 

communication: latency (L) – the time between the initiation of message transmission and 

the moment when the last byte of this message is deposited at the destination process 

memory, overhead (o) – the time that the central processor spends on message 

transmission or reception, gap (g) – the time between two successive sends, and number 

of processors (P). Culler et al. (1996) emphasize that the LogP model focuses on 

communication of messages with short sizes. LogP models the communication activities 

in a parallel system at a lower abstraction level than does the BSP model. As a result, 

LogP offers a more precise description of communication performance, and specifically, 

the impact of the communication overhead on scalability and overall application 

performance. Also, LogP eliminates the global synchronization step of BSP and provides 
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for asynchronous processing. LogP does not model computation; therefore, it cannot 

provide adequate representation of overlapping of communication and computation. 

The LogGP model (Alexandrov et al. 1995) goes a step further than LogP in 

reflecting communication details by providing a description of long-message transfers by 

explicitly introducing the network bandwidth parameter G. This parameter represents the 

gap between bytes of the same message, while the g parameter is used similarly to the 

LogP model for describing the gap between short messages. While LogP specifically 

focuses on modeling parallel systems that primarily use short messages, LogGP 

recognizes that a large number of parallel applications rely on long data exchanges and 

that the communication time of long messages is predominantly affected by G. LogGP  is  

applicable to a large class of medium to coarse grain data-parallel algorithms from the 

area of scientific computing. Ad hoc models equivalent to LogGP have existed for some 

time prior to LogGP’s publication as well. 

A number of models for parallel computation have been proposed in recent years. 

These models address trade-offs in a space defined by abstraction power (necessary for 

improved portability) and precise description of communication characteristics 

(necessary for accurate performance analysis). None of these models has offered explicit 

provisions for overlapping of communication and computation or temporal locality of 

communication transfers. Therefore, the scope of these models is considered insufficient 

for the purposes of this work. A new theoretical framework that captures these important 

performance sources is needed. Explicit accounting for overlapping and early binding in 

parallel computation models will achieve multiple goals: 
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• Establish more accurate performance prediction of parallel models, 

• Facilitate deeper understanding of the complex interactions between the 

components of a parallel system, 

• Enable objective evaluation of parallel systems’ capabilities to support 

overlapping and early binding, and 

• Facilitate efficient implementations of parallel algorithms that exploit these 

important sources of performance. 

2.3 Parallel Architectures 

This section first reviews some of the widely used large-scale multiprocessor and 

multicomputer architectures, often referred to as supercomputers. In the past decade, IBM 

SP2, Intel Paragon, TMC CM-5, Cray T3D/T3E, and SGI Origin 2000 have been 

accepted as the major MPP architectures. Specifically, Cray T3E and SGI Origin 2000 

are reviewed. Next, the architectural characteristics of clusters used for high-performance 

computing are presented. Finally, this section identifies important differences between 

MPP systems and clusters. 

2.3.1 Massively Parallel Processors 

Cray T3E is a distributed shared-memory (DSM) multicomputer based on Alpha 

21164 microprocessors (Anderson et al. 1997). Each node contains local memory and a 

network router. The topology of the interconnection fabric is a 3-D torus and can scale up 

to 2048 nodes. This topology provides direct connections with 6 neighbor nodes. 
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Communication links achieve a raw speed of 600 MB/sec in each direction. Cray T3E 

nodes have an advanced memory subsystem that allows for access throughput to local 

memory of 1.2 GB/sec. These nodes are equipped with logic that is specifically designed 

to optimize access to remote memory and minimize latency for synchronization with the 

other nodes. This logic extends the physical address space of the microprocessors to 

allow a large, directly addressable memory space. Also, the logic is used to improve 

effective data throughput by pipelining remote accesses and providing hardware 

scatter/gather capabilities. Remote memory accesses bypass the processor bus, which 

allows for simultaneous local and remote requests to the memory of a given node. The 

Cray T3E provides a shmem communication library that achieves 1 microsecond access 

time and 350 MB/sec effective bandwidth to remote memory. The high degree of 

communication links per node and the advanced architectural solutions of the memory 

subsystem allow Cray T3E to demonstrate high-performance and scalability for a wide 

range of parallel problems, including fine-grain data-parallel algorithms. 

SGI Origin 2000 is a cache-coherent, non-uniform memory access (ccNUMA) 

multiprocessor, based on single- or dual-processor nodes with R10000 processors 

(Laudon and Lenoski 1998). The system can accommodate up to 512 nodes with 4GB of 

memory each. The distributed-shared memory (DSM) architecture of Origin attempts to 

meet both scalability and cost requirements. The cache coherence is maintained by a 

directory-based protocol, which is intended to eliminate scalability bottlenecks of earlier 

SGI platforms. Origin supports a globally addressable memory model with non-uniform 

access times. Special care is taken to reduce the variances of the local and remote 
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memory accesses. The topology of the interconnect fabric is a bristled, fat hypercube 

based on the Spider router chip. The routers have 6 bi-directional channels and employ 

wormhole routing with a specially designed mechanism for congestion control. Every 

pair of nodes is connected to one router (i.e., every 4 processors share a router). Thus, a 

32-processor configuration uses a single 3-D hypercube. This topology provides each 

processor with a direct link to 12 processors connected to 3 neighboring routers. In 

addition, the topology allows for direct connections between nodes on the opposite 

corners of the cube for further reduction of routing latency. The Origin 2000 achieves 

310 nanoseconds access time to local memory, 540 nanoseconds access to remote 

memory when the remote node is connected to the same router, and 773 nanoseconds 

average access time to remote memory in a 32-processor configuration. The point-to-

point bandwidth between two neighbor nodes is on the order of 350 MB/sec. 

2.3.2 Clusters 

The general architecture of clusters is based on a collection of common uni- or 

dual-processor personal computer class workstations interconnected with a switched 

network. Occasionally, the nodes of computing clusters are high-end servers with larger 

degree of internal parallelism. Currently, the predominant node count of clusters ranges 

from 16 to 32, but significantly larger clusters on the order of 256 to 512 nodes are being 

built. Projects for deploying clusters with more than one thousand nodes are underway 

also. Sandia National Laboratories is the leader in the area of ultra-scale clusters with its 

Cplant project, whose goal is to build a cluster with more than ten thousand uni-processor 
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nodes (Riesen et al. 1999). The Cplant project is performed under the DOE ASCI 

program. 

The predominant processor architecture for cluster nodes is 32-bit Intel x86, now 

moving toward next generation 64-bit Itanium processors. The major reasons for this 

dominance of Intel architecture are the low cost of the cluster nodes and the abundance of 

software support, such as drivers, network support, compilers, debuggers, message-

passing middleware, administrative tools, and performance monitoring tools. Machines 

based on the Alpha processor are also frequently used in clusters for their superior 

floating-point performance. Usually, clusters based on Alpha processors have a relatively 

small number of nodes because of their higher cost. The overall computing capabilities of 

Alpha clusters are compensated by the greater performance of the individual compute 

nodes. Most recently, Apple workstations based on the RISC PowerPC G4 processor 

architecture with an AltiVec vector unit are gaining momentum for their gigaflop-

capable, single-precision floating-point performance and their low cost. 

Linux is the most common operating system of choice used for building clusters 

for parallel processing. This operating system is based on UNIX and offers a great degree 

of flexibility for achieving the goals of cluster computing: low cost, maintainability, 

software support, and satisfactory performance. Also, Linux facilitates fast transition of 

system software and parallel applications from the UNIX-based operating systems of the 

MPP systems (for example, IRIX on SGI Origin 2000 and AIX on IBM SP2) to clusters. 

Microsoft Windows NT/2000 is also used in clusters (Microsoft Corporation 2001). The 

development environment and graphical support of this operating system have attracted a 



48 

number of organizations that prefer to use commercially supported software and that also 

find the Windows environment compatible with their goals. Among the leaders in the 

area of cluster computing with Windows is the Theory Center at Cornell University. This 

center has successfully operated its large-scale AC3 Velocity cluster since 1999 (Cornell 

Theory Center 2001). The author of this dissertation has developed the MPI 

implementation that is being used as message-passing middleware at AC3 (Dimitrov and 

Skjellum 2000). This MPI implementation is presented in detail in Chapter IV. 

The interconnection network is among the most important factors that determine 

the performance and scalability of clusters. Initially, networks such as 10/100 Mbit/sec 

Ethernet and ATM and TCP/IP transport were used for building computational clusters. 

These initial clusters were primarily used for proof of concept and were not widely 

deployed in production environments. TCP/IP communication is performed within the 

scope of the host operating system and is based on kernel calls for data transfers and 

synchronization. The TCP/IP protocol stack has high processing overhead and introduces 

intermediate data copies in the internal operating system buffers. This stack is designed to 

provide high-level communication services and to facilitate software portability. 

TCP/IP has evolved as an internet streaming protocol for communication over 

networks with high error rates. In addition to its major reliable and in-order delivery 

service, TCP/IP provides a number of traffic optimization mechanisms developed under 

the assumption of high packet loss. These assumptions are often in direct contrast with 

the capabilities of the network infrastructure used in high-performance computing 
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clusters, where local-area networks with close proximities are often used and the packet 

loss form signal noise and router contention is minimal. 

The specific purpose and the performance attributes of TCP determine the 

relatively low communication performance of clusters using this protocol over traditional 

Ethernet and ATM networks. These networks in combination with TCP are still widely 

used for building low-cost clusters that demonstrate the concept of affordable parallel 

computing. Also, organizations whose applications exhibit highly concurrent structure 

with minimal communication requirements might find the performance of clusters based 

on TCP communication satisfactory. However, for the majority of the parallel 

applications that are executed on clusters, the performance of the communication 

subsystem plays a critical role for achieving high overall performance and scalability. 

In the past several years, a number of high-speed networks have emerged as 

alternative cluster interconnects to Ethernet and ATM. The need for fast interconnects is 

primarily created by the needs of the communication intensive data-parallel applications 

that are ported from MPP to clusters. These new networks feature high data link rates and 

optimized software layers that facilitate low overhead and zero-copy data transmission. 

As a result, data exchange between cluster nodes is performed with an order of 

magnitude higher bandwidth and an order of magnitude lower latency than 

communication over traditional Ethernet using the TCP/IP software stack. The 

performance related architectural characteristics of high-speed networks and the 

communication system software for these networks are described in detail in a separate 

section of this document. 
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2.3.3 Architectural Differences Between MPP and Clusters 

Although clusters can be viewed as simply another instance of platforms for high-

performance parallel processing, there are significant differences between the 

architectures of MPP systems and clusters. One of the objectives of this study is to 

identify these differences and to justify the approach for performance evaluation of 

clusters. Below, some of the important characteristics of MPP systems and clusters are 

summarized and compared. 

Characteristics of MPP systems: 

• interconnection networks with multiple links per processor (often 4 or more), 

• special hardware optimizations for efficient communication, 

• specially designed memory subsystems, 

• cross-system cache memory coherence hardware protocols, 

• inter-processor communication uses direct channels between memory banks of 

remote processors, 

• availability of redundant paths between pairs of processors, 

• specially designed protocols for contention avoidance, 

• communication paths do not traverse a low-speed peripheral I/O bus, 

• highly predictable communication behavior, 

• operating systems are specialized and optimized to support high-performance 

computing and provide optimized communication libraries, 
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• operating system’s code running on compute nodes is often optimized and 

performs minimal interrupt handling from peripheral devices, 

• user processes have direct access to low level communication primitives provided 

by the platform vendors, 

• usually, only one process is scheduled per processor, 

• Global communication and computation resources are uniformly distributed 

among nodes with equal processor speed and memory capacities. 

• Algorithms with structured data distribution and temporal regularity tend to 

execute synchronously. 

Main characteristics of clusters: 

• One network interface controller per cluster node (possibly serving four or more 

processors), 

• communication paths traverse a relatively slow peripheral I/O bus that often limits 

the maximum sustained bandwidth, 

• limited memory bus throughput, especially on Intel 32-bit architecture platforms, 

• efficient communication methods using bus-master-capable network controllers 

require pinning of use buffers in physical memory, which is a high-overhead 

operation involving the operating system kernel, 

• for cost reasons, network topologies have lower and more irregular cross-section 

bandwidth characteristics than the interconnects of MPP systems – usually fat 

trees are used when cluster nodes exceed the number of ports on the switches, 
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• lack of support for redundant routes between nodes for contention avoidance, 

• general-purpose operating systems on cluster nodes, such Windows or Linux, 

with sub-optimal process and thread context switch characteristics, 

• high variance and low predictability of communication events, 

• peripheral devices such as video, keyboard, mouse, and storage generate 

asynchronous interrupts at different rates, 

• user processes have limited access to low-level communication primitives (high-

speed networks with operating system bypass try to address this deficiency), 

• computers in the same cluster often have different processor speeds and memory 

capacities, 

• even regular and structured parallel algorithms tend to result in imbalanced 

execution. 

It is obvious that a large number of the assumptions on MPP systems are not valid 

on clusters. This justifies a different approach to achieving high performance on clusters 

and also suggests different procedures and metrics for performance analysis. 

2.4 High-Speed Networks 

High-speed networks are essential components of computational clusters. Typical 

local area networks such as 10/100 Mbit/sec Ethernet and ATM are not capable of 

delivering enough bandwidth for achieving efficient communication required by 

intensive parallel computations. Among the first high-speed networks are SCI (Dolphin 

Interconnect 2001) and Myrinet (Boden et al. 1995). The initial physical data rates of 
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these networks exceeded 1 Gbit/sec. Later, Giganet cLAN (Giganet Incorporated 1999) 

and ServerNet (Compaq Computer Corporation 2001) emerged as alternative choices. 

Giganet and ServerNet are compliant with the Virtual Interface Architecture (VIA) 

industry standard (Compaq Computer Corporation, Intel Corporation, and Microsoft 

Corporation 1997). This standard specifies the hardware and software interfaces between 

a high-speed network and a host computer system. Myrinet and Giganet have gained the 

widest acceptance as interconnects in high-performance clusters for their high data rates, 

scalability properties, and cost competitiveness. This section reviews Myrinet and 

Giganet technologies, as a representative subset. The next section presents the software 

interfaces of these networks used by upper layers for interaction with the network 

hardware. These software interfaces play a major role in building protocol stacks that 

enable low overhead, efficient communication. 

2.4.1 Myrinet 

Myrinet is a high-performance, packet-switching local-area network with gigabit-

per-second data rates. The Myrinet building components are host interface controllers and 

high port-count non-blocking switches, which employ cut-through switching and source 

routing. Cut-through switching eliminates packet buffering in switches and improves the 

effective link throughput. Source routing uses the leading word of the packet for selecting 

the outgoing switch port. This mechanism allows for rapid routing without searching 

through lookup tables. The hardware latency introduced by each switch is on the order of 

0.5 microseconds (Boden et al. 1995). Myrinet switches provide conflict-free connections 
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at full bandwidth to all links, unless the outgoing flows are directed to the same port 

(Myricom Incorporated 1997). A Myrinet link is a full-duplex channel that operates at an 

aggregate data rate of 2.56 Gbit/sec. Myrinet supports large packets, which enables easy 

support of higher-level protocols, such as TCP/IP, without adaptation layers. Because of 

its high data rate, low latency, and scalability, Myrinet is well suited for connecting 

computers into clusters used for intensive parallel computations. At present, Myrinet is 

the most widely used network for building high-performance clusters. 

Myrinet host adapters are fully operational, independent microprocessor systems 

based on the LANai chip (Boden et al. 1995). LANai executes a Myrinet Control 

Program (MCP) that performs data transmission over the network and notifies the host 

system for completion of communication events. The MCP can be loaded and controlled 

by processes running in user mode. The MCP offers unique flexibility for implementing 

various low overhead software architectures. This mechanism, enabled by memory 

mapping of a Myrinet controller’s resources in user-space memory (Boden et al. 1995; 

Dimitrov, Skjellum, and Protopopov 1997), has allowed a number of research groups to 

build high-performance, low-level messaging layers used in clusters. These projects have 

offered a great variety of solutions for optimal message passing with low communication 

overhead. Some of these projects are reviewed later in this chapter. 

The local memory of Myrinet adapters is accessible from the on-board local bus 

(LBUS) and the external peripheral bus (EBUS). On-board memory can be mapped in 

user space and thus made accessible directly to user processes. This mapping is 

performed in two steps: first the operating system maps the NIC address space into kernel 
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space, and then on a request by the user, the kernel region is mapped into user space. 

Thus, by simply accessing certain addresses, the user process can manipulate NIC local 

memory and the registers of the LANai processor. To increase data transfer throughput, 

Myrinet interface adapters are equipped with three DMA engines. Two of the DMA 

engines are associated with the physical network interface: one for receiving packets 

from the network and one for sending packets in duplex mode. The third DMA engine 

can operate simultaneously with the first two, and is used for bi-directional data transfers 

between the local adapter memory and main memory (Myricom Incorporated 1997). 

The LANai processor can operate in host peripheral bus master mode. Using this 

mechanism, LANai can access user buffers across the peripheral bus without the 

participation of the host CPU. This enables concurrent execution of computation 

activities performed by the central processor and communication activities performed by 

the network processor. This architecture is referred to as “two-level multicomputer” 

(Boden et al. 1995). The two-level multicomputer architecture frees the host processor 

from immediate responsibilities for data transmission and creates opportunities for 

overlapping of communication and computation. This study is focused on high-speed 

networks with architectures similar to Myrinet because of its capability to perform 

communication independently of the host system, which allows the main CPU to 

compute while the network controller is transferring data. This capability is the main 

facilitator of low CPU overhead and a high degree of communication and computation 

overlapping. 
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2.4.2 Giganet cLAN 

Giganet cLAN is a high-speed, packet switched network with intelligent bus-

master capable interface controllers (Giganet 1999). The raw link data rate of Giganet is 

1.25 Gigabit/sec. Giganet uses eight- or thirty-port switches, which introduce hardware 

latency on the order of 0.5 microseconds. The data-link layer operates with small size 

cells, similarly to ATM networks. This allows for fair and rapid routing of packets on the 

fabric. Giganet emphasizes low-latency, high throughput communication while using 

minimum cycles of the central processor for communication. The low CPU overhead of 

Giganet is one of its most appealing factors for high-performance parallel processing on 

clusters with overlapping of communication and computation. 

As opposed to Myrinet, the communication processor of Giganet controllers is not 

programmable by the user. The firmware of the coprocessor is implemented with ASIC 

technology. This feature limits the flexibility of Giganet NIC. On the other hand, the 

Giganet NIC processes incoming and outgoing packets faster because, in contrast to 

Myrinet, the network control program is executed in hardware. Giganet was the first fully 

operational hardware implementation of the VIA specification. Giganet implements a 

high degree of protection and security while still providing operating system bypass on 

the critical data paths. Giganet also offers dynamic auto-configuration of the connection 

topology. This increases its reliability and availability. The VIA software interface of 

Giganet uses a connection-oriented communication model while Myrinet’s interface is 

connectionless. The connection-oriented model of Giganet, and VIA in general, is viewed 

as a scalability-limiting factor on large-scale clusters (Brightwell and Maccabe 2000). 
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2.5 Communication Interfaces and Software Stacks 

Communication software stacks provide application processes with low-level and 

high-level services. The low-level services include error detection and correction, reliable 

in-order delivery, and completion notification of communication events. The high-level 

services include buffer management, message multiplexing and demultiplexing, user-

level flow control, collective operations, and topology abstractions. The architecture of 

communication software has a significant impact on message-passing bandwidth and 

latency as well as on processor overhead. An excessive number of intermediate software 

layers may substantially degrade the communication performance delivered to 

application processes. Traditional protocol stacks isolate user processes from the I/O 

devices by imposing kernel API for protection. This section reviews the fundamental 

differences between the traditional protocol stacks and the recently introduced, low-

overhead messaging layers with operating system bypass. Specifically, U-net, SHRIMP, 

Fast Messages, and the Virtual Interface Architecture are reviewed. 

2.5.1 Approaches to Communication Software Stacks 

Traditional communication software approaches are often based on the TCP/IP 

protocol stack, which closely follows the seven-layer ISO OSI reference model. 

According to this model, the software stack is divided into clearly separated layers with 

specific interfaces and services that they provide to upper layers and expect from lower 

layers. This architecture offers a high-level of abstraction and increases the degree of 

portability of the protocol components. A substantial portion of traditional stacks is 
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implemented in the operating system kernel. This increases the level of protection in the 

system and also helps guarantee fairness in the access to I/O resources. However, this 

separation of highly modularized layers delegating functionality to the kernel incurs 

intermediate data copies and also imposes high software overhead caused by crossing 

multiple interfaces and by process context switches. Each data copy at the boundaries of 

the software layers degrades effective communication performance. Alternative 

communication software architectures attempt to bypass the operating system during the 

performance-critical activities. This functionality is achieved by employing thinner 

protocol stacks with collapsing software layers and providing direct access of user 

processes to network hardware resources. The main concepts of the traditional and low-

overhead communication stacks are differentiated in Figure 2.1. The shaded areas 

represent software modules that are typically implemented in the kernel. 
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2.5.2 U-net 

U-net provides a model for building the communication software protocol stack in 

user space, thereby bypassing the operating system on the critical data paths (von Eicken 

et al. 1995). U-net’s architecture presents a virtual view of the network interface to user 

processes. After an initialization phase, each process has direct access to the 

communication infrastructure of the network. U-net was originally developed for 

switched ATM networks with Fore Systems SBA 100 and SBA 200 interface controllers. 

These controllers use a programmable i960 processor, which serves as a network 

coprocessor (von Eicken et al. 1995). 

The architecture of U-net demonstrates that a cluster of workstations 

interconnected with a fast network can achieve communication performance comparable 

to that of supercomputers. Specifically, U-net addresses the overhead and latency of short 

message transfers. U-net recognizes the trend for building intelligent network interfaces 

with local processing capabilities and local on-board memory. Tapping these resources 

requires a different approach to communication software. Instead of treating the NIC as a 

passive device controlled by the kernel, U-net relies on cooperation between the central 

processor executing the user process and the network coprocessor controlled by its own 

logic specifically designed for efficient communication. 

The architecture of U-net is based on interface endpoints, which serve as user 

process handles to the network interface, and communication segments (Basu et al. 1995). 

The communication segments are regions of memory used for holding message queues. 

Send and receive message requests are created as descriptors in the communication 
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segments and then added to the message queues. U-net uses three queues – send, receive, 

and a queue for free descriptors. The send and receive queues serve as an interface 

between the user process and the NIC. The NIC removes descriptors from the queue and 

executes the operation requested by the user process. U-net is capable of achieving zero-

copy transfers between user space buffers that belong to processes on different network 

nodes. 

U-net/MM (Welsh, Basu, and von Eicken 1997) is an effort that extends U-net. 

U-net/MM eliminates U-net’s restriction to place data buffers only in the communication 

segments. U-net/MM provides users with an interface for pinning pages of user buffers in 

physical memory on demand. Thus, a user can initiate a zero-copy transfer from any 

virtual address in user space, unlike U-net, which uses astatically allocated segments. 

This flexibility is achieved by a dynamic virtual-to-physical address translation 

mechanism. The translations are performed by the U-net/MM kernel module and are 

stored in a translation look-aside buffer (TLB) maintained in the NIC memory and 

synchronized with the virtual memory mechanism of the operating system. U-net/MM 

addresses issues related to TLB misses and TLB coherency by using a mechanism for 

performing dynamic translation of missing pages and invalidating translations released by 

user processes when communication to/from the buffer has completed. The TLB misses 

cause a substantial overhead, but their occurrence is relatively rare, so the increased 

flexibility of U-net/MM is viewed as an advantage over U-net. The dynamic translation 

mechanism first introduced in U-net/MM was later used as one of the foundations of the 

VIA specification. 
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2.5.3 SHRIMP 

The Princeton SHRIMP multicomputer project demonstrates a software 

architecture that achieves low-latency and high-bandwidth communication through 

virtual memory-mapped network interfaces (Blumrich et al. 1994). This architecture 

specifically targets the system overhead associated with message initiation. Additionally, 

by employing a user-level block transfer mechanism, SHRIMP allows for high-

sustainable bandwidth of bulk transfers. As opposed to other systems, the SHRIMP 

software architecture allows multiple users to access the resources of the network 

interface while providing protection. This is achieved through the mechanism of virtual 

mapped network interface into user space. The first prototype of SHRIMP was 

demonstrated on a cluster of Intel Pentium personal computers using the Intel Paragon 

routing backplane for interconnecting the cluster nodes. Custom designed network 

controllers are used for interfacing the cluster nodes to the network fabric. 

Based on a study of a variety of parallel applications, Blumrich et al. (1994) 

concluded that the communication pattern of these applications is predominantly regular 

and predictable. Therefore, a mechanism for early binding of communication requests is 

introduced. The transfer of data is separated in two phases: setting up the transfer (map 

phase) and performing the data movement (send phase). During the map phase, a local 

buffer is mapped to a buffer residing in user space on a remote system. The setup phase 

involves the kernel for protection checking and storing mapping information, which 

results in a much higher overhead than in the second phase. This approach relies on the 

fact that once a transfer is set up, this transfer can be reused multiple times and the setup 



62 

overhead will be amortized over a large number of transactions. As a result, the 

performance optimizations are focused only on the activities related to the actual data 

transfers. This allows SHRIMP to reduce the effective system overhead of one message 

transfer to only a small number of instructions. 

The communication model used by SHRIMP is distributed shared memory. By 

mapping local buffers to remote buffers, the communication is reduced to maintaining 

consistency of the two buffers. The underlying mechanism that enables this functionality 

is remote memory mapping. This mechanism maps segments of physical memory of 

remote nodes in the physical memory of the local node. These mappings are maintained 

in a network interface page table. The actual data transmission is performed through an 

automatic update operation. When the user process writes in a memory region that is 

mapped to a remote node’s memory region, the automatic update mechanism is initiated. 

This mechanism is used to perform the memory coherency across the cluster. The actual 

update is triggered by the virtual mapped network interface that snoops the memory bus 

for writes. 

Two modes of automatic update are provided – single and block mode. The single 

mode is optimized for minimal latency, while the block update is designed to achieve 

high bandwidth. The automatic update approach allows the CPU to initiate data transfers 

only through regular memory accesses. The only overhead the CPU incurs is associated 

with the local write-through cache latency. The actual transfer is later completed by the 

network interface, which allows for overlapping of communication and computation. 

Blumrich et al. (1996) extend the initial design of the virtually mapped SHRIMP network 
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interface to support user-level DMA transactions, which further reduce the software 

overhead for transmitting data between processors. 

2.5.4 Fast Messages (FM) 

Fast Messages (Pakin, Lauria, and Chien 1995) is a low-level messaging software 

system that aims to provide high-speed communication with low software overhead 

across a network of workstations. The major focus of FM is achieving low latency while 

preserving acceptable levels of effective throughput. FM recognizes that traditional 

software stacks impose high overheads to message processing and deliver only a small 

fraction of the physical capabilities of the network interconnects to user processes. 

For demonstrating its concepts, the initial implementation of FM used a Myrinet 

network and presented a number of alternative designs through modifying the 

functionality of the MCP and the user-level software interface. In these designs, FM 

considered issues related to distribution of the communication workload between the 

central processor and the network coprocessor, buffer management, and scheduling of the 

activities on the host peripheral bus. FM addressed a number of challenges related to the 

limited capability of the LANai network processor to perform fast execution of the MCP 

whose processing is on the critical data path. Since the LANai processor is significantly 

slower than the main processor, FM has provided optimizations to reduce the number of 

cycles that LANai spends on each message. 

FM presents a design space that offers a number of solutions for optimizing the 

trade-off between low latency and high bandwidth. Specifically, the use of programmed 
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I/O versus the use of the Myrinet NIC DMA engines is investigated. Programmed I/O 

uses the central processor to transfer the user buffers from main memory to the NIC local 

memory. This mechanism offers the lowest latency because it avoids the overhead 

associated with the DMA setup procedure and the synchronization between the main 

processors and the LANai. However, programmed I/O achieves lower effective 

bandwidth than the DMA approach. In order to combine the benefits of the two 

approaches, FM offers a hybrid scheme that uses programmed I/O at the sender and 

DMA transfers at the receiver. 

The design considerations of FM are limited only to the trade-offs between 

latency and bandwidth. A performance analysis more relevant to practical situations 

might consider a multidimensional trade-off space formed by CPU overhead, overall 

application performance, latency, and bandwidth. In such a space, other communication 

schemes might offer a more balanced optimal solution. 

2.5.5 Virtual Interface Architecture (VIA) 

VIA is an industry-driven standard that specifies the interface between a high-

performance system area network and a computer system (Compaq Computer 

Corporation, Intel Corporation, and Microsoft Corporation 1997). A major objective of 

VIA is to reduce the message-passing overhead and the number of intermediate data 

copies induced by general-purpose protocol stacks. This is achieved by collapsing the 

excessive number of software layers in traditional networking models, eliminating the 
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host operating system from the critical data path, and providing a hardware thread of 

control that is implemented by the VIA network interface controller. 

VIA allows user processes to interact directly with the network controllers 

without mediation from the operating system. This avoids unnecessary context switches 

and significantly reduces the communication software overhead. Transfers to and from 

data buffers can continue even when processes participating in the communication are not 

scheduled for execution. Transferring data in and out of user memory when processes are 

swapped out is achieved through the NIC DMA engines and the VIA memory 

registration mechanism. This mechanism translates virtual addresses into physical 

addresses and pins user buffers in physical memory, similarly to U-net and SHRIMP. The 

registration mechanism guarantees that user data will remain in physical memory while 

the network controller accesses the buffers across the peripheral bus. 

The major abstraction of VIA is the Virtual Interface (VI) communication 

channel. Each VI is a set of software and hardware mechanisms for synchronization and 

notification between the user processes and the NIC. The VI appears to user processes as 

an independent, fully functional network interface. Processes on remote nodes 

communicate between each other by creating a connection between their local VI 

instances. Each process can open multiple VIs. A VI cannot be shared between different 

processes. VI connections can be established by using both the client-server and the peer-

to-peer models. 

VIA is composed of three main components: the VI NIC, the VI Kernel Agent, 

and the VI User Agent (Figure 2.2). The VI Kernel Agent is implemented as a kernel-



VI User (Application Process) 

VI User Agent 

VI NIC 

VI Kernel Agent 
VI 

User Mode 

Kernel Mode 

VIVI VI 

Figure 2.2 VI Architecture schematic 

66 

level device driver performing operations that require operating system participation, 

such as: opening and closing the NIC device, obtaining system information, memory 

registration, creating VI instances, and establishing VI connections. The VI User Agent is 

a user-level library that implements the VI API, the VI queue interfaces, the notification 

mechanisms, the operation status report, and the error control (Compaq Computer 

Corporation, Intel Corporation, and Microsoft Corporation 1997). 

VIA network controllers are intelligent devices, usually implemented with ASIC 

and/or FPGA technologies. They are equipped with DMA engines capable of accessing 

system memory across the I/O bus without the participation of the system processor. 

These DMA engines can be used to transfer data directly from the user buffers to the 

network fabric, and vice versa, avoiding intermediate copies in host system memory. This 

increases the effective bandwidth of communication, frees the main CPU from 

communication tasks, and reduces congestion over the system bus. DMA engines support 

scatter/gather mode of operation, which can be used for efficient zero-copy transfers of 
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noncontiguous memory layouts. VIA controllers are designed to have sufficient resources 

to support a large number of VI instances. Data structures associated with each VI 

instance are maintained in NIC memory, which allows NIC’s to process requests for 

message transfers faster and with reduced control traffic over the I/O bus. 

The interface between the user processes and the VIA NIC is implemented 

through a pair of send and receive descriptor queues associated with each VI instance. 

The service policy of the queues is FIFO. Using these queues, the VIA NIC keeps track 

of the send and receive requests and also maintains their correct order. The VI descriptors 

are data structures that reside in user space and specify the source and/or target data 

buffers, the desired operation, and the method of completion notification. User processes 

allocate, initialize, maintain, and free the descriptors. The descriptors are accessed and 

interpreted by VIA NIC. This is achieved by pinning the memory segments that contain 

the descriptors to the physical memory. This is performed by the VI memory registration 

mechanism. After users allocate and initialize a descriptor, they invoke a library call from 

the VI User Agent to notify the NIC about the requested operation. This notification 

occurs through updating the VI doorbell. Doorbells are data structures that reside in NIC 

local memory and are mapped into the address space of the user process. Thus, by 

accessing certain memory regions in its memory space, a process can interact with the 

NIC. These accesses are mediated by the VI User Agent. 

VIA provides synchronous and asynchronous methods for completion 

notification. The synchronous method is implemented by polling a flag in the NIC’s 

memory. This flag is signaled by the NIC processing element when the requested 
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operation is completed. The asynchronous method uses interrupts for notification. When 

the NIC completes the operation, an interrupt to the main processor is generated. This 

interrupt is serviced by the VI Kernel Agent, which in turn signals the user process 

through an operating system synchronization mechanism, such as an event in Windows 

or a conditional variable in Linux. The polling method offers lower latency than the 

interrupt method. However, the polling mode engages the host processor and causes high 

CPU overhead, which to a large degree defeats the purpose of the complex architecture of 

the VIA NIC. Polling can be used efficiently for sending short messages whose total 

transmission time is comparable to the time necessary for interrupt processing. 

In order to enable users to specify their buffers with virtual addresses, VIA 

provides a memory registration mechanism. This mechanism pins virtual memory 

segments participating in data transfers to the physical memory. This allows the DMA 

engines to access data buffers at any given time without the participation of the operating 

system, even when the user process is swapped out. This feature improves 

communication efficiency and minimizes processor overhead. In addition, memory 

registration increases communication predictability, which is a feature that can be 

successfully used in systems with strict timing requirements. Specifically, pinning 

eliminates the variability of the operating system’s virtual memory mechanism. MPI/RT 

(Kanevsky, Skjellum, and Rounbehler 1998) is an instance of a message-passing 

specification with real-time requirements that may benefit from VIA memory registration 

and the VI quality of service attributes that are proposed for the next version of the VIA 

specification. 
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VIA defines remote DMA (RDMA) Read and Write operations for transferring 

data from one network node to another, transparently to the main processor of the two 

computer systems involved in communication. In an RDMA read operation, the 

requesting process instructs the local NIC about the remote node, the remote buffer, and 

the desired RDMA operation. Then, the local NIC initiates the transfer by contacting the 

remote NIC without involving the remote processor. Using its DMA engine, the remote 

NIC copies the remote user buffer into its memory and then transmits it over the network 

to the NIC on the system that requested the operation. Finally, the NIC local to the 

requestor performs a local DMA transfer to deposit the content of the remote buffer into 

the host memory and notifies the requesting processes about the completion of the 

operation. 

The RDMA mechanism relies on the implementation of a cache-coherence 

protocol on the host computer systems. This protocol maintains the consistency of the 

cached memory segments that are modified transparently to the main CPU by the DMA 

engines on the VIA NIC. The RDMA read and write methods can be successfully used 

for implementing put and get primitives on distributed shared-memory systems as well as 

the MPI-2 one-sided communication model (Message Passing Interface Forum 1998). 

The direct access of user processes to network resources, and especially to the 

NIC DMA engines that can access the entire physical address space of the host system, 

raises certain protection and security concerns (Dimitrov and Gleeson 1998). Thin 

communications software stacks facilitate low-overhead data transfers but, at the same 

time, give users high privileges for accessing and manipulating system hardware 



70 

resources without the mediation of the host operating system. Targeting these protection 

and security concerns, the VIA specification provides a set of mechanisms, such as the VI 

memory model and the VI connection model, that increase the level of protection. VIA 

isolates user processes on the same system from each other and also protects the 

operating system from malfunctioning or malicious user processes. In addition, VIA 

provides mechanisms for effective monitoring and control of VI connection creation. 

Direct access of user processes to NIC resources, NIC DMA engines, remote 

DMA operations, and the VI memory management model are among the major 

facilitators of low-overhead communication with zero-copy transfers. Most of these 

mechanisms have been introduced by network technologies such as Myrinet and 

numerous research projects among which most notably are U-net and SHRIMP (von 

Eicken and Vogels 1998). VIA is an important step toward creating a uniform interface 

view of high-speed networks with user level access to communication hardware. 

Underlying details of data-link and physical network layers remain hidden for the upper 

communication software layers. This significantly increases portability of message-

passing systems (or directly coded VIA applications) while preserving optimal 

performance. In addition, VIA provides mechanisms for increased protection and 

security, which are important factors for production systems. Several networking 

vendors, such as Giganet and Compaq provide PCI VIA implementations for Windows 

and Linux. These implementations are based on diverse vendor-specific physical layers. 

Their compliance with the VIA specification allows a message-passing system, such as 

MPI, to be ported quickly from one network to another with minimal code changes while 
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preserving optimal performance. The portability characteristics of VIA are successfully 

demonstrated by the MPI implementation presented in this work. This implementation 

provides support for Giganet and ServerNet for Windows and Linux with minimal 

changes. These changes are mainly in host name resolution and VI connection creation. 

2.6 Message-Passing Interface 

The Message-Passing Interface (MPI) has become a de-facto standard for 

programming multicomputers and multiprocessor architectures as well as clusters of 

workstations. The standardization effort of MPI was initiated by United States 

government agencies and embraced by high-performance computing vendors and users 

relying on parallel processing for intensive scientific computations. MPI builds on the 

experience of other message-passing systems, such as PVM (Geist et al. 1994) and 

Zipcode (Skjellum et al. 1994). Among the major goals of MPI is creating a portable 

interface for parallel programming while providing maximum performance. MPI offers a 

unique combination of abstraction power, performance, and portability. These features 

have all contributed to the success of MPI as the parallel API of choice in the past several 

years. Recently, the audience of MPI has expanded from the traditional scientific 

computing area to the rapidly growing area of cluster computing. 

MPI provides a unique opportunity to parallel application programmers to create 

portable algorithms that can be easily moved to different platforms while also achieve 

portable performance. The performance portability feature is based on the MPI portable 

interface that can be optimized on different target architectures to reflect features and 
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capabilities specific only to these architectures. If such optimizations are directly encoded 

in the application software, it is likely that their performance will not be portable. This 

fact often attracts less attention than the code portability, but has an important impact on 

the economics of high-performance computing software by providing opportunities for 

optimizations that are not tied to a single platform. 

The success of MPI has triggered specifications for extensions to the original 

standard, which lead to the creation of MPI-2 and MPI/RT. MPI-2 offers much wider 

functionality than MPI, including parallel file I/O, extended collective operations, one-

sided communication, and dynamic process management (Message Passing Interface 

Forum 1998). Dynamic process management addresses the limitation of MPI related to 

the static model for allocating processes. MPI-2 allows the MPI jobs to grow by 

dynamically spawning new processes. A number of self load-balanced algorithms can 

benefit from this new functionality. Dynamic task allocation also addresses environments 

with dynamically changing rates of data input. 

MPI/RT (Kanevsky, Skjellum, and Rounbehler 1998) emphasizes predictability, 

scheduling, and early binding of communication activities. MPI/RT introduces the notion 

of explicit communication channels that are created on demand by user processes. This 

differs from the MPI paradigm, which mandates virtual all-to-all connectivity and allows 

every process to communicate with any other process. Resource management is another 

area in which MPI/RT provides explicit control. User processes can manipulate buffer 

pools and select policies for the order of buffer processing. Common targets for MPI/RT 

are embedded systems that perform time-critical computations and intensive real-time 
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processing on data coming from external devices, such as radar, sonar, or other remote 

sensors. VIA-based targets for video on demand or other purposes are plausible. 

2.7 Review of Approaches for Improving Parallel Performance 

The approaches to improving performance of parallel systems can be generally 

divided into four major groups: improving computational capabilities of network nodes, 

increasing the speed and scalability of network interconnects, optimizing communication 

system software, and optimizing parallel application algorithms. Among the hardware 

approaches are optimizing microprocessor architectures for higher instruction and data 

throughput, adding vector units to superscalar cores such as G4 AltiVec and Intel SSE, 

increasing the clock rate, improving the throughput of system busses, improving memory 

hierarchies, creating faster and wider peripheral busses, and providing new methods for 

faster I/O, such as InfiniBand (Intel Corporation 2000) and RapidIO (Motorola 2000). 

Some of the approaches for improving network interconnects are increasing the physical 

data link rates (presently at 1-2 Gbit/sec), increasing processing capabilities of network 

interface adapters with larger memory and faster processor components, improving 

packet switching and routing, and providing scalable interconnect topologies that enable 

clusters with thousands of nodes. 

The attention of this work is focused on the system software approaches and their 

interactions with the network resources and the parallel application algorithms. Earlier in 

this chapter, the user-level networking approach to communications software was 

reviewed. This approach is considered one of the most significant factors for enabling 
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clusters for high-performance computing. Different variations of user-level networking 

are commonly used in today’s computational clusters, most notably VIA and GM – the 

software interface of Myrinet (Myricom 2001). Another common software approach to 

improving parallel performance is optimizing collective communication operations. A 

large group of data parallel applications use collective operations for performing message 

passing; therefore, improving performance of these operations can lead to a significant 

improvement in overall performance. A number of widely used message-passing systems, 

among which is MPICH, provide minimal or no optimizations for collective operations. 

For this reason, a large group of applications are created using only point-to-point 

communication primitives, and not the collective operations. This is a shortcoming of a 

parallel algorithm’s architecture, because it limits the capability of applications to adapt 

their performance to the specific characteristics of new target systems. These 

characteristics are often exploited by the native collective operations. 

Minimizing the number of transfers, reducing network contention through 

scheduling, minimizing traffic on slow links, and increasing the degree of concurrency of 

individual transfers are among the common approaches for optimizing collective 

operations. These approaches have an important role in improving overall performance 

and scalability. One of the frequently used techniques for optimizing collective 

operations is employing algorithms with lower than linear asymptotic complexity, such as 

binary trees, minimum spanning trees, and fat trees. The execution time asymptotic 

complexity of these algorithms is O(logp). Although they result in the same number of 

transfers as linear algorithms, the tree algorithms provide opportunities for greater 
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concurrency and better utilization of the available bisection bandwidth. The role of 

asymptotic optimizations is especially important on large-scale systems with hundreds to 

thousands of nodes. 

Barnett et al. (1994) provide a different perspective on optimizing collective 

operations. They study the trade-off between asymptotic complexity and overall amount 

of exchanged data. They recognize the importance of concurrency and that practical 

message-passing systems usually provide multi-protocol implementations of data transfer 

based on message length. As an example of the approach applied by Barnett et al. (1994), 

the MPI_Reduce_scatter operation is reviewed. This MPI call performs a reduction 

operation on the input buffers with size L bytes of all participating processes and then 

scatters the result among these processes. Typically, asymptotically optimal algorithms 

perform this operation in two phases: first the reduction and then the scatter operation. 

Each of these phases can be implemented as a logp tree, each of which requires p – 1  

transfers, for a total of 2logp tree stages and 2p – 2 transfers. All of the transfers of the 

reduction operation are of the same size L. The receive buffers of the scatter phase are of 

size L/P. The scatter transfers at stage j in  the tree are  of  size  L/(2j), where j is in the 

range [1, logp]. The total amount of data moved with the asymptotically optimal 

implementation is (p – 1)L for the reduce phase and logp(L/2) for the scatter stage, 

totaling (p – 1)L + logp(L/2). Barnett et al. recognize that although the logp algorithms 

are optimal in terms of number of transfers and asymptotic complexity, they exhibit 

limited concurrency – half of all transfers are performed during one stage and the other 

half in all logp – 1 stages. Barnett et al. (1994) propose a bucket class of collective 
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algorithms that addresses concurrency of transfers, network contention, and the trade-off 

between algorithm complexity and total amount of exchanged data. The proposed 

algorithm that implements the operation equivalent to MPI_Reduce_scatter is “bucket 

distributed global combine.” This algorithm requires p – 1 communication steps and 

moves (p – 1)L bytes of data in p(p – 1) transfers. On one hand, the proposed algorithm 

has higher complexity than the asymptotically optimal algorithm, since (p – 1)  >  2logp 

for any p > 6. Also, the bucket algorithm uses a larger number of transfers p(p – 1)  versus  

2p – 2 for the asymptotically optimal algorithm. On another hand, the bucket algorithm 

exchanges a smaller total amount of data with logp(L/2) bytes, while engaging all nodes 

in communication and computation in every stage. As a result, the communication and 

computation loads are more evenly distributed among all nodes. Barnett et al. (1994) 

show that the bucket algorithm performs better than the asymptotically optimal 

algorithms on a number of parallel platforms. 

Another software approach to improving performance on parallel systems is to 

reflect network topology and connection attributes in the communication software. Baum 

et al. (1998) demonstrate an MPI implementation based on MPICH with explicit support 

for both network and shared-memory communication. Baum et al. (1998) have 

implemented collective algorithms that are tuned to reflect the mapping of process ranks 

to processors and also the difference in communication speed of the two MPI devices. 

The main objective of the optimization is to minimize the number of slower network 

transfers and to reduce network contention by scheduling transfers over the same network 

links. The results of this study show that the completion time of collective algorithms can 
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be significantly reduced (more than two times for broadcast) when the proposed 

topology-aware algorithms are applied to a cluster of multi-processor nodes. The study 

presented by Baum et al. (1998) is limited to the case when the parallel system supports 

one slower and one faster device. In order to meet the needs of practical systems, this 

research can be extended to cover hierarchical communication topologies with an 

arbitrary number of devices and dynamically evaluated performance attributes. There is 

already demand for such research since clusters with multi-processor nodes and two or 

more different networks are presently being built. A typical example for such a 

configuration is an organization that operates two kinds of high-speed network clusters 

and would like to execute parallel jobs across all nodes. This can be achieved only by 

using standard TCP communication when nodes from the different clusters communicate. 

In this scenario, the MPI middleware must support at least two networking devices (a 

high-speed network device and a TCP device) as well as one shared memory device in 

order to facilitate efficient processing on the aggregate cluster. 

Early binding is another important software mechanism that can lead to 

significant parallel performance improvement. In message-passing systems, early binding 

is used for exploiting temporal locality, specifically when the same data buffer can be 

reused for multiple transfers. According to their data distribution, parallel algorithms can 

be classified as structured and unstructured. The structured algorithms often exhibit static 

data distribution, which is maintained during the entire duration of the algorithm. 

According to their temporal behavior, parallel algorithms can be classified as regular and 

irregular. Regular algorithms have repetitive communication pattern, which typically 
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results in a loop that involves the same data buffers updated at each loop. Structured and 

regular parallel algorithms are the best candidates for optimizations that use early 

binding. Typical representatives of structured and regular algorithms are iterative solvers 

for systems of linear equations. 

Early binding allows message transfers to be set in the initialization phase of the 

algorithm and then reused multiple times during the communication intensive portions of 

the algorithm. Thus, the initialization overhead associated with message setup can be 

amortized over a large number of messages, which increases the effective message 

passing performance. The MPI standard (Message Passing Interface Forum 1994) 

specifies a persistent mode of communication, which allows user processes to allocate 

persistent send and receive point-to-point requests that can be reused multiple times. 

Skjellum (1998) extends the idea of persistent requests and proposes a persistent model 

for collective communication as a performance extension to MPI. This model enables 

algorithms that utilize MPI collective operations to take advantage of early binding and 

minimize the effective cost of communication. The collective operations specified in the 

MPI and MPI-2 standards do not allow for such performance optimizations. In contrast, 

MPI/RT (Kanevsky, Skjellum, and Rounbehler 1998) with its collective channel 

abstraction does support such optimizations. 

The last software mechanism for improving parallel performance reviewed in this 

chapter is overlapping of communication and computation. This mechanism demonstrates 

the complex interactions of the hardware and software components of a parallel system. 

Effective overlapping is possible if and only if the entire software stack and the 
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underlying hardware are implemented with awareness of this mechanism. Each layer of 

the communication stack is equally important for delivering the capabilities of 

overlapping to application software. At best, upper layers can preserve these capabilities. 

A critical characteristic of system software and message-passing middleware is to 

propagate these capabilities with minimal losses. Only then, can an application using 

overlapping actually achieve real performance gain. If the underlying layers do not 

support overlapping, even the most optimally implemented algorithm will not be able to 

produce any performance improvement. 

Tanaka et al. (1998) and Baden and Fink (1998) study the performance effect of 

overlapping on clusters of SMP machines and present models for utilizing overlapping on 

the studied systems. The model proposed by Baden and Fink targets hierarchical 

multicomputers and uses a non-uniform distribution of the workload. This model 

supports a node-level, rather than processor-level, communication and designates one 

process per node to participate in communication. Only processes on the same node 

communicate directly. Inter-node communication is performed by the designated 

communication processes. 

The main objective of this model is to achieve overlapping by over-decomposing 

the problem size using a larger number of processes than processors. This approach relies 

on the operating system to schedule a process that can perform computation while 

another process is blocked on a communication event. The model proposed by Baden and 

Fink (1998) is non-homogeneous and presents a high-degree of complexity when a 

parallel algorithm is designed. Also, the actual behavior depends on operating system 
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characteristics, which can vary greatly from one operating system to another or even on 

the same operating system but on different architectures. These characteristics limit the 

applicability and portability of this model. Further, Baden and Fink do not study the 

actual effectiveness of overlapping. They rely on the fact that the operating system will 

schedule a process that is independent of a communication event while another process is 

blocked on such an event. However, they do not show if the communication activity 

scheduled by the communicating process is actually executed concurrently with the 

processing performed by the computing process or whether these activities are in fact 

performed sequentially. Although the study by Baden and Fink (1998) provides a 

valuable methodology for addressing performance on SMP clusters, this study shifts its 

focus to issues related to data decomposition and operating system scheduling. Other 

issues that are critical for achieving effective overlapping but not discussed by Baden and 

Fink (1998) are as follows: capability of the underlying hardware to perform independent 

communication, sufficient memory bandwidth, CPU overhead, adequate support for 

overlapping from the system software, and scheduling of communication and 

computation within the same process. 

The model proposed by Tanaka et al. (1998) is demonstrated on a cluster of 

workstations interconnected with Myrinet. A low-overhead communication layer with 

distributed shared-memory primitives is implemented to perform data movement between 

nodes. Intra-node communication between processing threads is based on shared 

memory. The communication layer implements remote memory operations and 

synchronization primitives, which utilize the processing capabilities of the Myrinet 
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adapters. This model allows for homogeneous distribution of data among processes. The 

model relies on an explicit use of multiple threads per processor for achieving 

overlapping. Similarly to the effort of Baden and Fink (1998), the work presented by 

Tanaka et. al (1998) does not provide an in-depth systematic study on the factors that 

influence overlapping. 

Sohn et al. (1999) investigate overlapping from the standpoint of the parallel 

algorithms. Sohn et al. recognize that algorithms that can potentially take advantage of 

overlapping have similar architecture. These algorithms are based on processing with two 

distinct phases – a local computation phase and a communication phase. These phases 

can be repeated in a loop. The traditional approach is to perform these two phases 

sequentially, thus eliminating the possibility for overlapping. Sohn et al. observe that a 

generalized approach to using overlapping can be applied to these algorithms. The 

communication and computation phases can be further subdivided into smaller 

fragments, which are interleaved and pipelined. Thus, instead of exchanging one message 

of size L, the communication phase exchanges a series of s segments of size m, such  that  

L = s m. In case the algorithm is computationally bound, Sohn et al. (1999) claim that by 

selecting an appropriate segment size, it is theoretically possible to hide the entire 

communication time. Ideally, the larger the number of segments m is, the more effective 

the overlapping becomes. However, by applying theoretical models such as LogP and 

LogGP as well as performing experimental measurements, Sohn et al. observe that the 

effectiveness of overlapping is limited by the efficiency of small message transfers for 

which overhead becomes the predominant component of the transmission time. They 
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define a metric, called communication efficiency, as the ratio (Tcomm,1 – Tcomm,s) /  Tcom,1 

where Tcom,1 is the time for transmitting a message of size L in one segment and Tcomm,s is 

the time for transmitting the same message in s segments of size L/s. Sohn  et  al.  use  

communication efficiency to evaluate the capability of a parallel system to perform 

overlapping of communication and computation. 

Of the above reviewed research efforts on overlapping, Sohn et al. present the 

most elaborate study. They investigate the impact of the structure of parallel algorithms 

that use overlapping on the communication pattern of these algorithms. The rest of the 

studies are limited to implementing certain algorithms using overlapping and presenting a 

summary of results on practical systems. Sohn et al. go a step further by studying the 

effects of overlapping on algorithms and the trade-offs between overlapped 

communication and computation with a different number of message segments. However, 

Sohn et al. take a restricted view of the capability of a system to achieve overlapping. The 

basis for identifying this capability is the “communication efficiency” metric. Although 

this metric reveals certain insights about the trade-offs between message size and number 

of segments, it mainly emphasizes the capability of a system to improve its 

communication efficiency by pipelining multiple messages and thus reducing the 

aggregate impact of message overhead. As the experimental results presented in Sohn et 

al (1999) show, the communication efficiency metric penalizes parallel architectures with 

highly optimized network fabrics, such as Cray T3E, because the communication 

overhead of these systems is insignificant and pipelining has little to hide. By its 
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definition, the “communication efficiency” metric presents only a restricted view of the 

multi-faceted issue of effective overlapping. 

None of the models for overlapping reviewed in this section investigate the 

importance of processor overhead, the impact of hardware and system software, and the 

interaction between the communication subsystem and the application process in 

sufficient depth. These factors play a critical role in understanding the complex processes 

in a parallel system and in designing parallel system and application software that utilize 

overlapping effectively. The studies presented here have not offered sufficient formal 

description of overlapping and its incorporation in theoretical models for parallel 

computing. The practical systems suggested by the research are often highly customized 

and do not offer significant benefit to the wide user base of parallel processing, which 

primarily uses standard message passing interfaces, such as MPI. Furthermore, these 

studies have not paid sufficient attention to the conditions that enable effective 

overlapping. These conditions include: 

• sufficient bandwidth of memory subsystem, 

• sufficient bandwidth of peripheral I/O bus, 

• host bus-master capabilities of network controllers, 

• asynchronous message completion notification, 

• independent message progress, and 

• low CPU overhead. 

The goal of this work is to address these limitations by providing an in-depth 

study of overlapping by: 
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• presenting a formal definition and theoretical description, 

• incorporating overlapping in models for parallel computation, 

• studying the factors that affect overlapping, 

• defining new metrics that reveal interactions critical for effective overlapping, 

• demonstrating a new MPI implementation that emphasizes overlapping, 

• implementing well-known algorithms to take advantage of overlapping, 

• evaluating the performance improvement achieved through the use overlapping, 

and 

• formulating guidelines for communication system hardware and software 

designers and algorithm developers. 

2.8 Conclusions 

This chapter reviewed fundamental concepts of parallel performance analysis and 

important models for parallel computing in distributed environments. These concepts and 

models are used throughout this work to lay the theoretical basis of its hypothesis and to 

demonstrate the performance gain of the optimizations presented here. Then, the main 

characteristics of parallel architectures were outlined, and parallels and contrasts between 

massively parallel processors and clusters were made. Further, this chapter focused on 

high-speed networks as a critical component of computation clusters, and the concepts of 

user-level networking and low-overhead messaging layers were reviewed. By reducing 

message-passing overhead and eliminating intermediate data copies, efficient software 

interfaces become an important contributor to achieving high-performance on clusters. 
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Next, a review of MPI and related message-passing specifications was presented. MPI 

has become the most widely used interface for portable programming of parallel 

computers. The ability of MPI and the underlying software layers to propagate hardware 

capabilities to user applications is a critical requirement for accomplishing scalable 

parallel processing though exploiting the mechanisms studied in this work. Finally, this 

chapter presented a summary of software mechanisms for improving parallel 

performance. These mechanisms should be carefully designed and implemented in the 

entire stack of system and application software, as well as appropriately supported by the 

hardware, in order to deliver the expected performance gains. 



CHAPTER III 

A THEORETICAL FRAMEWORK FOR EARLY BINDING AND 

OVERLAPPING OF COMMUNICATION AND 

COMPUTATION 

3.1 Objectives and Constraints 

The framework presented here offers a description of the communication and 

computation processes in a high-performance parallel system while also accounting for 

the effects of early binding and overlapping of communication and computation. The 

focus of the framework is on distributed parallel environments with high-speed networks 

and is restricted to those using message passing for communication. Although some of 

the results and conclusions presented in this framework can be applied to a broader class 

of parallel systems, it is likely that for achieving valid results on these systems, some of 

the assumptions made here may need to be adjusted to the specific target environments. 

This theoretical framework focuses on the interaction between the application 

processes and the message-passing middleware. One of the distinguishing characteristics 

of the framework is that it emphasizes the application’s point of view. This is 

accomplished by hiding specific architectural and performance details of the hardware 

86 
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and low-level system software. The performance parameters presented in the framework 

and used by the models are those observed by the parallel application, not those that can 

potentially be achieved by the underlying computer and communication infrastructure. 

This view allows for a more realistic description of the complex interactions between the 

hardware and software components of the parallel system. Specific attention is paid to the 

influence of the middleware providing message-passing capabilities, specifically MPI. 

The message-passing middleware and its effects on performance are often insufficiently 

studied in parallel computing models. The framework presented in this chapter attempts 

to address this insufficiency, and will be used practically to reveal the importance of the 

architectural of the MPI implementation presented in Chapter IV. 

3.2 Parallel Computation Model 

This section presents a parallel computation model that meets the objectives of the 

theoretical framework. In this study, this model will be referred to as BOUM – 

“Bandwidth and Overhead [based parallel processing] User [level] Model.” Some of 

fundamental parallel programming models that have received wide-acceptance were 

reviewed in Chapter II. Specifically, the attention was focused on the BSP (Valiant 1990) 

and LogP (Culler et al. 1996) models. BOUM incorporates features of both of BSP and 

LogP. The justification for using BOUM is the insufficiency of these models for the 

purposes of the proposed framework. Below, the requirements for this model are stated 

while the insufficiency of BSP and LogP is also noted. 
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3.2.1 Requirements 

The first requirement of the target model is that it should enable a quantitative 

description of overlapping of communication and computation. A prerequisite for this 

requirement is the explicit modeling of both communication and computation. The 

models for parallel programming studied earlier can be divided into two categories: those 

that model both communication and computation and those that model communication 

only. For example, BSP (Valiant 1990) accounts for both communication and 

computation, while LogP models communication only (Culler et al. 1996). The second 

requirement of the target model should be to describe asynchronous processing. 

Asynchronous communication is an important requirement for efficient overlapping. BSP 

is a bulk-synchronous model and does not provide for fine granularity of pair-wise 

asynchronous activities. Next, the target model should account for messages with varying 

frequency and sizes. Parallel implementations of numerical algorithms used in high-

performance computing can result in a variety of communication patterns and message 

lengths. By way of comparison, LogP emphasizes applications that predominantly use 

small messages (a few bytes to a few hundred bytes). 

Finally, the target model should offer a parameter that represents message 

overheads as experienced by the parallel applications. The proposed framework will use 

the overhead parameter to express the benefits of early binding. Again, for comparison’s 

sake, LogP uses an overhead parameter, while BSP does not. This subsection stated a 

number of requirements that a parallel computing model will need to meet in order to be 

successfully used for the analysis necessary for achieving the goals of this dissertation. 
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Widely used models in the theory and practice of parallel processing, such as BSP and 

LogP, provide only partial support for these requirements. The next subsection defines a 

model that meets all requirements. 

3.2.2 Statement of Model and Definition of Parameters 

BOUM, the model being introduced here, expresses the parallel execution time, 

Tp from standpoint of an individual process that participates in the parallel job as a sum of 

its computation time Tcomp and communication time Tc: 

Tp = Tcomp + Tc (3.1) 

The unit for the parallel execution, computation, and communication times is seconds. 

The computation time is further expressed as follows: 

Tcomp = F(W)tc, (3.2) 

where, F(W) is a function of the problem size W, expressed as a number of basic compute 

operations, such as floating point additions or multiplies, and tc is the time for execution 

of one of these basic operations. For example, the compute time for the addition of two 

vectors of n floating point elements would be given by Tcomp = ntc. 

The communication time Tc is the sum of the communication times of all 

messages exchanged by a process. The communication time of a single message of size m 

is in turn expressed as a sum of two components – overhead o and transmission time bm: 

Tc(m) =  o + bm, (3.3) 

where, b is the inverse of the bandwidth as experienced by the user process, measured in 

seconds per byte [sec/byte]. The overhead parameter o is similar to the overhead 
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parameter used in the LogP model (Culler et al. 1996) and the bandwidth factor b is 

similar to the parameter G in the LogGP model (Alexandrov et al. 1995), where G 

represents the gap between the bytes of a long message. As opposed to these models, 

BOUM uses parameters that are measured with respect to the user process (i.e., they are 

directly observable by the applications). Thus, the model abstracts platform’s hardware 

details (e.g., processor clock rate and network physical bit rate) and provides a more 

generalized description of performance while preserving representation accuracy. 

Another advantage of BOUM’s approach model is that users can measure the parameters 

of the model by writing simple MPI programs. Then, these values are replaced in the 

execution time derivations obtained with the model for estimating performance. 
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The overhead component o of the communication time of a message of size m can 

be expressed as a sum of the Tsnd1 and Trcv2 components of the send and receive overheads 

respectively, as depicted in Figure 3.1 (i.e., o ≡ Tsnd1 + Trcv2). Then, 

Tc(m) =  Tsnd1 + Ttrans + Trcv2 = o + bm, (3.4) 

where Ttrans = bm. Figure 3.1 represents the activities that are used for definition of the 

send and receive overheads as well as the definition of the transmission time. The send 

overhead has two components. The first component is the period between the time when 

the user process posts its send request tsp and the time when the first byte of the message 

is placed on the network t1. The first component of the send overhead is denoted by Tsnd1. 

The second component of the send overhead Tsnd2 is the period between the time when 

the last byte of the message is placed on the network t2 and the time when the send 

process is notified about the completion of the send request tsc (i.e., Tsnd2 = tsc – t2). In 

some systems, depending on the capabilities of the transport, the moment in time tsc may 

be earlier than t2. However, the relationship between tsc and t2 does not change the 

definition of the total message overhead because it is assumed that Tsnd2 is overlapped 

with the sum of the transmission time Ttrans = t4 – t1 and the second component of the 

receive overhead Trcv2; t4 is the time when the last byte of the message is deposited in 

receiver’s memory. Theoretically, it is possible that Tsnd2 > Ttrans + Trcv2. However, in 

most practical systems, the completion notification overhead of both the send and receive 

requests is either approximately the same (Tsnd2 ≈ Trcv2), or the send notification overhead 

is smaller (Tsnd2 < Trcv2). Therefore, for these systems, we find that Tsnd2 < Ttrans + Trcv2 
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because Ttrans > 0, which justifies the assumption that Tsnd2 can be overlapped with the 

transmission time Ttrans and the notification overhead of the receive request Trcv2. 

The definition of the receive overhead is similar to the definition of the send 

overhead. The first component of the receive overhead Trcv1 is the period of time between 

the moment when the user posts the receive request trp and the moment when the first 

byte of message arrives at the destination node t3. The second component Trcv2 is the 

period of time between the moment when the last byte of the message arrives t4 and the 

moment when the user process is notified about the completion of the request trc. 

Similarly to Tsnd2, it is assumed that for practical purposes Trcv1 is overlapped with Tsnd1 + 

Ttrans, and hence is not included in the overhead parameter of the model. It is possible that 

the user process can post an asynchronous non-blocking receive request (by calling 

MPI_Irecv, for instance) earlier than tsp (i.e., the receive request is posted before the send 

operations is started). In this case, clearly Trcv1 > Tsnd1 + Ttrans, so the first component of 

the receive Trcv1 overhead cannot be fully overlapped with the first component of the send 

overhead Tsnd1 and the transmission time Ttrans as suggested by Figure 3.1. 

It should be noted that the execution line of control (shown in Figure 3.1) assumes 

that both the send and receive requests are blocking. Here, a distinction between 

“blocking completion notification” and “blocking [semantics of communication] 

requests” should be made. As mentioned earlier, the former use of the term “blocking” is 

related to the synchronization procedure between the user process and the message-

passing library. The options according to completion notification are polling and 

blocking. The latter use of the term “blocking” is related to the transfer of the flow of 
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control between the user process and the message-passing library when a communication 

request created by the user process is submitted for execution to the library. The options 

according to the transfer of control in request submission are blocking and non-blocking 

Blocking requests can be implemented with both polling and blocking synchronization. 

Similarly, blocking notification can be used by both blocking and non-blocking requests. 

In blocking mode, the control of execution is transferred from the user process to 

the communication library from the moment when the request is posted, until the moment 

when the request is completed, according to the completion semantics of the particular 

message-passing API. The blocking mode of communication limits the opportunities for 

overlapping and early binding. In contrast, the non-blocking and persistent modes 

(Message Passing Interface Forum 1994) facilitate efficient overlapping and early 

binding. The following discussion on hiding and shifting the send and receive overheads 

and the message transmission time assumes that the non-blocking mode is used. Using 

the MPI API, the send and receive requests can be posted with MPI_Isend and MPI_Irecv 

respectively, and their completion checked at a later moment with MPI_Wait or 

MPI_Test. One of the most important characteristics of the non-blocking communication 

is that it allows user processes to schedule message overhead and transmission time 

according to some strategy for improving application performance. This strategy can 

utilize such mechanisms as hiding overhead, message pipelining, and overlapping. 

Once the non-blocking receive request is posted, the message-passing middleware 

typically does not perform any processing on this request until a matching message 

arrives (i.e., until t3). According to this scenario, Trcv1 will simply be shifted in time and, 
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as a result, the application can perform other computation or communication in the period 

between the moment when the request is posted and t3. Therefore, this shift of the 

moment of request posting will not result in an effective overhead increase. In fact, this 

behavior is encouraged by most MPI implementations because the first component of the 

receive overhead can be shifted to earlier parts of the parallel algorithm that are not 

overhead sensitive (e.g., in the initialization phase of the algorithm). Then, instead of 

overlapping the send overhead Tsnd1 and the message transmission time Ttrans with the first 

component of its receive overhead Trcv1, the receive process can overlap the period of 

time Tsnd1 + Ttrans with useful computation or other communication. This will decrease the 

effective receive overhead incurred by the user process and improve the opportunities for 

overlapping of communication and computation. These opportunities are further 

enhanced by message-passing middleware that supports independent message progress. If 

such a service is available, the user process may delay the completion synchronization 

(e.g., MPI_Wait) until a moment after t4, which would enable this process to effectively 

overlap the entire transition time with other activities. 

The send process can achieve effective overlapping of communication and 

computation, similarly to the receive process, by shifting the synchronization procedure 

for completion of the send request to a later moment, and scheduling computation 

activities immediately after the send request is registered with the MPI library (i.e., after 

t1). This can effectively hide the transmission time (assuming sufficient memory 

bandwidth) and also move the notification overhead to a non-time-critical segment of the 

algorithm. The actual benefit of overlapping depends on the capabilities of the computer 
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platform, the network infrastructure, and the communication software. A main objective 

of this study is to reveal the factors that affect overlapping, how overlapping efficiency 

can be improved, and how parallel algorithms can take advantage of overlapping. 

In summary, the proposed BOUM model uses three parameters for describing 

communication and computation. These parameters are as follows: 

• tc [sec] – time for basic unit computation operation, 

• o [sec] – message passing overhead, 

• b [sec/byte] – inverse of the effective bandwidth. 

Using these parameters, the parallel execution time can be expressed as follows: 

N 

Tp = F (W )tc+� (o + bmi) (3.5) 
i=1 

where, F(W) is the problem size, N is the number of message transmissions performed by 

the modeled process and mi is the size of the ith message. Expression (3.5) makes an 

initial assumption that the message overhead o is constant for all messages, regardless of 

their size. Later in Chapter III, it is shown that this assumption is too optimistic for many 

practical cases and is further refined. 

3.2.3 Accuracy of Description 

The BOUM model presented here achieves a realistic description of 

communication because it accounts for a number of implementation-specific features of 

the message-passing middleware that affect the effective communication performance 

delivered to the user applications. Among these features are as follows: 
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• optimizations for minimum latency of short messages, which often lead to 

additional data copies 

• specifically designed protocols for long message exchanges – typically, three-way 

rendezvous protocols, 

• packet headers associated with control information, 

• control messages used for user-level flow control or other purposes, 

• mechanisms for message completion notification, and 

• type of progress engine of the message-passing middleware1. 

As opposed to BOUM, other parallel computation models that use the raw 

network parameters omit these important performance-defining factors. Furthermore, the 

application view of BOUM accounts for hardware limitations, such as peripheral bus 

saturation or issues related to the multiprocessor architecture of the cluster nodes as well 

as the impact of the host operating system. For instance, the cost of the process and 

thread context switches could substantially change the real values of the message 

overhead that application processes experience. Experimental results show that a process 

context switch on a machine with more processors is longer than on a machine with one 

processor, and that a thread context switch on Linux is substantially longer than it is on 

Windows. These differences can be significant, as demonstrated in Chapter IV. 

This section introduced BOUM, a parallel computation model used for theoretical 

description and parameterization of early binding and overlapping of communication and 

1 A detailed description of the MPI message progress engine is presented in Chapter IV. 
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computation as fundamental software mechanisms for improving parallel performance on 

clusters of workstations interconnected with high-speed networks. BOUM is based on 

widely used models such as BSP, LogP, and LogGP but makes important distinctions, 

specifically it, 

• uses parameters that are observable by the user applications, 

• provides for asynchronous processing, 

• explicitly describes both communication and computation, and finally 

• enables parameterization of overlapping and early binding. 

In the following sections of this chapter, BOUM is applied to describe early 

binding and overlapping of communication and computation. Selected parallel algorithms 

are analyzed and the performance gains from overlapping and early binding are estimated 

using this model. These estimations are validated in Chapter V. 

3.3 Early Binding 

3.3.1 Definition and Objectives 

In message passing systems, early binding is used for reducing the effective 

overhead associated with message transfers. Overhead is the period of time during which 

the main CPU performs communication activities related to message preparation, 

communication activation, synchronization, completion notification, and possibly 

interrupt handling. During this time, the processor cannot perform useful computation. 

The goal of early binding is to reduce the effective overhead by isolating a stage in 

message preparation and activation, which can be performed only once and then reused 
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multiple times in subsequent message transfers. Early binding is a software mechanism 

that takes advantage of temporal locality of transfers. Two transfers are considered local 

temporally if they are close to each other in time or they are repeated in a loop and their 

message signatures are the same (e.g., the user buffer, the amount of data, and the peer 

process are the same). The only difference between the two messages is the actual 

content of the user buffers. An example of communication code that uses early binding is 

shown in Figure  3.2.  

init_send(IN <msg_spec>, IN <dest_spec>, OUT request) // setup 
for(i = 0; i < num_iterations; i++) 

<prepare data in message buffer> // computation 
start(IN request) // initiation 
wait(IN request, OUT status) // completion 

endfor 
request_free(INOUT request) // release 

Figure 3.2 Early binding pseudo code for sending process 

This example is written in a generic communication pseudo code. If MPI is used 

for implementing this code segment, then the MPI_Send_init, MPI_Start, MPI_Wait, and  

MPI_Request_free calls that form the persistent MPI API will be used instead. The 

aggregate argument <msg_spec> will expand to three function parameters {buffer 

address, count, datatype} and the <dest_spec> argument will also expand to {destination 

rank, message tag, communicator}. In this code segment, message preparation, request 

creation, and partial request activation is performed outside of the communication loop. 

The entire overhead associated with these operations is incurred only once. Inside the 

loop, the sending process prepares the data in the message buffer and initiates the actual 

message transfer. This transfer includes only the communication activities that are 



init_recv(IN <msg_spec>, IN <dest_spec>, OUT request) // setup 
for(i = 0; i < num_iterations; i++) 

start(IN request) // initiation 
wait(IN request, OUT status) // completion 
<use data in receive message buffer> // computation 

endfor 
request_free(INOUT request) // release 

Figure 3.3 Early binding pseudo code for receiving process 
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associated with the actual initiation of the message passing procedure, which was not 

performed in the request setup phase. The synchronization operation at the end of the 

loop ensures that the message buffer can be safely reused in the next iteration. Similarly, 

the receiver will perform the sequence of operations presented in Figure 3.3. 

In this pseudo code, the receiver first performs early binding by creating a request 

object associated with the expected message. Then, inside the loop, the user thread starts 

and waits on the receive request multiple times. After the synchronization point indicated 

by the wait operation, the receive buffer contains the data sent by the sender, and the 

receiver can proceed with local computation until the next iteration. 

3.3.2 Target Systems and Algorithms 

This section identifies the conditions under which early binding can be used to 

achieve a significant improvement of communication performance through reducing the 

effective overhead. Using BOUM, the systems that can be identified as best candidates 

for utilizing early binding have communication time Tc of messages with size of m bytes 

Tc(m) =  o + bm, such  that  R ≡ o/bm > E, where  E is a threshold, specific to the 

performance optimization goals. The ratio R represents the relative importance of the 
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overhead o in the overall communication time Tc. This ratio has a broader scope than the 

widely used n1/2 metric, which specifies the message size for which o = bm. 

If the algorithm’s communication time dominates Tp, (i.e., the application is 

communication bound) and E is sufficiently large, than according to Amdahl’s law, 

minimizing the overhead may lead to a significant effect on the overall performance. This 

effect is expressed as: 

1 1S = fast = , (3.6) 
Tc 1 

1−α + α
slow 

1 −α +α
ScTc 

where S is the effect of the overhead reduction on the execution time Tp (i.e., the 

application speedup), α is the ratio between the communication time Tc and the total 

parallel execution time Tp (i.e., α = Tc/Tp), Tc
fast is the communication time after the 

overhead improvement, and Tc
slow is the communication time before the improvement. 

fast / TcThe ratio Tc 
slow is replaced with 1/Sc in the second part of the equation, which is 

slow fast used for defining the communication speedup Sc = Tc /Tc . The coefficient α

represents the relative weight of Tc in Tp before the improvement. Furthermore, 

communication speedup can be expressed through R, which results in the following 

expression for the application speedup: 

1S = , (3.7) 
1 + kR1−α +α
1+ R 

where k is a coefficient representing the reduction of the communication overhead, k = 

fast/oslow o . Expression (3.7) provides a relationship between the overall application 
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speedup after the optimization and the relative weight of overhead in the total 

communication time. The practical importance of this expression is that it can estimate 

quantitatively the improvement of overall execution time when the overhead is reduced 

by a factor of 1/k and the relative weight of the overhead in the communication time is 

given as R. By using (3.7), an application developer can obtain a quick estimation of the 

potential benefit of early binding. 

The practical interpretation of expression (3.7) is illustrated with the following 

example. If the ratio α between communication and overall execution time is α = Tc/Tp = 

0.5, R is 0.6, and the overhead is reduced by a factor of two (1/k = 2, hence k = 0.5),  then  

the overall execution time of the parallel algorithm will be reduced by 10.5%. It is 

evident that the larger the values of α and R are, the larger the effect of overhead 

reduction on the overall performance becomes. On the other hand, if an algorithm spends 

most of its communication time in long message transfers, then the ratio R = o/bm will 

approach zero as m grows2. Consequently, the  factor  (1  +  kR)/(1 + R) in (3.5) will 

approach one, which makes the impact of the overhead optimizations on the overall 

performance negligible. The threshold E can be used to determine whether the 

optimizations of overhead have practical significance for a given application. The value 

of the threshold E can be selected such that if R < E, the cost of achieving speedup S as a 

result of reducing the overhead with 1/k times is too high with respect to the performance 

benefit. Again, the value of E is user-specific and can be customized according to cost 

2 This is true, assuming that the overhead is constant with respect to the message size m. 
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and performance objectives. For instance, one organization may accept E = 0.2,  which  

would mean that for a specific application executed on a given target platform with R = 

o/bm < E, the performance gain of early binding will be insignificant. For another 

organization, the same value of E = 0.2 may still be acceptable since it may be interested 

primarily in maximizing performance, not in optimizing cost. Here, cost expresses the 

investment for re-coding existing applications that do not take advantage of early 

binding, training the personnel to use early binding API’s, and increased complexity of 

the code. 

Earlier it was assumed that the message overhead o is constant and does not 

depend on the message size m. However, on certain systems, the overhead is dependent 

on the message size and can be expressed as a function of m: o = o(m). Then, the 

transmission time will become Tc = o(m) +  bm and R = o(m)/bm. A representative of a 

system that exhibits such overhead is a cluster of workstations using a VIA network. VIA 

requires that each communication buffer be pinned in physical memory before this buffer 

is used in a send or receive operation. Pinning a set of physical pages is performed 

through a system call. The results of an experiment that measures the time for pinning 

and unpinning varying number of pages on Linux and Windows operating systems with 

Giganet VI Kernel Agent are shown in Figure 3.4. In this figure, the size of the 

pinned/unpinned buffers is represented as a number of physical pages. The size of the 

pages of both Linux and Windows is 4,096 bytes. Both runs were executed on the same 

hardware configuration (sag cluster, as described in Chapter IV and further in Appendix 

B). 
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Figure 3.4 Cost of pinning and unpinning physical pages with Giganet 

The time for pinning and unpinning can be represented as a summation of two 

components. The first component Tsw is constant and represents the context switches 

between the user process and the operating system kernel. The second component is the 

time Tpin for the actual pinning/unpinning procedure. Then, the total overhead o can be 

expressed as 

o(m) =  Tconst + Tsw + Tpin , (3.8) 

where, Tconst is a constant overhead in the message-passing middleware not associated 

with pinning and unpinning. Since Tsw is also constant, it can be accumulated in Tconst, 

such that oconst = Tconst + Tsw. Experimental results show that the time for pinning pages is 

linearly dependent on the number of pages m, as shown in Figure 3.4. Then, the 

pinning/unpinning time can be expressed as Tpin(m) =  vm, where  v is a coefficient that 

primarily depends on the operating system and the speed of the host processor. The result 
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for Tpin can be substituted in formula (3.8) for the overhead. Then the overhead of a 

message with size m can be expressed as: 

o(m) =  oconst + vm, (3.9) 

which is a linear function of m. Consequently, the  ratio  R becomes: 

o(m) oconst + vmR = = . (3.10) 
bm bm 

In expression (3.10), both the numerator and denominator are linear functions of the 

message size m. As opposed to the case when the overhead o is constant and R 

approaches zero as the message size m grows, in this case, R will not approach zero and 

will be a decreasing function with a slope dependent on the relationship between the 

coefficients v and b, assuming b > v. As  a  result,  R will become smaller than the threshold 

E for significantly larger message sizes than when the overhead is constant. The practical 

implication of (3.10) is that reducing message overhead can be an adequate performance 

enhancing technique in a broader class of parallel algorithms and platforms than initially 

assumed, after possibly measuring only the zero-length message overhead and 

extrapolating it to any message size m > 0. Special attention should be paid to systems 

such as clusters interconnected with Myrinet or VIA networks, which require pinning of 

user buffers before communication takes place. A message-passing system that strives to 

achieve maximum performance should account for this feature of high-speed networks 

and attempt to provide optimizations that minimize the impact of pinning. Early binding 

is one of the most natural approaches for addressing the overhead associated with 

pinning. Through early binding, a buffer can be pinned once and reused multiple times in 
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subsequent communication transactions, followed by a single unpinning operation. In 

fact, unpinning can be subjected to further optimizations by postponing the act of 

unpinning and expecting that the particular buffer can be reused at a later stage, thereby 

avoiding the pinning associated with a subsequent transaction. Thus, pinning and 

unpinning operations can be effectively removed from the overhead component 

associated with memory management of high-speed network software interfaces. 

3.3.3 Theoretical Description 

The goal of introducing early binding is to minimize the effective message 

transfer overhead. This is achieved by representing the overhead as a sum of two 

components – message setup/release overhead (os) and message initiation/completion 

overhead (oi), such that o = os + oi. The overhead associated with setup and release will 

be collectively referred to as “setup” overhead, whereas the overhead associated with 

initiation and completion will be denoted as “initiation” overhead. If the parallel 

algorithm suggests temporal locality of transfers so that the same message buffer can be 

reused multiple times, then early binding can effectively eliminate the setup overhead os 

from the communication time and reduce the effective overhead o to the levels of the 

initiation overhead oi. If the setup overhead os represents a substantial portion of the total 

overhead o, then the overhead reduction achieved through early binding may significantly 

improve the communication efficiency of the algorithm. The overall performance impact 

of the overhead reduction depends on the ratio R ≡ o(m)/bm and the coefficient α = Tc/Tp 

as indicated in expression (3.7). 
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Incorporating the message setup and initiation overheads, the communication time 

for a message with size m can be expressed as Tc(m) =  o + bm = os + oi + bm. If the buffer 

where this message is located is used h times, then the total communication time for these 

h transfers without early binding will be Tc(h,m) =  h(os + oi + bm) =  hos + hoi + hbm. If  

early binding is used, the factor hos can be replaced just with os, since the message setup 

phase will be performed only once and then reused (h –  1) times. Then, Tc with early 

binding will become TcEB(h,m) =  os + hoi + hbm. If  os ≈ oi, then the aggregate overhead 

with and without early binding can be approximated respectively as Tc(h,m) = 2hoi + hbm 

and TcEB(h,m) =  (1  +  h)oi + hbm. For  large  values  of  h, the  factor  1  +  h can be replaced 

with h without significant loss of accuracy3, so  TcEB(h,m) ≈ hoi + hbm. Using  the  ratio  R ≡

o/bm ≈ 2oi/bm, we can substitute bm by 2oi/R in the communication time and find that 

Tc(h,m) ≈ 2hoi + 2hoi/R = 2hoi(1 + 1/R) and  TcEB(h,m) ≈ hoi + 2hoi/R = 2hoi(1/2 + 1/R). In 

this case, the communication speedup Sc can be expressed as follows: 

Tc(h,m) 2(R +1)Sc ≈ = (3.11) 
TcEB(h,m) R + 2 

If R = 0.6, as in the earlier example, then the speedup of the communication time 

will be 1.23. The interpretation of this result means that using early binding reduces the 

total communication time of transmitting h messages each with size m by 23% in respect 

to transmitting these h messages without early binding. Expression (3.11) allows for 

estimation of the practical effect of early binding on the communication performance 

depending on the ratio R when oi ≈ os. For instance, formula (3.11) shows that if R > 1,  

3 This assumption means that the derivations for the impact of early binding on performance represent upper bounds. 
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the communication speedup will be Sc > 1.33. R usually has higher values for short 

messages for which the total communication time is dominated by the overhead. 

Systems using pinning of physical pages, such as VIA, have message setup 

overhead os that is substantially larger than the message initiation overhead oi. We can 

represent this relationship generically as os = qoi, where  q is a factor representing how 

much larger (or smaller) the message setup time is with respect to the message initiation 

time. Then, the expression for the communication time speedup in (3.11) can be 

generalized as: 

(1+ q)(1 + R)Sc = . (3.12) 
1 + q + R 

This generalized expression yields values greater than one for any q and R greater than 

zero. This means that early binding will always result in some communication 

improvement and, hence, overall performance improvement. Using the above example 

with R = 0.6,  if  q = 5 the communication improvement from early binding will be Sc = 

1.46. In this case, using (3.6) and (3.12) with α = 0.5  and assuming that  the  entire  

communication time of the algorithm is dominated by the exchange of messages with 

size m subjected to early binding optimization, then the total performance improvement 

(application speedup) will be: 

1S = = 1.19 . (3.13) 
11−α +α
Sc 

The same calculation with q = 1 (meaning that os = oi) yields a speedup of 10%. This 

clearly shows that if a communication intensive algorithm (α ≈ 0.5 or more) uses 
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repetitive messages with a certain size m such that the ratio R has relatively high values 

(0.5 or higher) and the message setup overhead is equal or greater than the message 

initiation overhead, utilizing early binding can lead to a significant improvement of the 

overall application performance. 

It can be concluded that early binding is an important source of performance 

enhancement, especially on message-passing systems that exhibit relatively high 

overhead with respect to the wire transmission time. An important advantage of early 

binding is that it is “performance transparent,” as indicated in (3.12) since q and R are 

positive in all practical systems. The importance of performance transparency is that if 

the message-passing middleware provides optimizations for early binding but the user 

application is not designed to take advantage of these optimizations, the application will 

not incur any performance losses. This characteristic is important because a large number 

of existing parallel codes do not use early binding and slowing down these applications 

on a system optimized for early binding is undesirable. 

3.3.4 Degree of Persistence 

This subsection introduces a new metric, called “degree of persistence,” denoted 

by dp, which serves as a measure of the capacity of a communication system to provide 

early binding optimizations. The metric is defined as the ratio between the message setup 

overhead os and the entire message overhead o, including the setup and the initiation 

overhead: 

os osdp ≡ = . (3.14) 
o os + oi 



d p = q , 
1 + q 
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The possible values of  dp are in the range [0, 1]; dp = 1 for  oi = 0 and  dp = 0 for  os 

= 0. Higher values, approaching one, indicate that the system provides opportunities for 

taking advantage of early binding, while small values, approaching zero, indicate that an 

algorithm that exploits early binding will not experience significant performance 

improvements. Using the defining expression for the degree of persistence (3.14) and the 

substitution os = qoi made earlier for deriving the expression for communication speedup 

(3.12), the degree of persistence can be expressed as follows: 

(3.15) 

Inversely, q can be expressed as a function of dp and then substituted in (3.12). 

Consequently, the expression for the communication speedup as a function of the early 

binding optimization can be rewritten as: 

1+ RSc = . (3.16) 
1+ R(1 − dp) 

This expression shows that for a given ratio R = o(m)/bm, where  Tc(m) =  o(m) +  

bm, the improvement of communication time Sc resulting from early binding 

optimizations depends only on the degree of persistence dp, which could be obtained 

following a measurement procedure as suggested in (3.14). If the degree of persistence dp 

= 0, then clearly, Sc = (1 +  R)/(1 + R) = 1 and hence, there is no communication speedup. 

Alternatively, if dp = 1, the communication speedup has its maximum value at Sc = 1 +  R, 

which depends only on the ratio R. The other analysis that can be made from expression 

(3.16) is that for a given degree of persistence dp, the communication speedup depends 

only on the values of the ratio R. The two boundary cases for the values of R are R = 0 for  
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communication with no overhead and R -> ∞ for the bandwidth component of the 

communication time bw = 0 (i.e., a message with zero-length is transmitted). For the first 

boundary value of R = 0,  we find that  Sc = 1 (i.e., there is no communication speedup). 

For the second boundary value of R >>  1 we find that  1  +  R ≈ R and, therefore, Sc = 1/  (1  

– dp). For small values of dp, Sc ≈ 1 +  dp. Consequently, from the analysis based on 

(3.16), it can be concluded that the communication speedup will be significant when the 

relative weight of the overhead o in the communication time Tc has high  values (e.g., R > 

1) and when the degree of persistence has values close to its maximum (dp ≈ 1). 

Expression (3.16) possesses strong analytical power and captures the complex 

interactions between user application software on one hand and the message-passing 

middleware and low-level communication software components of the parallel system on 

the other. These interactions determine the effective impact of early binding on 

communication performance. The analysis of expression (3.16) is based only on two 

simple measurements for obtaining the values of R and dp for a given message size on the 

target platform4. Then, the parallel algorithm designer can substitute these values in the 

analytical expression for communication speedup and estimate the impact of the 

improvement from early binding. This estimation, together with expression (3.5) can be 

used for evaluating the trade-off between the “external” cost of incorporating early 

binding optimizations in the application code and the estimated overall performance 

benefit. The outlined sequence of steps can be used in a formal procedure for design and 

4 The values of dp as a function of m could also be provided by the vendor of the parallel system. 
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implementation of parallel algorithms that are aware of early binding. Also, system 

designers and MPI developers can use these steps as a guideline for evaluating systems 

under development for the efficiency of their support for early binding. 

The degree of persistence measures the effective capability of a parallel system to 

provide performance gain when an application utilizes early binding. This metric in 

combination with the analysis suggested by expression (3.16) is an important instrument 

for performance analysis of the impact of early binding on the communication and 

overall application performance. To the best of the author’s knowledge, the degree of 

persistence metric and the formal analysis of early binding proposed in this section are 

new results in parallel processing analysis. 

3.3.5 Practical Use of Early Binding 

In order to demonstrate the practical use of early binding and the performance 

analysis introduced in this section, two parallel algorithms implemented with MPI are 

presented. MPI has been designed to facilitate the use of early binding through its 

persistent API (Message Passing Interface Forum 1994). The persistent API enables 

parallel programmers to write algorithms that can exploit early binding enabled by the 

message-passing middleware and the system communication software. Unfortunately, 

few MPI implementations provide sufficient optimizations for early binding, which has 

discouraged parallel application programmers from using the persistent MPI API5. 

5 MPICH is an example of an MPI implementation that provides sub-optimal persistent communication interface. 
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Consequently, algorithms that are suitable candidates for early binding have often been 

implemented without the use of persistency. 

Two example parallel algorithms are studied here to illustrate the effect of early 

binding on the communication and overall application performance. The experimental 

results of the MPI implementations of these algorithms are presented later in Chapter V. 

These results are obtained using MPI/Pro, an MPI implementation developed by the 

author as a part of this dissertation work6. Typical candidates for early binding 

optimizations are iterative solvers of systems of linear equations. The two algorithms 

presented in this section are from this group of applications: the Jacobi stationary solver 

(Burden and Faires 1985) and the Conjugate Gradient (CG) non-stationary solver 

(Dongarra et al 2001). Both algorithms solve the linear system Ax = b, where  A  is  an  n x 

n matrix A and b is the solution vector of size n. The input data set for both algorithms is 

(0) of x.the matrix A, the vector b, and an initial solution x 

Each iteration of the Jacobi algorithm performs one matrix-vector multiplication 

with asymptotic complexity Θ(n 2), one vector-constant addition Θ(n), one vector-

constant multiplication Θ(n), one vector assignment Θ(kn), where k << 1 is a coefficient 

representing the relative cost of a vector element assignment with respect to an addition 

operation, and a convergence check Θ(2n). Clearly, for large n, the overall algorithm 

complexity is dominated by the complexity of the matrix-vector multiply operation; 

hence, the execution time of the sequential Jacobi algorithm is as follows: 

6 This MPI implementation is reviewed in detail in Chapter IV. 
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Ts = F(W)tc = n  2tc, (3.17) 

where tc is  the time for  performing  a basic  compute operation  on  the target  processor.  

The parallel implementation of the Jacobi algorithm is executed on p processes, 

using a 1-D data decomposition of the input data set is used. Higher dimensions of data 

decomposition are possible for reducing the surface-to-volume ratio of the process local 

data sets, but the idea of the analysis presented here is not to search for the best possible 

parallel implementation of the Jacobi algorithm, but rather, to demonstrate the impact of 

early binding on the performance of one specific reasonable implementation of this 

algorithm. The results obtained with 1-D decomposition can also be extended to higher-

dimension decompositions. 

According to the selected data decomposition on p processes, the data set of each 

process is W/p = n2/p. Each process computes a portion of the solution vector x with size 

n/p. In each iteration i (0 < i ≤ k), the processes compute the local portion of the new 

value x(i) of the solution vector x and then exchange their portions with the other p – 1  

processes. Thus, in each iteration of the Jacobi solver, every process spends n2tc/p 

seconds on computation and sends and receives p – 1 messages  of  size  m = Len/p, where  

Le is the size of a data element in bytes (e.g., Le = 4 for floats). Thus, the total parallel 

time for the Jacobi solver using 1-D decomposition on p processes, can be expressed with 

the BOUM model as follows: 

2nTp = k tc + 2k( p −1)(o + bm) , (3.18) 
p 
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where, n is the size of the solution vector and k is the number of iterations for 

convergence of the Jacobi solver. The total communication time in expression (3.18) is 

presented in (3.19): 

Tc = 2k( p −1)(o + bm) . (3.19) 

The pseudo code of the proposed parallel implementation is presented in Figure 

3.5. This pseudo code assumes that the input coefficient matrix A and solution vector b 

are already distributed among all p processes and that each process has the initial value 

x(0) of the solution vector x. 

p := get_process_count() 
r := get_local_rank() 
n := get_problem_size() 
convergence_condition := false 
repeat 

local_x := compute_x(n/p) 
for(i = 0; i < p and i != r;  i++) 

send(local_x, i) 
recv(remote_x, i) 

endfor 
convergence_condition := check_for_convergence() 

while(convergence_condition == false) 

Figure 3.5 Pseudo code for the parallel Jacobi solver 

This pseudo code emphasizes the communication part of the algorithm. The actual 

computation (described earlier) is aggregated in a single procedure, called compute_x, 

which accepts the size of the vector as an input argument. 

It should be noted that expression (3.18) and the pseudo code in Figure 3.5 

assume that every process participates directly in the p – 1 send and  p – 1 receive 

operations. However, in practical systems, the algorithm can use MPI collective 
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operations, such as MPI_Gather, MPI_Bcast, or  MPI_Reduce, which could offer 

optimizations for reducing the communication time, thus increasing the efficiency of the 

algorithm. Often, such optimizations are based on the use of binary or minimum spanning 

trees. Then, in order to take advantage of early binding, algorithms that use collective 

operations should employ techniques similar to those proposed by Skjellum (1998) in his 

work on FastMPI. The author of this dissertation has implemented a library that follows 

the concepts of FastMPI. This library contains the subset of the MPI collective operations 

that was used in the iterative algorithms presented here. The library enabled an 

implementation of the Jacobi and CG solvers with the native MPI library collective 

communication algorithms, which, in the case of MPI/Pro, are optimized with binary 

trees. The interface of this library is presented in Appendix A. 

For the theoretical derivation of the parallel execution time of the Jacobi (and 

later CG) algorithm, a linear approach for implementing the communication phase has 

been chosen. Thus, the algorithm implementation is independent of the collective 

operations of the MPI library. This choice is justified by two reasons. The first reason is 

that the linear approach eliminates the implementation-specific variability of the 

collective operations in the selected MPI library, which broadens the scope and 

applicability of the study. For instance, one MPI library might use collective operation 

optimizations while another library might use linear implementations, or optimizations 

different from the first library. The second reason is that the implementation of the Jacobi 

solver with an MPI library that offers collective operation optimizations will experience 

certain improvement in communication, which will often result in reducing the number of 
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message transfers. This will potentially reduce the effective benefit of early binding; 

earlier, it was shown that this benefit depends on the number of transfers over which the 

setup overhead can be amortized. Hence, the selected approach for deriving the 

theoretical expression of the Jacobi solver will give an upper bound on the improvements 

that result from early binding optimizations. Analyzing the upper bound of the 

improvement will give important insights on the capabilities of a parallel algorithm to 

seek performance optimizations by employing early binding. 

p := get_process_count() 
r := get_local_rank() 
n := get_problem_size() 
convergence_condition := false 
for(i = 0; i < p and i != r;  i++) 

init_send(local_x, i, sreq[i]) 
init_recv(remote_x, i, rreq[i]) 

endfor 
repeat 

local_x := compute_x(n/p) 
for(i = 0; i < p and i != r;  i++) 

start(sreq[i]) 
start(rreq[i]) 
wait(sreq[I], status) 
wait(rreq[I], status) 

endfor 
convergence_condition := check_for_convergence() 

while(convergence_condition == false) 
for(i = 0; i < p and i != r;  i++) 

request_free(sreq[i]) 
request_free(rreq[i]) 

endfor 

Figure 3.6 Pseudo code for the parallel Jacobi solver with early binding 

The 2(p – 1) communication requests within each iteration of the proposed 

parallel implementation of the Jacobi solver have different message signatures, since the 

first p – 1 requests are used for sending the local portion of the vector to each of the 
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remaining processes and the other group of p – 1 requests is used for receiving the local 

portions from these processes. Therefore, according to the early binding requirements, the 

2(p – 1) requests per iteration cannot be subjected to optimization with early binding. 

However, since the Jacobi method is iterative, the same communication transactions, with 

a difference only in the buffer content, can be repeated across the k iterations necessary 

for convergence. Thus, early binding can be applied to the transactions with the same 

peer process in different iterations. The pseudo code presented in Figure 3.6 demonstrates 

the implementation of the Jacobi solver with early binding. Using the o = os + oi 

representation of the message overhead, and substituting M ≡ 2k(p – 1),  the  

communication time from (3.19) can be expressed as follows: 

Tc = Mo + Mbm = Mos + Moi + Mbm . (3.20) 

By applying early binding to the algorithm, (i.e., substituting Mos with os) the  

communication time from (3.20) becomes: 

TcEB = os + Moi + Mbm , (3.21) 

which leads to an absolute reduction of the communication time of Tc – TcEB = (M – 1)os 

= (2k(p – 1)  –  1)os. Then, the communication speedup can be expressed as follows: 

Tc M (os + oi + bm)Sc = = , (3.22) 
TcEB os + M (oi + bm) 

where m = Len/p is the size of the exchanged messages in bytes. Using the substitutions 

for the degree of persistence dp ≡ os/o and the ratio R ≡ o/bm, we find the final expression 

for communication speedup: 
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1 + RSc = . (3.23) 
M +11+ R(1 − dp) 

M 

For large values of M >> 1, the factor (M + 1)/M will approach 1, which will produce the 

same result as expression (3.16). The analysis of the Jacobi iterative solver shows that if 

an algorithm can establish a communication pattern that suggests temporal locality of 

transfers, the communication improvement of this algorithm can be found by the 

generalized expression (3.16) without performing a more detailed analysis. For obtaining 

an upper bound of the communication improvement, and, hence, the overall algorithm 

speedup, the algorithm’s designer need only measure the degree of persistence dp and the 

ratio R for the message sizes that are subjected to early binding optimization. The results 

for these two metrics can then be substituted in expression (3.16), which in turn can be 

substituted in expression (3.6), to obtain the overall performance gain from early binding. 

The second algorithm presented for illustration of the early binding effects on 

performance is the CG (Dongarra et al. 2001). The CG algorithm is a non-stationary, 

iterative solver for systems of linear equations, which uses search direction techniques for 

faster convergence than the Jacobi method. Similarly to the Jacobi solver, the input data 

set the CG is an n x n matrix A, a solution vector b of size n, and an initial value of the 

solution vector x. In each iteration, the CG algorithm performs one matrix-vector 

multiply with an asymptotic complexity Θ(n2), three vector additionsΘ(n), two vector dot 

products Θ(2n), one vector assignment Θ(kn), and a check for convergence of order Θ(n). 

Clearly, the algorithm computation time is dominated by the matrix-vector multiply as in 
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the Jacobi algorithm. Thus, serial execution time of the CG algorithms can be represented 

by: 

Ts = F(W)tc = n2 tc, (3.24) 

which is the same as for the Jacobi algorithm. Since, the asymptotic complexity analysis 

accounts only for the operation with the highest complexity, this analysis ignores the 

lower order Θ(n) components. However, these components have higher relative cost in 

the CG algorithm in comparison to the Jacobi algorithm. The practical impact of this 

observation is that although the asymptotic analysis yields similar results for both 

algorithms, the increased computation cost of each iteration will reduce the relative 

impact of communication on the overall execution time. This, in turn, will reduce the 

relative effect of early binding on the performance. As a result, it is expected that the 

experimental results from the implementation of the CG algorithm will show lower levels 

of overall performance improvement from early binding than does the Jacobi algorithm. 

This expectation is further supported by the quality of the CG algorithm to converge 

much faster than the Jacobi solver, which is a result of the search direction technique 

employed by the CG (Dongarra et al. 2001). 

The structure of the parallel implementation of the CG algorithm resembles the 

structure of the Jacobi algorithm. Again, a 1-D decomposition of the input data set is 

used. The communication pattern is similar to the Jacobi algorithm with one exception: 

the result of the matrix-vector multiplication is a new vector that is later used for 

determining the optimal direction for convergence and then for computing the actual 

values of the next approximation of the vector x. Again, the performance analysis of the 
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CG algorithm, as a result of early binding, can be performed by the generalized analysis 

based on expressions (3.6) and (3.16). 

This section presented a theoretical description of early binding using the BOUM 

model and introduced a new metric, degree of persistence, for describing the capacity of a 

parallel system to deliver effective performance gains when applications use early 

binding. A generalized analysis for studying the impact of early binding on 

communication and overall performance was presented as well as a practical procedure 

for estimating this impact. Finally, this section presented two parallel iterative algorithms 

for solving systems if linear equations. These algorithms were subjected to early binding 

optimization and were analyzed with the suggested performance analysis. 

3.4 Overlapping of Communication and Computation 

This section presents a definition of overlapping of communication and 

computation and states the performance objectives of overlapping. The section focuses on 

the underlying hardware and system software features as well as on the applications 

software characteristic that are required for achieving effective overlapping. A theoretical 

framework that accounts for overlapping in parallel performance models is presented. 

Also, a new metric, called “degree of overlapping,” is introduced. Finally, a parallel 

algorithm implemented with overlapping is studied and its performance expressed 

through the presented theoretical framework. In Chapter V, a practical implementation of 

this algorithm is compared to a parallel implementation that does not utilize overlapping, 

in order to demonstrate the effective performance gain of overlapping. 



121 

3.4.1 Definition and Objectives 

Overlapping of is a high-performance software mechanism that enables 

concurrent execution of independent communication and computation activities. The 

major objective of overlapping is to reduce the overall application time by utilizing 

hardware and software architectures that offer concurrent progress of communication and 

computation. Overlapping is one of the fundamental algorithmic approaches for 

improving parallel performance. All parallel applications could benefit from overlapping 

to a certain degree. 

If the total execution time of a parallel application is Tp, the computation time is 

Tcomp, and the communication time is Tc, then using (3.1), the objective of overlapping 

can be expressed as follows: 

Tp = Tcomp + Tc – To , (3.25) 

where, To is the time saving achieved through overlapping. Traditional approaches for 

parallel performance improvement emphasize minimization of Tcomp and Tc and typically 

rely on increasing raw processor and network speeds. Clearly, overlapping presents an 

alternative approach for improving performance. Overlapping depends primarily on 

efficient software and hardware architectures, rather than on top speed components. 

Overlapping utilizes software techniques such as: 

• asynchronous message-completion notification, 

• low processor overhead, and 

• independent message progress. 
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Major hardware features of the parallel system needed for effective overlapping are as 

follows: 

• availability of excess bandwidth of the memory subsystem in order to sustain 

concurrent memory accesses for communication and computation, and 

• intelligent network interface controllers capable of accessing host memory. 

The performance objectives of overlapping are orthogonal to the objectives of the 

alternative approaches for minimizing Tcomp and Tc; hence, these objectives can 

complement each other thereby, aggregating the benefits of multiple performance-

enhancing approaches, rather than applying these approaches in a mutually exclusive 

manner. 

3.4.2 Requirements for Overlapping 

The requirements for achieving effective overlapping can be divided into two 

categories. The first category is related to the capability of the parallel system to offer a 

high degree of overlapping. This first category covers factors such as CPU overhead, 

resource contention, memory bandwidth, network infrastructure, and message-passing 

software. The second category is complimentary to the first one and relates to the 

capability of the application algorithms to take advantage of overlapping. 

Major hardware prerequisites for achieving a high degree of overlapping are 

communication with low CPU overhead and availability of sufficient memory bandwidth. 

Low processor overhead frees the central processor from communication and allocates 

more cycles to useful computation. Intelligent network controllers facilitate low 
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processor overhead by eliminating the need for processor involvement in transferring 

data between user buffers and the network fabric. 

In order to enable concurrent communication and computation, the memory 

subsystem of the host computer should offer sufficient bandwidth in order to facilitate 

simultaneous accesses of the central processor and the NIC DMA engines to the main 

memory. These accesses require the same resources – main memory and the memory bus. 

As a result, overlapped communication and computation can lead to resource contention. 

Figure 3.3 is a schematic of the concurrent memory accesses necessary for achieving 

overlapping. Increasing the memory bandwidth reduces contention. The factors that 

affect memory bandwidth are memory chip speeds, number of memory ports, width of 

the memory bus, bus clock rate, architecture of memory interconnect (bus versus switch), 

and optimizations for interleaved and chained accesses. 

Figure 3.7. Concurrent memory accesses necessary for overlapping 
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The main processor cache is another factor that assists in reducing contention. 

The cache isolates the processor from the memory by storing data and instructions. The 

CPU generates main memory access requests only when there is a cache miss at the 

lowest cache level. The availability of large local memory on the NIC also reduces 

contention. Large local memory allows more data to be stored on the NIC, which reduces 

the number of accesses to the main memory. Fewer accesses lead to better utilization of 

the memory and peripheral buses with smaller overheads. 

Quantification and formal representation of all factors that affect contention and 

memory bandwidth is a rather complex task. In this work, these factors will be 

represented indirectly by a newly introduced metric called “degree of overlapping,” 

which will be determined empirically by a measurement procedure described below. 

Capturing the variable effects of the numerous memory contention factors in overlapped 

accesses is one of the major objectives for introducing the degree of overlapping. 

The first category of message-passing middleware requirements for achieving a 

high degree of overlapping are asynchronous notification completion, independent 

message progress, and low CPU overhead. These issues and their impact on overlapping 

are discussed in detail in Chapter IV, and, for brevity, are not repeated here. 

The second category of requirements for achieving effective overlapping is 

related to application algorithms. The designer of the algorithm should isolate 

independent communication and computation activities that can be overlapped and 

should order these activities so that the algorithm correctness is preserved. Typical 

algorithms that can benefit from overlapping are data-parallel, structured algorithms with 
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a regular communication pattern such as parallel FFT, parallel matrix transpose, and 

parallel sorting. Parallel algorithms that follow the data-flow paradigm (in contrast to the 

data-parallel paradigm) are also suitable for overlapping. Although the primary focus of 

this dissertation is on system-oriented methods for improving performance, guidelines for 

creating optimal parallel algorithms that can benefit from overlapping and early binding 

are also provided. An implementation of parallel FFT with overlapping is presented later 

in this section. 

3.4.3 Theoretical Description of Overlapping 

Overlapping requires that the parallel code is structured in a manner that enables 

two (or more) independent communication and computation activities to be executed 

concurrently, without violating the correct semantics of the algorithm. Programmatically, 

overlapping can be represented by the following pseudo code segment in Figure 3.8. 

local_computation_1 
start(IN communication_request) 
local_computation_2 
wait(IN communication_request, OUT status) 

Figure 3.8 Pseudo code for overlapping of communication and computation 

In this code segment, communication_request represents the activity associated 

with communication and local_computation_2 represents the computation that is 

overlapped with communication. The relationship between the communication and 

computation activities plays an important role in achieving effective overlapping. To 

illustrate this importance, a computation activity X and a communication activity Y are 

reviewed. The durations of these activities are, respectively, tx and ty. For simplicity of 
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presentation, it is assumed that the entire computation and communication times of the 

application can be represented as a sum of N individual activities, such that Tcomp = tx � 

and Tc = ty . This assumption leaves out initialization communication and computation � 
procedures that are needed for preparation of the main part of the algorithm. These 

initialization activities are assumed to have minimal impact on the overall execution time. 

In the presentation below, another important assumption is made that the two reviewed 

activities X and Y can be executed concurrently with no interdependency. This 

assumption has two consequences. First, the X and Y activities should be algorithmically 

independent (i.e., they can be executed in an arbitrary order with respect to each other 

without violating the correct semantics of the algorithm). Second, there must be at least 

two independent active processing elements that can guarantee the concurrent progress of 

X and Y. Such processing elements could be the central processor and an intelligent NIC. 

If the reviewed communication and computation activities are not overlapped, the 

serial time for their completion will be ts = tx + ty. If the two activities are ideally 

overlapped, the total time to will be the larger of tx and ty (i.e., to = max(tx, ty)). The overall 

time reduction as a result of overlapping is N(ts – to), and the effective application 

speedup is as follows: 

Nts tx + tyS = = . (3.26) 
Nto max(tx, ty) 

It should be noted that as opposed to Tcomp and Tc, which can be represented as 

summations of individual computation and communication activities with times tx and ty, 

To is not a summation of the individual overlapped times to. To is a quantitative 
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representation of the aggregate saving from overlapping, while to is the period of time 

during which two concurrent activities are overlapped. This distinction is important for 

proper interpretation of the theoretical derivations and experimental results presented 

below. 

While the theoretical description of early binding was primarily focused on the 

communication speedup, which was then related to the overall application speedup, the 

theoretical description of overlapping requires a representation of application’s 

performance as a combination of communication and computation times simultaneously. 

Therefore, the analysis of overlapping does not provide explicit expressions of 

communication and communication speedups individually. 

In order to quantify the speedup because of overlapping, the relationship between 

X and Y is represented as ty = qtx, where  q > 0 is a factor that represents how much Y is 

longer or shorter than X. Then, the speedup is as follows: 

tx + qtx (1+ q)txS = = . (3.27) 
max(tx,qtx) max(tx, qtx) 

In the first case, let q > 1, that is, the communication time is longer than the computation 

time. Then, max(tx, qtx) =  qtx and S = tx(1 + q)/qtx. Consequently, the final expression for 

the speedup from (3.27) in the first case is S = (1 +  q)/q. This expression shows that when 

q approaches 1 (denoted by q → 1) then S → 2 (a well-known upper bound), and when q 

→ ∞ then S → 1. In the second case, the values of q are in the range 0 < q ≤ 1, meaning 

that the communication time ty is shorter than the computation time tx. Then, max(tx, qtx) 

= tx and S = 1 +  q. In this case, for q → 0, S → 1 while for q → 1, S → 2. The results of 
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the two cases with respect to the relationship between the durations of X and Y can be 

summarized as follows: 

1+ q� 
� , for q > 1, ty > tx 

S = � q (3.28) 
� 
� 1+ q, for 0 < q ≤ 1, ty < tx 

From (3.28), it can be seen that the speedup because of overlapping is in the range 

1 ≤ S ≤ 2, with the maximum achieved for tx = ty, while the minimum is achieved when 

one of the computation and communication activities is infinitely longer than the other 

one. This conclusion can be used as a guideline for writing parallel algorithms with 

overlapping. In order to take maximum advantage of overlapping, the algorithm should 

be divided into a sequence of computation and communication activities that are 

approximately of the same duration. Meeting this requirement depends on numerous 

platform-dependent parameters such as processor speed, network bandwidth, and system 

software architecture, as well as on the parallel algorithm and its data decomposition. The 

dependency on platform-specific factors means that the same algorithm executed on 

different parallel platforms can exhibit different speedups. This makes theoretical 

modeling of overlapping difficult and intimately dependent on the current state of the art 

of the technology. Furthermore, in order to take maximum advantage of overlapping, the 

algorithm may require different data partitioning and organization of the main 

computation loops on different platforms. This fact affects negatively the use of 

overlapping in theoretical models and its utilization in practice. 
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A more precise description of overlapping is necessary. Algorithm designers can 

use this more precise description in order to parameterize overlapping. When these 

algorithms are executed on different platforms, the actual values of the overlapping 

parameters can be adjusted accordingly. This technique is now widely used for adjusting 

cache-optimized algorithms on different platforms to varying cache sizes. Cache-

optimized algorithms that are written in a flexible manner use parameters for the cache 

size and determine the actual cache size at compile or run time. Thus, these algorithms 

can maximize their performance gain from cache optimizations on platforms with 

different cache attributes. The goal of this work is to achieve similar flexibility for 

overlapping. Then, applications that take advantage of overlapping can be written using a 

set of parameters whose values are empirically determined for each target platform. 

3.4.4 Degree of Overlapping 

This work introduces a new metric used for accurate modeling of overlapping of 

communication and computation, “degree of overlapping,” denoted by do. Degree  of  

overlapping is used as a quantitative description of the capabilities of a system in order to 

perform effective overlapping of communication and computation. This quantification is 

necessary for devising a realistic model of the parallel execution time, which incorporates 

overlapping and is expressed in the form: 

Tp = Tcomp + Tc – To(do) (3.29) 

where the savings from overlapping To is a function of do and do is selected so its range of 

values is 0 ≤ do ≤ 1. Furthermore, do is chosen so that the maximum impact of 
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overlapping on the overall performance is achieved as the value of do approaches one. 

There are several reasons for introducing the degree-of-overlapping metric. First, it can 

be used to distinguish between hardware platforms and software systems that have 

specific optimizations for achieving effective overlapping and those that do not provide 

such optimizations. Second, this new metric helps to provide more realistic model of 

overlapping that accurately quantifies its performance benefits to applications. Third, 

software and hardware designers can use the degree-of-overlapping metric as a guideline 

for improving parallel platform architectures and application algorithm implementations. 

Earlier in this section, the application speedup resulting from overlapping was 

derived in (3.27) and (3.28). These derivations assumed that the overlapped activities X 

and Y were ideally concurrent. However, in practice there may be a significant internal 

interdependency between these two activities. This interdependency is primarily caused 

by two factors: the CPU overhead for communication and the contention for system 

resources. The communication activities consist of two distinct phases – setup/release and 

message transmission. The first phase involves message preparation, intermediate 

memory allocations or copies, request submission to the messaging layers, interaction 

with the network hardware for message initiation, completion notification, and finally 

release of system resources allocated for this request. All of these activities require 

participation of the CPU. This participation is referred to as CPU overhead – the period 

of time during which the processor is involved in communication-related activities and 

cannot be used for other computations (e.g., application). 
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The second factor that limits the degree of overlapping is contention for system 

resources, most notably, the memory subsystem throughput. In order to enable effective 

overlapping, the memory subsystem should be capable of delivering sufficient 

bandwidth, so that both communication and computation can be executed simultaneously, 

without contention. In real systems, this is rarely achievable. Even on systems that 

possess high memory bus bandwidth, certain overhead is necessary for bus arbitration or 

serializing the access to the shared memory resource. Processor caches help minimize the 

memory contention by reducing the effective cost of processor accesses to memory. 

In summary, ideal overlapping is impossible because the communication activities 

require certain processor overhead and the message transfers compete to some degree 

with the central processor for access to the main memory. Furthermore, the architectures 

of the system communication software and the message-passing middleware have a 

significant impact on the effective overlapping delivered to the application7. The degree-

of-overlapping metric do is specifically introduced to capture these dependencies and to 

assist with a precise incorporation of overlapping in models for parallel programming. A 

degree of overlapping with value do = 1 means that the system can achieve ideal 

overlapping, while a value do = 0 means that overlapping will have no effect on 

performance. The latter case is equivalent to executing the two “concurrent” 

communication and computation activities in sequence, although the structure of the 

algorithm may suggest that these activities should be executed in parallel. 

7 The impact of the message-passing middleware on overlapping is studied in Chapter IV. 
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As a result of the CPU overhead analysis, the example communication activity Y, 

introduced earlier, can be represented as a sum of two sub-activities Yh and Yc, where  Yh 

denotes all activities of Y that cause processor overhead and resource contention, and Yc 

is the component that can be overlapped with computation. During Yh, no overlapping is 

possible because the CPU is busy with communication-related work. Therefore, the 

computation activity X can be overlapped only with Yc. It is important to note that Yh and 

Yc are not two distinct phases of Y. For instance, such phase-based division could lead to 

Ys and Yt phases, where Ys is the setup phase and Yt is the transmission phase. However, 

since processor overhead and resource contention can be attributed to both Ys and Yt, this  

division does not isolate the activities that affect the degree of overlapping. Therefore, for 

the purposes of this work, the logical division to Yh and Yc is selected, rather than the 

temporal division. Following this logical division, the time of activity Y can be 

represented as a sum of two components: ty = tyh + tyc. Then, the serial time of X and Y is 

ts = tx + tyh + tyc and the overlapped time is: 

� tyh + tx, for tx > tyc 
to = tyh + max(tx, tyc) = . (3.30) 

tyh + tyc = ty, for tx ≤ tyc 
� 
� 

Clearly, the longer the overhead time tyh is, the smaller the effect of overlapping will be, 

since during this time no overlapping can be achieved. Alternatively, if the component Yc 

is dominant, then the effect of overlapping will be higher. These relations can be used for 

a formal definition of the degree of overlapping through the overhead and overlapped 

communication times: 
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tyc tycdo ≡ = . (3.31) 
ty tyh + tyc 

The boundary values of do can be found by using expression (3.31). First, when tyh = 0,  tyc 

= ty and do = 1. Alternatively, when tyc = 0,  tyh = ty and do = 0. The cases with do ≈ 0 can 

be attributed to communication systems that do not have independent processing facilities 

for communication and rely entirely on the central processor for data transmission, or 

systems that have a high level of resource contention. Using (3.31), we can find that tyc = 

doty and tyh = (1 - do)ty. Then, substituting in (3.30), we find that: 

� tx + (1 − do)ty , for tx > tyc 
to = . (3.32) 

ty, for tx ≤ tyc 
� 
� 

Expression (3.31) plays an important role in the theoretical framework and is used later 

for estimating the performance gain of overlapping. Special attention is paid to the case 

in which tx > ty, since this condition can be easily identified by the users after a simple 

experiment for individually measuring the tx and ty times. Note that the actual precise 

condition is with respect to tyc, not  to  ty, but for practical purposes of simplicity, the more 

relaxed condition with respect to ty is used. 

In summary, the values of the degree of overlapping are indeed in the range 0 ≤ do 

≤ 1, which satisfies the requirement of the definition of this metric to quantify the effect 

of overlapping, as suggested in (3.29). At this point, it should be stated that expression 

(3.31) used for defining the degree of overlapping assumes that tyh is constant and will 

not increase as the actual overlapping takes place. The opposite assumption means that 

the overlapped time to is longer than the sequential time ts when the activities X and Y are 
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executed concurrently (i.e., to > ts). This condition is only possible when certain hardware 

or software architectural deficiencies are present in the system under investigation. An 

example of such a deficiency is demonstrated in Chapter V, when the capability of the 

message-passing middleware to support asynchronous processing is studied. Systems 

with such deficiencies are of little practical significance and are used only for illustration 

here. 

An important practical consequence of the degree of overlapping definition and 

expression (3.32) is that when Tcomp ≥ Tc and the entire execution time of the algorithm 

(or at least the predominant portion of it) can be represented as overlapped 

communication and computation activities, then the expression for the parallel time from 

(3.29) can be re-written in the form: 

Tp = Tcomp + (1 - do)Tc, (3.33) 

which leads to the definition of the time saving To of overlapping as a function of the 

degree of overlapping and the communication time. 

To(do) =  doTc, (3.34) 

which actually is the function sought in (3.29). Again, expressions (3.33) and (3.34) are 

special cases and are valid only if the condition Tcomp ≥ Tc is met. 

The analysis of cases when this condition is not met is possible and may be a 

subject of future work, following the findings of this dissertation. This additional analysis 

may yield important practical results for applications that are communication bound (i.e., 

the communication time dominates the total execution time). Such algorithms usually 
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exhibit poor scalability and overlapping can be used as an important source for improving 

their performance, so this future effort appears useful. 

3.4.5 Procedure for Determining Degree of Overlapping 

Finding the degree of overlapping do is based on expression (3.32). The value of 

do can be computed if to, tx and ty are known in this expression. In order to illustrate the 

procedure for determining the values of do, we again review the two activities X 

(computation) and Y (communication), with durations tx and ty, respectively. The 

individual times tx and ty can be measured by independently executing the two activities X 

and Y. Then, the overlapped time to is measured by starting the two activities together and 

observing the moment when the longer activity finishes. Obviously, to ≥ max(tx,ty). 

Using the case tx > tyc, from (3.32) we find that to = tx + (1 –  do)ty, hence the 

expression for determining the values of the degree of overlapping metric with practical 

means is as follows:  

tx − to ts − todo = 1 + = . (3.35) 
ty ty 

In this expression, all parameters are empirically measurable. In order to guarantee that tx 

> tyc, the computation activity X can be chosen so that tx > ty, which guarantees that tx > tyc 

since tyc = ty – tyh and tyh is non-negative. 

The analysis of (3.35) shows that for to = tx, the degree of overlapping has its 

maximum value do = 1 (i.e., the system provides ideal overlapping). For any real case, to 

> tx; hence, the value of do will be less than one. The lower bound of do is found when the 

component (tx – to )/ty = -1. This condition is met when to = tx + ty, in which case the 
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overlapped time is equal to the serial time, to = ts (i.e., there is no effect of overlapping). 

The degree of overlapping, as expressed in (3.35), can become negative for the cases 

when to > ts. This means that, when attempting overlapping, the application actually has 

negative gain of performance or a performance loss. Earlier in this section, systems with 

such a property were identified to have architectural deficiencies that cause the 

overlapped time of two activities to become longer than the sum of the sequential times 

of these activities. 

It is important to distinguish the case when the effective performance loss (to > ts) 

is caused by architectural deficiencies from the case when the applications experience 

diminishing or negative returns from overlapping because of algorithmic and data set 

specifics. Often algorithms with overlapping suggest breaking longer messages in series 

of small segments transmitted in a pipelined fashion and overlapped with computation. 

This approach is called "segmentation.” As a function of the number of segments and the 

corresponding increase of overhead, the execution time of the overlapped communication 

and computation activities may become larger than the sequential times. The 

segmentation approach for designing algorithms with overlapping and its impact on 

performance are studied by Baden and Fink (1998) and Sohn et al. (1999), and are further 

investigated in this section. 

3.4.6 Practical Use of Overlapping 

This section presents an example algorithm that is implemented using overlapping 

of communication and computation. This algorithm is the Cooley-Tukey 1-D, radix-2 
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algorithm with decimation in frequency for computing an n-point FFT (Proakis and 

Manolakis 1996). This FFT algorithm has an asymptotic complexity of Θ(nlogn) 

operations. Assuming that a basic compute operation is performed for time tc seconds, the 

serial time for execution of the algorithm is given by: 

Ts = tcnlogn, (3.36) 

where tc is the computation time on each complex element of the FFT algorithm. On 

average, the computation for obtaining a new FFT value in the implemented algorithm 

results in two floating-point multiplies and three floating point additions. 

The parallel FFT algorithm presented here partitions the linear input vector of size 

n elements to p processes (assuming that n = 2d and n/p = 2k, k > 1), so that each process 

operates on a contiguous block of size me = n/p elements. The binary-exchange method 

for communication is used. 

The algorithm is divided into two phases. During the first phase of logp iterations, 

the vector combination involves elements residing on different processes. In the second 

phase of logn - logp iterations, the vector combinations are local. The vectors that are 

communicated between the processes in the first phase are of size me elements. 

Consequently, the total communication time for a process is given by: 

Tc = logpTc(m), (3.37) 

where m = meLe is the size of the exchanged messages in bytes and Le is the size of one 

element of the FFT computation in bytes (e.g., Le = 8 for complex single-precision 

floating-point computation). The total parallel execution time of the algorithm without 

applying overlapping is as follows: 
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Tp = logpTc(m) +  logn(tcme). (3.38) 

As mentioned earlier, the FFT algorithm can be logically divided into two phases 

– global and local. Then, the parallel execution time can be represented as: 

Tp = Tglobal + Tlocal = logp(tcme) +  logpTc(m) +  (logn –  logp)(tcme). (3.39) 

The local phase of the algorithm contains no communication; hence, this phase 

can be eliminated from the overlapping optimization. Such an optimization can be 

applied only to the global phase, which contains both communication and computation 

components. The impact of overlapping on the overall performance obviously depends on 

the relative weight of the global phase Tglobal in the total execution time Tp. The  

presentation below focuses on the global phase. 

The opportunity for overlapping arises from the fact that in each step during the 

global phase of the FFT algorithm, all processes exchange data of size m bytes with a 

corresponding peer process. Before proceeding with local computation, the processes 

must wait until the message from the peer process arrives. For large problem size W = 

Θ(n), the size of the exchanged message in each step will become significant and the 

transmission time of this message, Tc(m) =  o + bm, will have a sizeable impact on the 

time spent in the specific step. 

The FFT computation does not require that the entire peer vector of me = m/Le 

elements be received before the computation begins. This feature of the FFT enables a 

division of the message of size m bytes into s segments of size ms = m/s bytes and a 

division of the computation on all me elements into s independent computations on sub-

vectors of size me/s. Then, the transmission of the message segments can be pipelined and 



139 

overlapped with computation. Figure 3.9 presents the pseudo code for the suggested FFT 

algorithm with overlapping of communication and computation in the global phase. 

schedule receive transfer for segment 0 
schedule send transfer for segment 0 
for(j = 1; j < s; ++j) 

schedule receive transfer for segment j 
schedule send transfer for segment j 
wait for receive transfer for segment j – 1  
wait for send transfer for segment j – 1  
Compute segment j – 1  

endfor 
wait for send transfer for segment s - 1  
wait for receive transfer for segment s – 1  
compute segment j – 1  

Figure 3.9 Pseudo code for the global phase of the FFT algorithm with overlapping 

From (3.39), the execution time of the global phase Tglobal of the FFT algorithm 

can be represented as follows: 

Tglobal = logp(tcme) +  logpTc(m) =  logp(tcme + Tc(m)), (3.40) 

which can, in turn, be expressed as Tglobal = logpTstep, where the time of each step of the 

global phase is Tstep = tcme + Tc(m). This representation of Tstep and the nature of the FFT 

algorithm meet the requirements for overlapping, as stated earlier in this section. Hence, 

an overlapping optimization is applied to the communication and computation 

components in Tstep. By incorporating the described segmentation procedure, the time of a 

global step can be expressed as follows: 

T = st me + sT ( m) . (3.41) step c c s s 

Before the computation in the step can begin, each process must receive the first 

segment and, respectively, send one of its segments to the peer process. During the time 
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of these transfers, the process cannot perform computation; so, no overlapping can be 

achieved during the exchange of the first segment. All of the remaining s – 1 subsequent 

message segments can be overlapped with computation involving vector elements from 

earlier segments. Thus, during iteration i (1 < i < s) from a given global step, each 

process executes three procedures: 

• P1: waiting for completion of the exchange of segment i –  1, 

• P2: scheduling a send and a receive operation for exchanging segment i, and  

• P3: performing computation on the sub-vector of segment i – 1.  

The initialization stage of the algorithm schedules the transfers of segment zero 

(procedure P1) while the finalization stage is performing the synchronization (P2) and  

computation (P3) procedures on the last segment. Thus, overlapping of communication 

and computation is achieved between the P2 and P3 activities in s – 1 segments.  

Aggregately, one of the segments is not subjected to overlapping because of the 

initialization and finalization procedures. Taking this into account, the time of the step 

from (3.40) can be re-written as a sum of four terms: 

m me mm eT = T ( ) + (s −1)T ( ) + (s −1)t + t . (3.42) step c c c c s s s s 

The first and the fourth terms represent the initialization and finalization activities 

that are not overlapped. The second and the third components are the communication and 

computation times of the s – 1 segments that are overlapped. Then, applying (3.33) and 

assuming that tcme/s ≥ Tc(m/s)  we finally  find  the time for  the execution  time  of  a global  

step: 
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m me mm eT = T ( ) + (s −1)T ( )(1− d ) + (s −1)t + t , (3.42) step c c o c c s s s s 

which could be further simplified into the form: 

mT (s) = t m + T ( )(s − (s −1)d ) . (3.43) step c e c o s 

Expression (3.43) gives the time for each step of the global phase of the parallel FFT 

algorithm with overlapping as a function of the number of segments s. The total time for 

the global phase is obtained by multiplying the result from (3.43) by logp, which can in 

turn be substituted in the total execution time expression (3.39). 

The parallel implementation of the FFT algorithm with overlapping performs best 

when the degree of overlapping has its maximum value, do = 1. Then, Tstep = tcme + 

Tc(ms), which effectively hides s – 1 of the total number of s transfers of the segments 

with size ms = m/s. If the degree of overlapping has its minimum value, do = 0,  then  Tstep 

= tcme + sTc(ms), which means that there is no effect of overlapping and the step 

execution time is equivalent to the time Tno
step = tcme + Tc(m) without applying the 

segmentation procedure. In fact, because the ratio Tc(m)/(sTc(ms)) is always smaller than 

one, the implementation with overlapping exhibits a slowdown with respect to the 

implementation without overlapping when do = 0. This is a result of the increased 

cumulative overhead of the multiple transfers needed to exchange the entire amount of 

data m in s individual segments. 

An important element of the descriptive power of the analysis based on the degree 

of overlapping is that this analysis implicitly incorporates issues related to scaling the 

problem size n and the number of processes p. Also, of great importance is the analysis of 
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the optimal number of segments used for achieving effective overlapping. Evidently, 

under ideal circumstances, increasing the number of segments s leads to reducing the 

Tc(ms) component of Tstep, as described in (3.43). However, increasing the number of 

segments, evidently decreases the size of the segments; hence, the relative weight of the 

overhead increases. This will naturally reduce the capabilities for effective overlapping, 

since the CPU must spend more of its time on overhead processing. Sohn et al. (1999) 

realize that increasing the number of segments leads to an increase of the overhead, 

which impairs the performance improvements from overlapping. The abstraction power 

of the analysis, based on the degree-of-overlapping metric, captures this behavior and 

enables the designers of the parallel algorithm to estimate the impact of such 

relationships as the increase of overhead while increasing the number of segments. 

In order to facilitate the scalability aspect of the overlapping analysis, another 

metric is introduced, called “segmentation efficiency.” This metric is similar to the 

“communication efficiency” metric proposed by Sohn et al. (1999), which was reviewed 

in detail earlier in Chapter II. As opposed to the communication efficiency, the 

segmentation efficiency metric is defined as: 

Tc(m) o(m) + bmEs = = , (3.44) 
sTc(ms) so(ms) + sbms 

where s is the number of segments in which a message with size m is divided and ms = 

m/s. Obviously, sbms = sbm/s = bm. However, so(ms) is not equivalent to o(m), which 

results from the increased cumulative overhead of segmentation. The possible values of 

Es are in the range (0, 1). A maximum value of one represents the case when the 
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cumulative overhead does not grow with increasing the number of segments. Then, 

perfect segmentation efficiency is observed. Inversely, a value of zero represents the case 

when the overhead has increased infinitely for the given number of segments. In real 

systems, the boundary values of the segmentation efficiency are unattainable. 

The segmentation-efficiency metric can be used to evaluate the performance gain 

of overlapping based on segmentation with a given number of segments. As mentioned 

earlier, by reducing the message size of the segments when the number of segments is 

increased, the degree of overlapping for the shorter message will be lower. For some 

number of segments s, the message segment size ms and the degree of overlapping do will 

become such that the time of the step with overlapping Tstep = tcme + Tc(ms)(s – (s –1)do) 

will become equivalent to the time of the step without overlapping (i.e., without 

Tnosegmentation) step = tcme + Tc(m). Then, in order to find the condition for this event, 

we can solve the equation: 

tcme + Tc(ms)(s – (s –1)do) =  tcme + Tc(m) (3.45) 

with respect to Es. Obviously stcms = tcme, (excluding possible cache effects); hence 

equation (3.45) becomes: 

(s −1)Es = 1 − do (3.46) 
s 

Expression (3.46) can be used as a boundary condition that determines for what 

number of segments s the effect of overlapping becomes zero, and further increase of the 

number of segments will only lead to performance loss. Algorithm designers can use the 

analysis suggested by (3.46) in order to determine the upper bound of s so that the 



144 

performance gain from overlapping will be positive. The optimum number of segments sb 

is in the range (1, sm), where sm is the value of s that satisfies equation (3.46). The value 

of sm can be obtained by first performing a measurement of do = do(m) for  some  range  of  

message sizes that are present in the parallel algorithm and then building a family of 

empirically obtained curves Es = Es(s, m), where m is the message size that is used for 

overlapping and s is a variable in the range [1, max) and  max is sufficiently large. Then, 

by substituting specific values of do and Es, the designers can obtain sm. 

Although the suggested analysis can yield important boundary values for s, the  

practical procedure for determining sm can be quite tedious and may also require a large 

number of experiments. Below, a theoretical analysis for the overlapped execution time 

as a function of the number of segments is presented. This analysis expresses sm and more 

importantly sb only through the parameters R and do. Thus, by only two measurements 

(for obtaining R and do), the designer can estimate the optimum number of segments that 

will yield the best overall execution time. The first objective is obtaining an analytical 

expression for sm. Substituting (3.44) in equation (3.46) yields: 

Tc (m) (s −1)= 1− do . (3.47) 
sTc (

m) s 
s 

Further, using the representation of the communication time according to BOUM Tc(v) =  

o + bv, and assuming for simplicity that the overhead is invariable on the message size, 

we obtain: 

o + bm (s −1)= 1 − d , (3.48) 
so + bm s o 



d os = . b R(1− do ) 

145 

which is a quadratic equation with unknown s. This quadratic equation has two solutions 

as follows: 

bmdo dos1 = 1 , s2 = = . (3.49) 
o(1− do ) R(1 − do ) 

The first solution is as expected s = 1, which represents the case with no overlapping. The 

second solution presents the second value of s for which the step execution time in the 

global phase of the parallel FFT with overlapping is equivalent to the time of the same 

algorithm without overlapping. 

The analysis of the optimum value sb of the number of segments s is based on 

expression (3.43) for the execution time of one step as a function of s. The  standard  

procedure for determining an extremum of a function is applied: 

dTstep (s) 
= 0 . (3.50) 

ds 

The solution of this equation produces two values of s – one negative and one positive. 

Evidently, the negative value has no practical meaning. Hence, the only solution that can 

be used for the optimum analysis of the execution time with overlapping is the positive 

value, which is as follows: 

(3.51) 

In summary, the overall performance (execution time) of a step of the parallel 

FFT with overlapping will be higher than the performance of the step without 

overlapping for s ∈[s1, s2] as found in (3.49). The maximum performance gain will be 
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Figure 3.10 Impact of number of overlapped segments on performance 
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obtained for s = sb where s1 < sb < s2 and sb is the square root of s2, which is represented 

in Figure 3.10. 

The significance of the analysis presented in this section is that the performance 

gain from overlapping of communication and computation can be analytically expressed 

through a formal process based on theoretical modeling. This formal process provides a 

high level of abstraction for describing the complex interactions among the components 

of a parallel system and at the same time suggests a procedure for practical estimation of 

the performance gain from overlapping of an algorithm on a specific target platform. 

3.5 Additional Performance Metrics 

A set of new performance metrics was introduced in this chapter in order to 

achieve an accurate analysis of early binding and overlapping of communication and 

computation. These metrics are degree of persistence, degree of overlapping, and 

segmentation efficiency. To further assist this analysis, this section defines two additional 
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metrics: degree of asynchrony and CPU overhead. These metrics reflect commonly used 

concepts in parallel processing and communication systems. These concepts have a 

specific meaning in this study – they reveal important qualities of the parallel system to 

support effective overlapping of communication and computation. 

Although the degree of overlapping metric introduced in the previous section 

captures the influence of the asynchrony and CPU overhead on effective overlapping, the 

author considers the two additional metrics as important tools for studying the hardware 

and software support for overlapping in more detail. While the degree of overlapping is 

still the definitive metric for measuring the capability of a parallel system to enable 

effective overlapping, CPU overhead and degree of asynchrony can give important 

insight on why a particular system exhibits a certain degree of overlapping. The answer 

to this question may assist algorithm designers and system architects to analyze the 

performance behavior of a parallel system with a high level of accuracy. 

Degree of asynchrony, annotated with da, is a metric that describes the capacity of 

a communication system to perform asynchronous progress of messages. This feature 

was identified as critical for achieving high degree of overlapping. The degree of 

asynchrony will be measured empirically through a specifically designed test presented in 

Chapter V. The possible values of da are in the range [0, 1]. A value of one suggests that 

the parallel system guarantees progress of messages even if the user application never 

calls the message-passing library after the submission of a communication request. A 

value of zero suggests that the system cannot perform independent message progress (i.e., 

applications should call the message-passing library often in order to ensure progress). 
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CPU overhead is the portion of the CPU time spent on communication activities 

during a given period. Low CPU overhead is an important factor for achieving a high 

degree of overlapping. The values of the CPU-overhead metric are also in the range [0, 

1]. Overhead with value of one suggests that the CPU is busy with communication 

activities for the entire duration of the communication request. This in turn means, that no 

overlapping with computation can be achieved. In contrast, zero CPU overhead suggests 

that the CPU effectively does not participate in communication and all of its cycles can 

be allocated to computation. The CPU overhead is measured by observing the load of the 

system while communication is taking place. The experimental results of such 

measurements are presented in Chapter V. 

3.6 Conclusions 

This chapter presented a theoretical framework for describing early binding and 

overlapping of communication and computation as important mechanisms for improving 

parallel performance. This framework enables modeling of algorithms executed on 

parallel systems that provide efficient support for these mechanisms. The framework 

imposes special requirements on the models for parallel computation. It was assessed that 

existing models, such as BSP and LogP, are insufficient for meeting these requirements. 

The BOUM parallel model was developed to incorporate the required features. This 

model facilitated a systematic theoretical study of overlapping and early binding and 

suggested practical approaches for estimation of the impact of these mechanisms on 

application performance. In order to further facilitate the theoretical framework, this 
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chapter introduced new performance metrics, namely degree of persistence, degree of 

overlapping, segmentation efficiency, and degree of asynchrony. These metrics strive to 

provide a more accurate description and quantification of the complex interaction 

between the user application and the parallel system. 

The results of the theoretical framework can be used by organizations that intend 

to improve the performance of their parallel codes through using overlapping and early 

binding. These organizations can estimate the performance benefit from the code 

optimizations and perform a feasibility performance-cost analysis, without actually 

performing these code optimizations. This can have a significant practical impact on the 

economics of these organizations. 

The theoretical framework was applied to selected parallel algorithms. The 

performance of these algorithms was modeled with, and without, the studied performance 

enhancement mechanism. Then, the modeled performance of the two versions was 

compared. The performance gains from early binding and overlapping were expressed 

through the parameters of BOUM and the new metrics. The performance estimations of 

the studied algorithms are subjected to verification in Chapter V. The algorithms 

presented in this Chapter III are implemented in both versions and the actual performance 

of these algorithms is measured. The results from the measurements are used for proving 

the hypothesis of this study. 



CHAPTER IV 

EFFICIENT MPI IMPLEMENTAION FOR CLUSTERS OF 

WORKSTATIONS 

This chapter presents a new MPI implementation that specifically targets clusters 

of workstations interconnected with high-speed networks. This presentation focuses on 

the part of the implementation that provides MPI communication services over Virtual 

Interface Architecture networks. The two physical networks used for development and 

validation of the implementation are Giganet cLAN (Giganet 1999) and ServerNet II 

(Compaq 2001). The MPI implementation described here has served as the foundation for 

the current generation of MPI/Pro products offered by MPI Software Technology, Inc. 

This implementation is referred to as MPI/Pro throughout this document. The author of 

this work has implemented the main MPI library functionality of MPI/Pro and co-

developed the startup and build utilities for the MPI software development kit. This 

chapter first states the requirements and objectives of the new MPI implementation. 

Then, it reviews design considerations, performance trade-offs, and important 

architectural solutions. Finally, this chapter presents experimental results from point-to-

point performance tests and from the NAS Parallel Benchmarks (Bailey et al. 1991). 

150 
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4.1 Requirements and Objectives 

The major objective of MPI/Pro is to provide an efficient, high-performance, 

scalable MPI implementation for clusters of workstations interconnected with high-speed 

networks. The following important requirements were considered in the software 

requirements specification phase of MPI/Pro: 

• low CPU overhead, 

• effective overlapping of communication and computation, 

• asynchronous processing, 

• independent message progress, 

• optimized persistent mode of operation for enabling early binding, 

• thread safety for enabling hybrid parallel models, and 

• efficient multi-device architecture for supporting clusters of SMP nodes. 

4.2 Design Considerations 

The design of MPI/Pro has benefited from the experience and lessons learned 

from previous MPI efforts, especially MPICH (Gropp et al. 1996). The architectural 

solutions of MPICH were carefully studied in order to determine whether they could 

support the objectives of this new MPI implementation, and if so, how. It was assessed 

that this support would be insufficient in a number of important areas, and that adopting a 

design similar to MPICH would impede the achievement of the initial goals. This 

assessment led to the creation of a completely new design. This section provides a 
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discussion on important performance issues and reviews architectural features of MPI 

libraries that influenced the new design. 

4.2.1 Completion Notification 

Communication between processes in message-passing systems requires explicit 

participation of both the sender and the receiver. A successful message transfer requires a 

send transfer operation at the source node and a receive transfer operation at the 

destination node. The send operation is considered complete when the MPI library copies 

out the contents of the user source buffer to a system buffer or directly to the network. 

Similarly, the receive operation is complete when the library deposits the entire message 

into the user-specified receive buffer. The MPI standard (Message Passing Interface 

Forum 1994) specifies local and remote completion semantics of send operations and 

local completion semantics of receive operations. Local send completion indicates that 

the user process can safely reuse the send buffer. Local completion does not provide any 

guarantees about the status of the receiver process. In contrast, the remote send 

completion semantics guarantee that, when the send operation completes, the receiver 

will have begun the reception of the message. Local completion is used more often in 

MPI applications than is remote completion because it provides greater opportunities for 

performance optimization. 

Message completion notification is a procedure for synchronization between the 

user processes and the MPI library. The MPI library uses completion notification to 

inform the user process about the finalization of the send or receive operations and the 
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availability of the participating buffers. When the user process requests a communication 

operation on a buffer, the “ownership” of this buffer is transferred to the MPI library until 

the moment when the operation completes. The completion status is propagated from the 

library to the user process through the completion-notification procedure. The period of 

time between the moment when the user request is submitted and the moment when the 

library signals completion is referred to as “completion synchronization.” Completion 

synchronization depends on the operating system, the network transport, and the MPI 

middleware architecture, but is independent of the actual message transmission time. 

Completion synchronization is one of the major factors for determining communication 

overhead. 

There are two major forms of message completion notification: synchronous and 

asynchronous. Synchronous notification is usually implemented through polling on a 

synchronization object. This synchronization object can be a flag in memory that is 

signaled by the network controller through a system bus transaction or a kernel object 

whose status is checked by continuously calling a kernel routine. The type of 

synchronization object depends on the underlying communication layer, which can be 

kernel-based such as TCP/IP or user-level with operating system bypass such as VIA. 

Polling propagates the completion status of the requested operation to the user process 

with minimal delay, which results in reduced communication overhead. Low 

communication overhead is the major facilitator of low message-passing latency. On the 

other hand, polling causes the main CPU to operate in a busy-waiting mode during which 
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it cannot perform useful computation; hence, polling increases CPU overhead. As 

indicated earlier, high CPU overhead minimizes application’s performance benefit from 

employing communication and computation overlapping. 

MPICH is a typical representative of an MPI implementation that uses polling for 

message completion notification. Subsequently, most MPI implementations derived from 

MPICH bear the same architectural feature. 

The asynchronous method for message completion is based on interrupts 

generated from the NIC and is implemented through kernel synchronization objects, such 

as semaphores, conditional variables, or events. The asynchronous method involves 

interrupt handling and introduces an extra context switch needed for signaling the 

synchronization objects. This context switch increases communication overhead. As a 

result, the asynchronous method for completion shows higher latency than the polling 

method. However, asynchronous completion reduces CPU overhead by releasing the 

CPU from immediately attending the completion procedure. The user thread that requests 

a communication operation is blocked on a kernel synchronization object and becomes 

ineligible for execution by the operating system until the blocking condition is met. The 

blocked thread does not use any system time. Meanwhile, the processor can be used to 

execute threads that perform useful computation. When the NIC completes the requested 

operation, it generates an interrupt to the CPU. Then, the CPU executes the interrupt 

handler. The interrupt handler is a module of the NIC driver, which in turn is a part of the 
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kernel. Finally, the operating system signals the synchronization object and releases the 

blocked user thread that becomes eligible for execution again. 

MPI/Pro has a unique design that utilizes both methods of completion, and 

enables users to switch between the modes using a run-time flag. This option allows for a 

fair comparison between the two modes of completion notification and for studying their 

impact on latency, CPU overhead, overlapping, and overall application performance. This 

study shows that the increased of the asynchronous mode in respect to the polling mode 

has minimal or no impact on the performance of a large class of parallel applications and 

that the performance gain from overlapping outweighs this latency increase. This is 

among the major findings of this dissertation. 

4.2.2 Message Progress 

The MPI API provides a blocking and a non-blocking mode of communication 

(Message Passing Interface Forum 1994). The non-blocking API enables efficient 

asynchronous processing. This API consists of the following set of calls: the MPI_Isend, 

MPI_Irecv, the  MPI_Wait, and  MPI_Test. The  MPI_Isend and MPI_Irecv group of 

functions are used for request submission, while MPI_Wait and MPI_Test are used for 

completion synchronization. Using the non-blocking API, the user process can submit a 

communication request to the MPI library and check for the completion of this request at 

a later moment. This allows the process to perform computation or another 

communication operation between the submission and the completion synchronization of 

the operation. In order to achieve the necessary semantics, the MPI standard requires that 
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the MPI library guarantee progress of communication associated with asynchronous 

requests. This requirement is often referred to as the “MPI Progress Rule” (Message 

Passing Interface 1994). The progress requirement ensures that once a message request is 

submitted, the communication this request specifies will be completed, regardless of user 

process’ behavior. According to the Progress Rule implementation, there are two types of 

MPI library architectures, those with independent progress and those with polling 

progress. 

MPI libraries with independent progress use an independently schedulable by the 

operating system progress agent. This agent can be implemented through asynchronous 

callback handlers or specially designated progress threads. In certain cases, the agent can 

be implemented through a combination of the NIC firmware (hardware thread) and the 

low-level messaging layer. Sandia Portals for Myrinet (Brightwell and Shuler 1996) is an 

instance of a system with a hardware thread used for message progress. The progress 

agent is executed independently of the call sequence of user processes. This guarantees 

that once a request is submitted, the communication associated with this request will be 

completed even when the user process does not make a subsequent call to the MPI 

library. MPI implementations that use independent progress comply with the so-called 

“strict interpretation” of the Progress Rule (Hebert et al. 1998). The independent progress 

engine usually relies on asynchronous completion notification as described in the 

previous section. MPI/Pro is an implementation that follows the strict interpretation. This 

is achieved through the use of a specifically designated progress thread that executes a 
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continuous message-processing loop. This loop makes a blocking call for checking the 

status of a global asynchronous event associated with incoming messages. The progress 

thread “sleeps” on the global event during periods when there are no incoming messages. 

While sleeping, the progress thread does not consume any CPU cycles. 

Polling progress, on the other hand, requires that user processes make frequent 

calls to the MPI library in order to ensure timely progress of asynchronous requests. 

Progress is made only when the MPI library is called. Typically, MPI libraries with 

polling progress have a progress engine that is called within the majority of the MPI calls. 

Often, the progress engine is called even within MPI functions that do not require any 

communication. This technique is used to increase the frequency of calls to the progress 

engine. As a result, the execution time for these functions will vary widely, which will 

reduce the overall predictability of the MPI library. 

Polling progress does not comply with the “strict interpretation” of the Progress 

Rule. Some MPI implementations with polling progress rely on coarse-grained, time-

based interrupts to ensure progress of asynchronous transfers if the user process does not 

call the MPI library regularly. MPI libraries with polling progress often utilize polling 

completion notification for achieving low latency. However, similarly to polling 

notification, polling progress increases CPU overhead and lowers the degree of 

overlapping. The impact of the message progress on effective bandwidth is discussed in a 

subsequent section of this chapter. 
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4.2.3 Multiple Communication Devices 

Clusters of multiprocessor workstations or servers offer two or more fabrics for 

communication between processors. Often, it is beneficial to use specifically designed 

operating system mechanisms for interprocess communication between processes on the 

same node. In order to utilize these mechanisms, the MPI library provides two “devices” 

(Gropp et al. 1996): one for intra-node communication and one for inter-node 

communication. These devices are often called SMP device and network device, 

respectively. The multi-device MPI architecture allows one process to communicate over 

all devices simultaneously. Multi-device MPI libraries enable the so-called “MPI 

everywhere” programming model. 

In multi-device mode, MPI libraries with polling progress poll each device for 

communication events in a loop according to some policy (e.g., round robin). Each 

device provides a different mechanism for propagating completion notification to the 

MPI library. Some devices require system calls; others require operating system bypass 

library calls. Slow devices may require relatively long times to check for completed 

events even when the event queues are empty. Since the completion check of a slow 

device is in a loop with all other devices, faster devices will experience increased 

overhead because of the slow device. Protopopov and Skjellum (2001) provide a study on 

MPICH’s multi-device architecture and describe the negative interdependency between 

devices of different speeds when polling progress is used. Their specific attention is on 

the negative correlation between a slow TCP device and a fast SMP device. 
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MPI libraries with polling progress are often evaluated through ping-pong latency 

tests between two processes. However, this experimental setup uses only one device at a 

time, either SMP or network, and does not reveal the negative interdependency of slower 

devices on the overhead of faster ones. Tests that involve at least two devices operating 

simultaneously must be executed in order to reveal this interdependency. 

As opposed to polling progress, independent progress does not introduce such 

interdependency between MPI devices; hence, faster devices are effectively “isolated” 

from slower devices. Since each device has an asynchronous progress agent that is 

independently schedulable, the MPI library progress engine does not need to check the 

devices for completed events; thus, unnecessary processing associated with passive 

devices is avoided. Furthermore, if there are enough computing and communication 

resources, the communication requests on different devices can be executed concurrently, 

which can allow for overlapping of two communication activities. It can be concluded 

that independent message progress leads to a more efficient architecture of multi-device 

MPI libraries than does polling progress. Independent message progress is also beneficial 

with respect to other I/O activities (e.g., parallel file I/O) that are expected to progress 

asynchronously to message passing and computation. 

4.2.4 Low Processor Overhead 

Preserving processor cycles for useful computation is an important characteristic 

of communication systems. Since the primary goal of parallel processing is achieving fast 

computation, communication is viewed as pure overhead (a cost with no benefit). Two 



160 

major approaches for reducing communication overhead can readily be identified. The 

first approach is to optimize the communication system such that it provides faster data 

transfers. The second approach is to reduce CPU involvement in communication 

activities and to also reduce the effective impact of communication on overall execution 

time. The first approach emphasizes performance parameters such as low latency and 

high bandwidth. The second approach emphasizes factors such as low CPU overhead, 

communication and computation overlap, and reduced impact of synchronization. 

Combinations of both approaches are also possible. 

The factors that determine the level of processor overhead of a communication 

system can be divided into hardware and software factors. The most important hardware 

factor is related to the capability of the NIC to perform communication without 

involvement of the central processor. The NIC of modern high-speed networks, such as 

Giganet and Myrinet, possess such capabilities. In contrast, traditional NIC’s require the 

active participation of the main CPU in all communication and synchronization activities. 

The aforementioned software factors primarily depend on protocol stack efficiency and 

on message-passing middleware architecture. Thinner protocol stacks with no 

intermediate data copies facilitate low processor overhead. Similarly, middleware with 

asynchronous completion notification and independent progress minimizes CPU 

participation in communication activities, which leaves more processor cycles for useful 

computation. In contrast, polling notification and polling progress actively involve the 

main CPU in activities unrelated to the main user computation. 
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4.2.5 Latency 

Reducing latency is a high priority of any communication system. Latency is 

critical for of short-message transfers. According to BOUM, the transmission time for a 

message of size m can be modeled as Tc(m) =  o + bm, where  o is the communication 

overhead and bm is the component that depends on the network bandwidth (b is the 

inverse of the bandwidth). Short messages are messages whose overhead component 

dominates the overall transmission time, o > bm. Alternatively, for long messages, bm > 

o. Consequently, short messages are sensitive to latency, and long messages are sensitive 

to bandwidth. Fine-grain data-parallel algorithms and highly synchronous applications 

that perform frequent barriers benefit most from low latency. Also, distributed shared 

memory systems that update memory across the network and applications that utilize 

one-sided communication are sensitive to latency. 

The factors that affect latency include the hardware network capabilities, the 

protocol stack overhead, the completion notification scheme, and the message passing 

middleware progress method. Thinner protocol stacks using network interfaces featuring 

operating system bypass provide lower overhead than traditional multi-layer stacks. 

Asynchronous completion notification, henceforth referred to as blocking notification, 

and independent progress typically lead to a latency increase for short messages. 

Brightwell et al. (1999) refer to the combination of operating system bypass and 

independent progress as “application bypass.” 
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The combination of polling notification and polling progress offers the lowest 

latency. Usually the difference of overhead between polling and blocking notification 

depends on the operating system context switch facilities. Since the blocking notification 

method uses interrupts for synchronization, there is an extra kernel context switch for 

notification propagation to user process. Optimizing the interrupt handling procedures 

and context switches in operating systems may reduce the cost of the overhead incurred 

by blocking notification. Faster processors also reduce the synchronization overhead 

related to the operating system. The impact of CPU speed on latency in systems using 

both polling and blocking notification can be observed in the experimental results 

presented later in this chapter. 

Latency is not generally considered a realistic measure of performance for 

applications that can overlap communication and computation. In addition, a large 

number of data-parallel applications predominantly exchange long messages, which are 

not latency sensitive. This work demonstrates that for a large class of medium to coarse-

grained parallel algorithms the performance gain of overlapping outweighs the impact of 

increased message-passing latency that results from the use of asynchronous completion 

notification, independent message progress, and mechanisms for low processor overhead. 

4.2.6 Bandwidth 

Achieving peak bandwidth, as provided by the network data-link layer, is 

primarily impacted by host peripheral bus throughput and communication software 

efficiency. Presently, high-speed networks offer multi-gigabit-per-second links between 
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nodes, but the peripheral bus (e.g., PCI) often limits the effective bandwidth to a fraction 

of peak. This leads to underutilization of the advanced performance features offered by 

high-speed networks. Eliminating intermediate data copies is the most important 

communication software feature for improving effective bandwidth. The VIA RDMA 

facility is a representative of a mechanism that enables the message-passing middleware 

to utilize protocol architectures with zero intermediate data copies, while freeing the main 

processors on both sides from participating in communication activities (Compaq, Intel 

Corporation, and Microsoft Corporation 1997). 

Bandwidth is not affected by the increased communication overhead caused by 

asynchronous notification and independent message progress. On the contrary, both of 

these techniques facilitate higher effective bandwidth. First, asynchronous notification 

minimizes memory bus contention that results from simultaneous memory accesses 

generated by the CPU and by the NIC DMA engine. The DMA engine accesses the main 

memory through PCI transactions for moving data between the user buffer and the NIC 

local memory. Polling synchronization requires processor involvement that might lead to 

memory accesses that could collide with the NIC DMA transactions, thus reducing the 

effective bandwidth. 

Second, independent progress guarantees timely transmission of long messages, 

which helps achieve top sustained bandwidth. Often, MPI libraries implement long 

message transfers using a three-stage rendezvous protocol (Gropp et al. 1996; Dimitrov 

and Skjellum 1999). This protocol requires the sender to initiate a synchronization 
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procedure, performed in the first two stages of the protocol, prior to forwarding the actual 

message to the receiver in the third stage. If the send request is asynchronous, an MPI 

library with polling progress can return to the user process before capturing receiver’s 

acknowledgement. Then, the actual data transfer must occur when the user process makes 

a subsequent call to the MPI library. This call may be significantly delayed depending on 

the application algorithm. For example, an application may make a call to MPI_Isend 

with a long message, execute a long computation, and only then make another call to the 

MPI library (possibly to check the status of the request with MPI_Test). Depending on 

the timeline of the sender and receiver processes, MPI libraries with polling progress will 

perform the actual data transfer only when the latter MPI call is made. This will 

negatively impact the effective bandwidth as seen by the user application. 

In contrast, MPI libraries with independent progress will react immediately to the 

confirmation from the receiver and send the message as soon as possible. The comparison 

of the two types of progress engines and their respective impact on effective bandwidth is 

depicted in Figure 4.1. This figure shows the rendezvous protocol that is typically used 

for transfers of long messages. The first two stages of the protocol exchange control 

messages, specifically, request to send (RTS) and clear to send (CTS). The RTS message 

informs the receiver about the size of the user data that is to be sent. The receiver 

acknowledges availability of buffer space to accept the requested message with CTS. The 

actual data transfer is performed in the third stage. In MPI/Pro, the third stage is 

performed by an RDMA Write operation. This operation is transparent to the receiver. 
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If the size of the transferred message is m bytes, the effective bandwidth from the 

receiver’s standpoint is computed as BW = m/tr, where  tr is the period of time between the 

moment the receive request is posted (MPI_Recv) and its completion. For the MPI 

libraries with polling progress, this time is denoted with trp, whereas this time for the 

libraries with independent progress is denoted with tri. The  time  tri represents the sum of 

three components: the synchronization time between calling MPI_Recv and receiving the 

RTS  message  from  the sender,  the time for  sending CTS,  and  the transfer  time necessary  

for moving the m bytes of the message. Clearly, trp is longer than tri since trp = trp + td, 

where td is the time between the reception of the CTS message at the sender and the 

moment when the actual data transfer is initiated. The duration of td depends on the 

behavior of the user process. If the application calls MPI_Wait or MPI_Test in a tight 



166 

loop soon after MPI_Isend is issued, the time td could be negligible. In fact, this is what 

the typical ping-pong latency test does. However, if the user process performs long 

computation or some other communication or I/O, td could be significantly longer. 

Consequently, the effective bandwidth using polling progress, BWp = m/(tri + td), will be 

lower than the effective bandwidth using independent progress is used, BWi = m/tri. 

4.2.7 Persistent Mode of Communication 

MPI provides an API for persistent mode of communication. This API consists of 

the following calls: MPI_Send_init, MPI_Recv_init, MPI_Start, MPI_Wait, MPI_Test, 

and MPI_Request_free (Message Passing Interface Forum 1994). The persistent API can 

be effectively used to take advantage of temporal locality in applications using early 

binding. Temporal locality is typically present in data-parallel and other regular parallel 

algorithms with iterative kernels. 

As mentioned earlier in Chapter II, VIA mandates that all memory segments 

participating in data transfers must be registered. Memory registration is a high-overhead 

operation that requires time-consuming memory manipulations by the operating system. 

The use of persistent MPI operations enables reduction of the effective registration 

overhead by reusing registered segments for multiple communication transactions. Using 

the persistent MPI API is one of the main approaches for achieving effective early 

binding on clusters interconnected with VIA networks. Since MPI/Pro specifically targets 

VIA networks, the persistent API optimizations that minimize the impact of memory 

registration are considered to be a critical requirement. 
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4.2.8 Thread Safety 

Support for multi-grain parallel processing through multithreading is one of the 

major design objectives of MPI/Pro. A number of widely used operating systems, such as 

Solaris, Linux, and Windows, offer efficient preemptive thread models for exploiting 

local parallelism and fine-grained concurrency. MPI/Pro targets all of these operating 

systems and also aims to provide mechanisms for efficient SMP processing. Thread 

safety is also a feature required by the independent message progress capability of 

MPI/Pro. Additionally, different categories of MPI users have emphasized the need for 

thread support in MPI for variety of purposes, among which are utilizing hybrid parallel 

models such as using MPI and OpenMP (Dagum and Menon 1998). An study of MPI in 

multithreaded environment is presented in Appendix B. 

4.2.9 Efficient Use of VIA Features 

MPI/Pro is designed to operate optimally on clusters of workstations 

interconnected with VIA networks. The key VIA features used in MPI/Pro are as follows: 

• minimizing operating system involvement in critical communication operations, 

• availability of hardware thread of control implemented by the VIA NIC, 

• memory registration, 

• remote DMA data transfers, 

• large  number of  VI instances  per NIC,  

• scatter and gather modes for memory transfers, 

• large MTU size (32 Kbytes), 
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• support of both synchronous and asynchronous modes of notification, and 

• reliable, in-order packet delivery with no packet duplication. 

4.3 Architecture 

MPI/Pro incorporates several new architectural solutions that improve message-

passing performance while also facilitating low processor overhead, higher degree of 

overlapping, asynchronous processing, and early binding. Below, some of the most 

important architectural solutions are identified. 

4.3.1 Progress Thread 

MPI/Pro uses a progress thread for implementing an independent, non-polling 

message progress. In most of the existing MPI implementations, progress of non-

blocking or long messages is made only when user processes continuously call the MPI 

library. In contrast, MPI/Pro makes progress of all messages independently of the 

sequence of user process calls. Ultimately, MPI/Pro can complete a non-blocking send 

request even if the user never makes a subsequent call to MPI after the request is posted. 

The progress thread guarantees timely progress of asynchronous requests. Also, this 

thread is used to handle control traffic related to user-level flow control and the 

finalization protocol, which enables the library to gracefully handle unexpected 

terminations of MPI processes. 

Using a library thread for message progress facilitates an asynchronous model for 

completion notification. The progress thread waits on a VI completion queue for 
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incoming communication events and does not consume any CPU cycles. When a packet 

arrives, it awakens the progress thread, which in turn processes this packet and takes 

actions corresponding to packet’s content. Then, the progress thread goes to sleep again. 

A user thread may execute useful computation while the progress thread is blocked and 

awaits incoming messages. 

4.3.2 Using RDMA for Long Transfers 

MPI/Pro uses VIA RDMA operations for long data transfers. RDMA requires the 

active side to know the virtual address of the target buffer. MPI/Pro meets this 

requirement by the use of a rendezvous protocol for long messages. When a send request 

is posted, the sender forms an RTS control message specifying the size of the data to be 

sent. The receive side processes this message and replies with a CTS packet containing 

the address of the target receive buffer. Then, the sender initiates an RDMA transaction 

to transfer data. The last iteration of the protocol uses RDMA and is fully transparent to 

the target node. RDMA operations significantly reduce the CPU overhead. The CPU 

utilization of an MPI/Pro process transferring long-messages (64 kilobytes or more) is in 

the range of only 3-4%. Thus, MPI/Pro for VIA networks offers MPI applications the 

potential to really hide communication by overlapping it with computation. 

4.3.3 Multiple Queues for Receive Requests 

MPI/Pro uses multiple receive queues for posting and matching communication 

requests. In contrast, MPICH and most of its derivative implementations use only one 
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global pair of receive queues for posted and unexpected receive requests. In the single 

queue model, messages from all ranks that arrive before a matching receive request is 

posted are treated as unexpected requests and are queued on the unexpected receive 

queue. Similarly, receive requests from all ranks that are posted before a matching 

unexpected message has arrived are queued on the posted receive queue. Since the 

receive requests from all ranks are posted to the same queue, the matching procedure 

results in a linear search with asymptotic complexity Θ(NR), where R is the number of 

ranks (processes) participating in the MPI job, and N is the average number of 

outstanding requests on the receive queue per rank. As an illustration of the matching 

process and the asymptotic complexity of the single- and multiple-queue designs, the 

MPI_Gather collective operation is discussed. For simplicity, the case with N = 1 is  

reviewed. For the purposes of this example, a linear implementation of MPI_Gather is 

chosen. Generally, better asymptotic algorithms, such as binary or minimum spanning 

trees, are possible. It is assumed that the collective operation involves all R ranks. 

In the chosen example, all R – 1 leaf processes send their messages to the root 

rank. If these messages arrive before the root rank submits the corresponding receive 

requests to the MPI library, the messages are queued to the unexpected queue. If the root 

process submits its requests before the arrival of the messages, the requests are queued to 

the posted queue. For simplicity, it is further assumed that the root node will be able to 

generate all receive requests and post them prior to the arrival of the first message from 

any of the R – 1 leaf ranks. Then, for MPI libraries with one receive queue, the length of 
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root rank’s posted queue will be equal to R – 1. When the first message arrives (from any 

one of the R – 1 leaf ranks), the root rank performs a linear search in the posted queue. 

The search matches the source rank, communicator context ID, and user tag parameters 

of the incoming message to the requests in the queue. The asymptotic complexity of this 

search is Θ(R – 1) and the time for matching all incoming messages to the posted 

requests at the root rank will be Θ(R –  1) + Θ(R – 2)  +  …+  Θ(1) resulting in an overall 

asymptotic complexity of Θ (R2). 

MPI/Pro distributes the single pair of one posted and one unexpected queues to R 

such pairs, one per each rank (Figure 4.2). In the example described above, each queue 

will have a length of one request. Consecutively, the search for match will be O(1). There 

will be R number of such searches and thus, the asymptotic complexity of the entire 
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collective MPI operation is RΘ (1) = Θ(R). Hence, this new MPI/Pro queue architecture 

reduces the asymptotic complexity of the searches that match incoming and posted 

receive requests from Θ(R2) to  Θ(R). The multiple queue optimization of MPI/Pro affects 

all MPI communications, including point-to-point and control communications. Through 

this optimization, MPI/Pro achieves faster demultiplexing of the incoming messages. 

Therefore, it improves the overall performance of the implementation. 

In Figure 4.2, P denotes posted request queues, U denotes unexpected request 

queues, pR denotes a posted receive request, uR denotes an unexpected receive request, 

and R denotes the number of ranks. 

4.3.4 Synchronous and Asynchronous Completion Notification 

MPI/Pro has the unique capability to offer users both synchronous and 

asynchronous methods for completion notification. Users select the desired method 

through a run-time switch. To the best of the author’s knowledge, to date, MPI/Pro is the 

first and only MPI implementation that provides this capability. The advantages and 

disadvantages of the two methods for notification were independently reviewed earlier in 

this chapter. Using this feature, MPI/Pro offers users the flexibility to choose the optimal 

completion mode according to the aggregate requirements of the applications. Also, the 

dual-completion-mode capability is fundamental for understanding the complex software 

and hardware interactions that affect overlapping of communication and computation. 

The same application can be executed alternatively in both modes, which creates an 

experimental setting in which all elements are the same with the only exception being the 
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completion mode itself. This facilitates an objective study on the impact of completion 

notification on overhead, latency, and overlapping. 

As described earlier, in asynchronous mode, the user thread is blocked on a kernel 

object for completion synchronization. This object is signaled by MPI/Pro’s progress 

thread when the user request completes. In contrast, the synchronous mode of MPI/Pro 

eliminates the progress thread from the reception of short messages. Thus, if a process is 

expecting a message, it can poll directly for message arrival instead of blocking on the 

synchronization object. If the communicating processes are tightly synchronized, as in 

ping-pong latency tests, the message-passing latency can be reduced significantly at the 

expense of increased CPU overhead, as shown later in this chapter. In synchronous mode 

MPI/Pro, operates similarly to typical polling MPI libraries. However, as opposed to 

most polling-only implementations, MPI/Pro continues to use the progress thread even in 

the synchronous mode of completion. This thread is used for progress of long messages 

and also for handling control traffic. Thus, MPI/Pro eliminates the deficiency of other 

polling MPI implementations to require frequent calls to the library’s progress engine for 

long messages. As was indicated earlier, independent progress facilitates higher effective 

bandwidth than does polling progress. This effect of message progress on effective 

bandwidth is often omitted in the performance analysis of message-passing libraries. 

Figure 4.3 provides a classification of MPI implementations according to two 

dominant performance-defining factors: completion notification method and message 

progress scheme. According to completion notification, MPI libraries can be synchronous 
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(polling) or asynchronous (blocking). According to message progress, the libraries can be 

implemented with either independent or polling progress. Most commonly, MPI libraries 

use the “all-polling” architecture. MPI/Pro with its dual-mode completion notification 

scheme and use of progress thread covers almost the entire spectrum of combinations (the 

shaded blocks in Figure 4.3), with the exception of the case of polling progress with 

blocking completion, which has no practical meaning. 

4.4 Summary of Features 

This section summarizes some of the most important performance-oriented 

features of MPI/Pro, emphasizing its contributions to parallel processing on clusters and 

distinguishing it from other MPI implementations. 

• MPI/Pro supports both synchronous and asynchronous methods of completion 

notification. Asynchronous notification is used to provide low processor overhead 

and enable a high degree of overlapping. The synchronous method is used for 

delivering low latency at the cost of increased processor overhead. 
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• MPI/Pro uses independent message progress based on a progress thread. Once a 

user request is posted, this request will be completed regardless of the behavior of 

the user process. MPI/Pro does not require user processes to call the library 

frequently in order to guarantee timely completion of asynchronous requests. 

Independent progress leads to increased effective bandwidth and also meets the 

requirements of the strict interpretation of the MPI Progress Rule. 

• MPI/Pro is thread safe and enables hybrid parallel models using message passing 

between cluster nodes and multithreading for intra-node concurrency. This allows 

for exploitation of multi-grained parallelism. 

• MPI/Pro optimizes the persistent mode of communication. VIA requires that all 

memory segments that participate in communications be pinned in physical 

memory. Memory pinning is a high-overhead kernel operation that causes context 

switches between the user process and the kernel. The negative effect of these 

context switches can be reduced if a memory segment is pinned once in physical 

memory and then reused multiple times. Thus, memory registration can be 

amortized over a large number of communications. MPI’s buffer ownership 

semantics are compatible with these optimizations. 

• MPI/Pro has a zero-copy protocol for data transfers of long messages through the 

VIA RDMA mechanism. After the initiation of the transfer, the DMA engine of 

the VIA NIC on the send node pulls data directly from the user buffer. Then, the 

NIC sends the message over the network to the receiver. At the receiver node, the 
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NIC drains the message from the network and, using its DMA engine, puts the 

data directly into the target user buffer. The entire procedure is transparent to the 

processors of both systems involved in the transfer. Zero-copy data transfers 

implemented with VIA RDMA achieve top sustainable bandwidth at minimum 

processor overhead. 

• MPI/Pro uses multiple queues for posting receive requests. A pair of queues for 

posted and unexpected receive requests is associated with each MPI rank. This 

feature reduces the time for matching receive requests with incoming messages 

and optimizes message demultiplexing. 

• MPI/Pro implements an optimized derived data type engine that provides efficient 

transfers of non-contiguous buffers. 

4.5 Experimental Results 

This section presents experimental results obtained using MPI/Pro on a variety of 

test cluster configurations. First, the test configurations and the notation used for referring 

to these configurations are introduced. The experimental results are presented in two 

groups: point-to-point performance and NAS Parallel Benchmarks. The results 

demonstrate the versatile features and performance capabilities of MPI/Pro, as well as an 

opportunity to study the impact of various cluster components on parallel performance. 
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4.5.1 Test Configurations and Experimental Methodology 

The target environment of an MPI library is generally specified by three 

attributes: hardware platform, operating system, and network interconnect. These three 

attributes form a 3-D configuration space, which contains a large number of possible 

configuration combinations. Each configuration is a discrete point in this 3-D space. With 

the introduction of the MPI-2 Parallel I/O extensions, the target configuration space of 

MPI increases by one more dimension, specifically, the type of file system installed on 

the parallel platform. The MPI implementation presented in this work complies with the 

MPI-1.2 standard and does not offer MPI-2 extensions; therefore, the file system 

configuration attribute is not discussed. 

The hardware platform attribute of a test configuration is defined by its processor 

architecture, processor clock rate, number of processors per machine, memory capacity, 

processor cache volume, memory system bus speed, and peripheral bus clock rate and 

width. A change in any of the specified platform components creates a new point along 

the platform axis of the configuration space. For example, a cluster with Intel architecture 

processors and a clock rate of 500 MHz is a different configuration from a cluster that has 

the same processor architecture but a clock rate of 800 MHz. The capacity of secondary 

storage is not considered to be an important performance-influencing component of the 

hardware platform for the purposes of this work. 

The operating system attribute of the configuration space has less variability than 

does the hardware platform attribute. Presently, the operating systems commonly used for 
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building clusters are Linux, Windows, and Solaris. Only the operating system kernel 

version is of significant importance for Linux-based clusters. More recent kernels provide 

improvements in process context switching, thread support, and process scheduling. 

The networking attribute of the configuration space has two aspects: physical 

network fabric and communication protocol. For this study, a change in any of these two 

aspects is viewed as a new point along the networking axis. For example, using TCP 

transport over Giganet and using the native VIA interface of the same physical network 

are considered different points in the network dimension. This separation in physical 

fabric and software protocol is justified by the substantial difference in communication 

performance, which is supported by the results presented below. 

The goal of this section is to present experimental results that demonstrate the 

behavior of both MPI/Pro and the test cluster configurations by providing data that can be 

used for comparative performance analysis. For this purpose, at least two points are 

identified in each dimension of the configuration space while holding the other two 

attributes constant. This experimental methodology allows for a fair and precise analysis 

of the impact on performance of the attribute that varies. 

The test configuration notation is based on labels that specify a point in the 

dimension along each of the three main configuration space attributes. Each configuration 

is annotated with a character string containing three labels, separated with hyphens, in the 

form ppp-ooo-nnn. The first label describes the hardware platform, the second label 

indicates the operating system, and the third label describes the network. In certain 
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configurations, more labels are used. These labels have different meanings for each case. 

For example, they may complement the networking label to present the combination of 

protocol and physical fabric. In other instances, the additional labels distinguish the 

results from round-trip-time latency and one-way latency measurements. In yet another 

case, they describe differences between the measurements obtained with MPI/Pro in 

polling and in blocking mode on the same configuration. 

The platform labels used in this presentation are derived from the name of the 

hardware vendor, the specific computer model, or the name of the cluster. Specifically, 

three labels are used: sag, dim, and  ac3. All clusters are built with Intel architecture 

nodes. The sag and dim clusters are operated at the main office of MPI Software 

Technology, Inc. in Starkville, Mississippi. The primary difference between the nodes of 

these clusters is the processor version and its clock rate: Pentium II @ 350 MHz for sag 

and Pentium III at 733 MHz for dim. The  ac3 cluster is the 64-node, 256-processor AC3 

Velocity cluster operated by Cornell University (Cornell Theory Center 2001). 

Two operating system labels are used: win for Windows and lin for Linux. The 

sag cluster runs Windows NT 4.0, while the dim cluster runs Windows 2000. Windows 

2000 is also run on the ac3 cluster. The sag and dim clusters are also dual-booted with 

RedHat Linux 6.2, kernel version 2.2. The primary network label has two values: tcp and 

via. The  tcp label is used for TCP/IP-based communication over both 100 Mbit/sec 

switched FastEthernet and over Giganet. The via label is used for communication directly 

using the VIA interface of Giganet. When a comparison between tcp-based 
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configurations using different fabrics is presented, the fourth label is used to annotate the 

different physical fabric. For instance, the configurations sag-win-tcp-eth and sag-win-

tcp-gig specify the same platform, the same operating system, and the same network 

protocol (TCP), but different physical media. When the physical fabric is not specified in 

the fourth label, it is always assumed that configurations with a tcp label use Ethernet and 

configurations with a via label use Giganet with its VIA interface. The complete 

specifications of all configurations used in this section and also in Chapter V are 

presented in Appendix C. 

4.5.2 Point-to-point Results 

The point-to-point experiments are performed between two cluster nodes. The 

goal of these experiments is to measure the link performance of the communication 
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subsystem, as observed by the user processes. The results presented in this section are 

obtained from MPI test applications and show the combined performance attributes of the 

entire communication subsystem, including physical network, protocol stack, and MPI. 

The experimental results are presented separately for latency and bandwidth. 

Latency is measured in microseconds and bandwidth is measured in megabytes per 

second. Two types of latency are defined: round-trip time latency and one-way latency. 

The round trip time latency is obtained by dividing the round-trip time of a message with 

a certain size by a factor of two. The round-trip time is measured by running a ping-pong 

test for each message size in a loop of N iterations and then dividing the entire 

communication time for the particular size by N. The one-way latency is obtained from a 

streaming test. One of the participating nodes sends a series of N messages of the same 

size to the receiver node. After the receiver node receives all N messages, it sends one 

message of the same size back to the sender. The one-way latency is obtained as the total 

time for the described procedure divided by N + 1. The schematic of the transfers and the 

time measurements for the round-trip time and one-way latencies are shown in Figure 

4.4. In the latency graphs presented in this section, it is assumed that the curve represents 

round-trip time latency if the type of latency is not explicitly specified in the legend. All 

bandwidth results presented here are based on the round-trip time latency. This is a more 

conservative approach than measuring bandwidth based on the one-way latency. 

The graph in Figure 4.5 presents the round-trip time latency on the sag-win 

configuration using four different combinations of the network configuration attribute. 
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Two of the network combinations use TCP transport, and the other two combinations use 

the VIA interface of Giganet. The TCP combinations are run with Ethernet (tcp-eth) and  

Giganet (tcp-gig). The VIA runs are executed with MPI/Pro operating in blocking mode 

(via-blk) and polling mode (via-poll). 

Figure 4.5 provides several interesting observations. First, there is a significant 

difference in latency between the TCP transport and the transport layered based on VIA 

interface, even in the case when the TCP transport uses Giganet physical fabric 

(configuration sag-win-tcp-gig). TCP latency is almost an order of magnitude higher than 

the latency of VIA in polling mode. Since all other components of the parallel system are 

equivalent, this difference in latency performance can only be attributed to the software 

protocol stack. Clearly, protocols with a reduced number of abstraction layers and 
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featuring operating system bypass provide significant advantages in communication 

overhead compared to traditional protocols, such as TCP/IP. 

The other observation made from Figure 4.5 is related to the impact of the 

network fabric on the latency of short messages. For this purpose, the sag-win-tcp-eth 

and sag-win-tcp-gig configurations are compared. For message sizes in the range [0, 256] 

bytes, the latency curves of the two configurations track each other with minimal 

difference. This demonstrates that the underlying network infrastructure, including the 

physical link layer, have minimal impact on latency. Latency of short messages primarily 

depends on the software overhead associated with message setup, transfer initiation, and 

completion notification. The importance of the completion notification method is 

demonstrated by comparing the two VIA configurations, namely sag-win-via-blk and 

sag-win-via-poll. The only difference between these two configurations is MPI’s mode of 

message completion notification: blocking versus polling. The higher latency of blocking 

mode is explained by the higher communication overhead resulting from four activities 

that are not present in polling mode. These activities are as follows: 

• executing the interrupt service routine of the VI Kernel Agent, 

• signaling the synchronization kernel object, 

• performing a process context switch between the kernel and the MPI process, and 

• performing a context switch between the MPI progress thread and the user thread. 

These additional activities account for the increase of latency from 21 to 48 

microseconds for short messages. Dimitrov and Skjellum (1999) provide a detailed 
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breakdown of the time spent on each of these activities. The ping-pong test used for 

obtaining the round-trip time latency subjects the communication system to a type of 

traffic, which is not necessarily representative for the traffic patterns of the majority of 

data parallel algorithms (Dimitrov and Skjellum 2000). The ping-pong test traffic pattern 

can be viewed as an extreme point in a space of traffic patterns. The author of this work 

has proposed a streaming test for measuring one-way latency in order to identify the other 

extreme point in this space. Unlike the ping-pong test, the streaming test offers 

opportunities for hiding overhead through pipelining. Both of these extreme traffic 

patterns are rarely seen in real applications, but they can be used to obtain interesting 

insights about the behavior on the communication system under varying traffic 

conditions. Figure 4.6 provides a comparison between the round-trip time (rt) and  one-

way (ow) latencies of the sag-win-via configurations in blocking (blk) and polling (poll) 

modes. 
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First, the behavior of the blocking configurations sag-win-via-blk-rt and sag-win-

via-blk-ow is analyzed. The curves representing the latencies of these two configurations 

demonstrate that in blocking mode one-way latency is almost two times lower than the 

round-trip time latency. This shows that careful scheduling of the traffic between two 

nodes can achieve a pipelining effect, which can substantially reduce the overhead 

associated with the blocking architecture of MPI/Pro. In fact, efficient utilization of 

pipelining, as in the streaming test (sag-win-via-blk-ow), can effectively reduce the 

latency of the blocking mode to approximately the same levels as the polling mode (sag-

win-via-poll-rt). It is interesting to note that the polling mode of MPI/Pro does not show 

any latency improvement of the streaming test over the ping-pong test. Obviously, the 

polling mode of completion notification does not facilitate hiding overhead through the 

use of pipelining. 

The graphs in figures 4.7, 4.8, and 4.9 demonstrate the impact of the operating 

system and the CPU speed on the latency of short messages. Figure 4.7 compares the 

sag-win-via polling and blocking configurations with the sag-lin-via polling and blocking 

configurations. The only difference between these two pairs of configurations is the 

operating system – Windows vs. Linux. As can be seen from the graph, the message-

passing latency on Linux is higher than it is on Windows, especially in blocking mode. 

This difference can be explained by the higher cost of the process and thread context 

switches of Linux, as well as the slower kernel synchronization and mutual exclusion 

objects of this operating system. In fact, the POSIX threads pthreads package on Linux 
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(kernel 2.2) is implemented through the use of a full-blown process for each thread that 

the user creates. The only difference between “real” processes and processes that 

represent threads is that the latter share the same virtual address space, which allows 

them to access shared data structures. Linux does not have support for multi-threading in 

its kernel. In contrast, Windows threads are implemented in the kernel of the operating 

system. This enables Windows to provide more efficient thread context switching, as well 

as inter-thread synchronization and mutual exclusion. These are the main reasons for the 

lower overhead observed on Windows. 

The impact of CPU speed on latency is depicted in figures 4.8 and 4.9. The sag 

cluster is built with single-processor workstations with Intel Pentium II processors 

operating at 350 MHz. The dim cluster is built with single-processor workstations 

equipped with Intel Pentium III processors operating at 733 MHz. The difference in CPU 
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clock rate is more than two times higher for the dim cluster. Also, the memory system bus 

clock rate of the dim cluster is increased from 100 MHz to 133 MHz. 

Figure 4.8 demonstrates the latencies of MPI/Pro using the VIA interface in both 

polling and blocking modes across the sag and dim clusters. The faster CPU of the dim 

cluster reduces the short-message latencies of the blocking and polling modes by 

approximately seven and five microseconds, respectively. The absolute improvement for 

blocking mode is larger than the improvement for polling mode because the relative 

weight of the software overhead in the total communication time in blocking mode is 

higher than in polling mode and the increase of CPU speed affects most this overhead. 

This conclusion is further supported by Figure 4.9, which depicts the impact of 

CPU speed on the latency of MPI/Pro using TCP transport. As shown earlier, the TCP 

transport latencies are much higher than the VIA latencies because of the heavier TCP/IP 



188 

protocol stack and the operating system involvement in communication. The use of the 

faster CPU leads to a latency reduction of more than 40% – from approximately 175 

microseconds to approximately 105 microseconds in the message size range [0, 128] 

bytes. Figures 4.8 and 4.9 clearly show that the increase of CPU speed reduces the 

software overheads, which leads to a reduction of message-passing latencies, especially 

on configurations that operate with higher relative software overhead. 
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The following series of graphs provide bandwidth experimental results. The first 

bandwidth graph is shown in Figure 4.10. This graph compares the bandwidth of 

MPI/Pro over the same transport in blocking and polling modes and over different 

transports in the same completion mode. Figure 4.10 shows that VIA transport (sag-win-

via-blk) provides a factor of eight improvement in maximum sustainable bandwidth 
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compared to the TCP transport with Ethernet physical fabric (sag-win-tcp-eth). The 

maximum bandwidth of the two via configurations reaches 75 MB/sec and is only limited 

by the capabilities of Giganet system software and the peripheral bus throughput, rather 

than by the physical data rate of the network, which is 1.25 Gbit/sec. Using TCP 

communication over faster physical network (sag-win-tcp-gig) does not yield a 

significant improvement of peak bandwidth in respect to using TCP communication over 

slower network (sag-win-tcp-eth). This difference is only approximately a factor of 2.5 

for the configurations in question, which is much smaller than the differences between 

the physical capabilities of Giganet and Ethernet. Evidently, the TCP/IP protocol stack 

does not exploit the network hardware resource efficiently. The main limiting factor that 

affects the bandwidth of the TCP transport is the intermediate data copies performed by 

the operating system when executing the software modules of the TCP/IP protocol. 
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In general, copies are the software factor that most significantly affects the effective 

bandwidth. The typical bandwidth-limiting hardware factors are physical network link 

rate, the network switching fabric structure, and the host peripheral bus throughput. 

The comparison of the sag-win-via-blk and sag-win-via-poll configurations shows 

that the maximum bandwidth of the two is the same. Hence, the software overhead that 

causes substantial differences in short-message latencies has no impact on the bandwidth 

performance of mid-size and long messages. Using the representation of the 

communication time as defined by the BOUM model, the message transmission time for 

a message with size m is tm = o + bm. Evidently, for long messages, the bandwidth factor 

bm is much larger than the overhead factor o and, consequently, tm ≈ bm. The difference 

in bandwidth for messages with sizes up to four kilobytes is attributed to the fact that the 

overhead factor o is dominant for these sizes and, consequently, influences the total 

message transmission time more than the bandwidth factor bm does. Therefore, a 

configuration with smaller overhead will result in a shorter transmission time, which 

naturally leads to higher effective bandwidth. This finding is similar to the well-known 

n1/2 metric, where n1/2 = overhead x bandwidth = o/b defines the message size for which 

the overhead and bandwidth components of message transmission time are equal. 

Figure 4.11 demonstrates the impact of the operating system on the maximum 

bandwidth. This figure compares the sag-win-via-* configurations with the sag-lin-via-* 

configurations, where the wildcard symbol “*” denotes either blk or poll. For messages of 

sizes up to two kilobytes, the Windows configurations show slightly higher bandwidth 
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than do the Linux configurations. This advantage is attributed to the lower latency of 

short messages on Windows, which was shown earlier in Figure 4.7. For the message 

sizes in question, the overhead still has a strong impact on the effective bandwidth. 

However, for message sizes beyond four kilobytes, the Linux configurations clearly 

outperform the Windows ones, reaching a peak at 95 MB/sec, a bandwidth increase of 

approximately 20 MB/sec. Since the cluster hardware, the physical network, the MPI 

library, and the test application are the same for all experiments presented in Figure 4.11, 

the significant difference in bandwidth can be attributed only to the operating system and 

the Giganet system software, which obviously interacts with the different operating 

systems in a different manner. 
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The last point-to-point performance graph, presented in Figure 4.12, shows the 

impact of the hardware platform on bandwidth. The important configuration variable in 

this figure is the platform label – sag and dim. As mentioned earlier, the dim cluster has a 

significantly faster CPU and faster memory system bus than does the sag cluster. Still, 

the bandwidth graph shows that the sag cluster achieves 20 MB/sec higher peak 

bandwidth. The bandwidth on the dim cluster reaches, at most, 57 MB/sec, which is only 

about half of the physical data rate of Giganet. Evidently, the limiting factor on this 

configuration is its PCI bus, which was confirmed with the vendor of this hardware. 

High-speed networks, such as Giganet and Myrinet, often surpass the PCI throughput 

capabilities of common computer configurations. Building a high-performance cluster 

with common-off-the-shelf components consequently requires careful evaluation of the 

solutions available on the market for such hidden performance bottlenecks. 
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4.5.3 NAS Parallel Benchmarks 

In this subsection, selected NAS Parallel Benchmarks are used to evaluate the 

collective performance of the experimental configurations. Because both the sag and dim 

experimental clusters have eight single-processor nodes, the maximum number of 

processes in the collective experiments is eight. Performance results obtained on the ac3 

cluster with a larger number of processors are also presented. Although the total number 

of benchmarks in the NAS test suite is eight, experimental results from only three are 

presented here – CG, IS, and LU with classes A, A, and W respectively. The objective of 

this presentation is not to make an extensive study of the behavior of the NAS 

benchmarks on the experimental clusters. Rather, it is to reveal insights of how the 

architecture of the MPI implementation, specifically its message completion notification 

mechanisms, affects the collective performance of applications. The NAS Parallel 

Benchmarks suite contains application codes and kernels that are considered 

representative for the algorithms of a large class of numeric simulation applications. 

An inspection of the source code of the NAS benchmarks shows that these codes 

use relatively straightforward approaches for implementing the communication sections 

of the algorithms and that minimal attention is given to performance enhancing 

techniques, such as overlapping of communication and computation and early binding. 

Therefore, the NAS benchmarks cannot exhibit any performance gains on systems that 

provide opportunities for such optimizations. Hence, the main goal of the NAS tests is to 

demonstrate the performance transparency of MPI/Pro operating in blocking mode. This 
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mode facilitates overlapping by providing asynchronous completion notification, 

independent message progress, and low CPU overhead. Proving this transparency will 

allow MPI/Pro to benefit codes that take advantage of overlapping and early binding 

while imposing no additional cost to codes that do not account for these optimizations. 

Figures 4.13, 4.14, and 4.15 present the results of the CG-A, IS-A, and LU-W tests on the 

sag-lin, sag-win, and  dim-win configurations, respectively. In contrast to the point-to-

point results, the NAS experiments do not strive to demonstrate the impact of 

configuration components on performance. As a result, study makes no comparisons 

between the sag and dim clusters or between Windows and Linux on the same 

benchmarks. Rather, each benchmark is executed on a different configuration and the 

impact of MPI/Pro’s mode of completion on performance is investigated. 
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The graph in Figure 4.13 presents the results from the CG-A experiments on the 

sag-win configuration with three types of communication stacks and hardware: via-blk, 

via-poll and tcp-eth. The results are reported in Mflops (millions of floating-point 

operations per second), which is the output of the NAS benchmarks. The CG benchmark 

is a non-stationary iterative solver that uses the Conjugate Gradient method. The Class A 

problem size solves a linear system with 14,000 equations. Single-precision floating-

point coefficients are used; hence, here Mflops are single precision also. 

From the graph in Figure 4.13, it is apparent that the overall performance is not 

affected by the message completion mode of MPI/Pro. Both the blocking and polling 

modes yield similar performance, which is 93% of the theoretical linear speedup for four 

processes and 84% of the linear speedup for eight processes. The performance of the 

tested configuration with TCP transport is significantly lower than with VIA – only 51% 

of the ideal speedup on eight processors. This shows that, for a larger number of 

processors, the scalability of the system that uses TCP communication will quickly 

degrade and the communication overhead will become the predominant factor in the 

overall execution time. This in turn will reduce the parallel efficiency of the system. In 

contrast, the configurations that use VIA communication demonstrate performance closer 

to the ideal speedup, which is a result of the increased communication capabilities. 

It is interesting to note that although the performance of the VIA configurations is 

higher than the TCP configuration, the difference is not directly proportional to the 

difference found between the pure point-to-point link latency and bandwidth parameters 
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of TCP and VIA. As shown earlier, MPI/Pro using the VIA interface of Giganet yields 

approximately an order of magnitude higher bandwidth and an order of magnitude lower 

latency than does the TCP transport. However, the difference of the CG performance is 

less than a factor of two. This can be attributed to the fact that the CG benchmark is 

computationally bound and even significant improvement in absolute communication 

performance yields only moderate relative improvement in overall performance. 

Figure 4.14 demonstrates the results from the parallel integer sort (IS) benchmark 

with Class-A problem size (8,388,608 integers) on the sag-win cluster. Similarly to the 

CG-A experiment, the performance of the IS-A benchmark using the VIA configurations 

with MPI/Pro blocking and polling modes is the same. Both the blocking and polling 

configurations achieve about 84% of the ideal linear speedup for four and eight 



197 

processes. The IS-A performance of the TCP configuration is impacted more 

significantly by the lower bandwidth of TCP over Ethernet – it achieves only 35% of the 

ideal speedup. This is attributed to the higher communication intensity of the IS 

algorithm. This algorithm exchanges large messages and a significant portion of the 

entire execution time is spent on communication. Table 4.1 presents a breakdown of the 

traffic of IS with Class-A problem size, in bytes, for each process. The algorithm 

performs 11 iterations over an array of integers with a total size of W = 32 MB.  The  

workload is distributed equally among all processors, that is, processor p receives a piece 

Wp = W/P, where  P is the number of processors. 

Table 4.1 Traffic pattern of IS-A benchmark 

MPI function 1 2 4 8 
MPI_Allreduce 4116 4116 4116 4116 
MPI_Alltoallv 32M 16M 8M 4M 
MPI_Alltoall 4 8 16 32 

Three collective operations are performed in each iteration of IS: MPI_Allreduce, 

MPI_Alltoallv, and  MPI_Alltoall. In each iteration, all processes distribute their local 

pieces to the other P – 1 processes and receive amounts also equal to Wp, totaling 2Wp 

bytes. This exchange is performed by the MPI_Alltoallv function. The total execution 

time Tp of the IS-A benchmark executed on the sag-win-tcp-eth configuration with four 

processes is 16.1 sec and the portion of this time spent on communication is Tcomm = 10.4 

sec. So, the ratio Tcomm/Tp is equal to 0.65. Evidently, an improvement of the 

communication performance will have a sizeable impact on the total execution time. 
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Such improvement is demonstrated by the measurements obtained on the sag-win-via-blk 

configuration. The execution of the same IS-A benchmark on the via configuration 

resulted in a total execution time Tp = 8.7  sec and  a communication  time  Tcomm = 2.5 sec. 

The improvement of communication is more than a factor of four and has resulted in an 

overall reduction of the total execution time by 46% (from 16.1 sec to 8.7 sec). The 

communication improvement of the sag-win-via-blk configuration is primarily dependent 

on the superior bandwidth performance of the VIA/Giganet transport versus the 

TCP/Ethernet transport. 

The results from the LU-W benchmark obtained on the dim-win cluster are 

presented in Figure 4.15. The LU benchmark solves a system of linear equations with the 
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Navier-Stokes method based on Symmetric Successive Over-Relaxation (SSOR). In 

contrast to IS, the LU algorithm is not as communication intensive, which can be seen 

from by the TCP configuration performance. On eight processes, this configuration 

achieves 67% of the ideal speedup. This differs substantially from the performance of the 

TCP configurations obtained from CG-A and IS-A, which were 51% and 35%, 

respectively. The VIA configurations exhibit super-linear speedup as they show higher 

performance than the ideal linear speedup. This behavior is attributed to cache effects. 

The problem size processed by each processes is smaller for the eight-node run than is for 

the run on one or two processes. Smaller problem sizes evidently improve the cache 

behavior of the experimental cluster nodes. The benefits of the improved cache behavior 

outweigh the increased communication overhead when the number of processes grows. 

This ultimately leads to super-linear speedup. 

The comparison of the blocking and polling VIA configurations in Figure 4.15 

again shows that the performance of the two is the same. The three graphs that presented 

the performance of the CG-A, IS-A, and LU-W benchmarks demonstrated that regardless 

of the type of operating system and hardware platform, the collective performance of 

parallel algorithms that use MPI/Pro with the VIA interface of Giganet is not influenced 

by the notification mode for message completion. Although the blocking mode leads to 

an increase of short message latency, this increase does not translate into performance 

losses. From this, it can be concluded that the MPI/Pro optimizations that facilitate a high 

degree of communication and computation overlapping in blocking mode are 
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“transparent” to the performance of the NAS Parallel Benchmarks. Consequently, 

applications that do not utilize these optimizations (as the NAS benchmarks) will not 

exhibit performance degradations, while applications that exploit these performance-

enhancing techniques will achieve performance gains. The actual performance benefits of 

the optimizations that facilitate overlapping and early binding are demonstrated in 

Chapter V. 

Figure 4.16 provides a comparison of the absolute performance of the LU-W 

benchmark on the three experimental clusters running Windows and using the Giganet 

VIA interface. The tests were obtained with MPI/Pro operating in blocking mode. The 

test on the ac3 cluster was executed on 16 processors. The graph shows that the absolute 

performance depends on the processor speed, which affects the slope, but not the shape, 
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of the curves. This indicates that scalability is primarily influenced by the communication 

capabilities of the parallel system. 

4.5.4 Summary of Results 

This section presented experimental results from a series of point-to-point and 

collective tests on a variety of cluster configurations using MPI/Pro. The emphasis of the 

point-to-point tests was on the impact of parallel systems’ components on short-message 

latency and bandwidth. The experiments identified a number of factors that influence 

point-to-point performance. Among these factors are physical network medium, 

communication protocol stack, CPU speed, PCI bus throughput, operating system, 

message progress mechanism, and notification completion method of the message-

passing middleware. 

The collective performance results were obtained from selected NAS benchmarks. 

The focus of the collective experiments was on determining the impact of the MPI 

completion notification mode on the overall performance. It was demonstrated that 

although the blocking mode of notification causes higher short-message latency, its 

overall performance is the same as the polling mode. This is an important conclusion that 

supports the hypothesis that the message-passing middleware of a parallel system can 

provide optimizations that facilitate efficient overlapping of communication and 

computation at little or no cost to the applications that do not benefit from overlapping. 

The practical implication of this conclusion is that users can benefit from advanced 

message-passing middleware without losing performance of legacy applications. 
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4.6 Conclusions 

This chapter presented MPI/Pro – a new MPI implementation developed by the 

author of this work. MPI/Pro is specifically designed to provide optimal performance on 

clusters of workstations interconnected with high-speed VIA networks such as Giganet 

and ServerNet. The design of MPI/Pro emphasizes low processor overhead, independent 

message progress, overlapping of communication and computation, early binding, 

asynchronous processing, internal concurrency, and multithreading. Also, MPI/Pro offers 

users the unique capability to tailor the desired mode of message completion notification 

to their specific needs. This capability was extensively used during the experimental 

phase of this work to demonstrate the impact of blocking and polling modes of 

completion on the point-to-point and application performance. 

First, this chapter presented the requirements and design considerations used for 

the development of MPI/Pro. Then, important architectural solutions and key MPI/Pro 

features were summarized. Finally, the chapter presented experimental results from point-

to-point and collective performance tests. The point-to-point tests provided insight to the 

numerous factors that determine the latency and bandwidth performance of a parallel 

system. The collective tests showed the impact of communication on overall performance 

and demonstrated that the blocking completion notification method of MPI/Pro does not 

negatively impact overall application performance. This hypothesis was supported by 

several experiments, which indicated that message-passing middleware facilities for 

efficient overlapping could be implemented in a performance transparent manner. Hence, 
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representative applications that do not take advantage of overlapping will not lose 

performance, while applications that employ overlapping can gain performance. 

As a concluding remark of this chapter, MPI/Pro has been used on two large-scale 

clusters for reaching performance levels that qualify these clusters among the Top 500 

supercomputers in the world. This ranking uses performance numbers obtained by the 

parallel LINPACK benchmark. The first cluster is the 256-processor AC3 Velocity 

Dell/Windows cluster at Cornell University, and the second cluster is a 256-processor 

SGI/Linux cluster operated by the NSF Engineering and Research Center at Mississippi 

State University. 



CHAPTER V 

VALIDATION OF HYPOTHESIS 

This chapter presents experimental results and analyses that validate the 

hypothesis of this dissertation. These results were obtained from experimental executions 

of the algorithms implemented according to the description in Chapter III. This chapter 

first specifies the objectives of the experimentation and validation procedures, as well as 

the experimental methodology. The presentation of the experimental data is divided into 

two sections. The first section focuses on the results that demonstrate the impact of early 

binding on communication performance. The second section focuses on the results that 

show the impact of communication and computation overlapping on overall performance. 

Also, analyzed is the effect of the message-passing middleware architecture on the 

capability of a parallel system to support asynchronous processing and overlapping. 

Finally, a summary and interpretation of the experimental results are presented. 

5.1 Objectives 

The experimental process presented in this chapter has two main objectives. The 

first objective is to demonstrate, through empirical data, that early binding and 

overlapping of communication and computation are valuable sources of performance 

enhancement that can be successfully applied to a wide range of parallel 

204 
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applications. Also, within the scope of this objective is to demonstrate the impact of the 

message-passing middleware architecture on the effectiveness of early binding and 

overlapping. The second objective is validation of the accuracy of BOUM and 

demonstrating the descriptive power of the newly introduced performance metrics. 

Validating the accuracy of BOUM in turn has two further aspects. The first aspect is 

accuracy of estimating the absolute performance of parallel algorithms on a specific 

platform. The second aspect is validating the accuracy of the model to estimate the 

performance gain of early binding and overlapping. 

5.2 Experimental Methodology 

This section describes the experimental methodology for obtaining and presenting 

the results that lead to validation of the hypothesis. This methodology is described 

separately for early binding and overlapping. 

5.2.1 Early Binding 

The methodology for early binding is based on the theoretical framework 

presented in Chapter III. This framework provides a formal definition of early binding as 

a software mechanism and introduces the degree-of-persistence metric for measuring the 

capacity of a parallel system to support effective early binding. The experimental 

methodology for early binding includes the following steps: 

• selecting parallel algorithms with communication structure that suggests effective 

use of early binding, 
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• deriving expressions for execution time using BOUM parameters, 

• applying early binding to the algorithms and expressing the expected performance 

gain through the use of BOUM parameters the degree-of-persistence metric, 

• implementing the selected algorithms with MPI/Pro, 

• measuring the values of the degree-of-persistence metric for the message sizes 

that are used in the algorithm, 

• performing test runs without early binding on the target configurations, 

• validating observed performance against the performance predicted by BOUM, 

• performing tests with early binding on the same target configurations, 

• observing the performance improvement (or degradation) when compared with 

runs without early binding, and 

• comparing the actual performance gain against the prediction made with BOUM. 

5.2.2 Overlapping of Communication and Computation 

The experimentation and validation methodology for overlapping is similar to the 

methodology used for early binding. However, since the scope of the thesis with respect 

to overlapping is broader than its scope for early binding, the experimental procedure for 

overlapping also requires test executions on message-passing middleware with different 

architectures, specifically message completion notification and message progress. In 

addition, this work has thus far defined three metrics needed for accurate representation 

of the complex interactions between the software and hardware components of parallel 

systems and their overall effects on overlapping. Practical procedures for obtaining the 
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values of these metrics and measurements on the test cluster configurations are presented. 

The experimental methodology for overlapping includes the following steps: 

• selecting an algorithm with communication and computation structure that 

suggests effective use of overlapping, 

• deriving a theoretical expression for the performance of the algorithm with 

BOUM, 

• applying overlapping optimizations to the selected algorithm and expressing its 

performance gain using BOUM and the metrics specified in Chapter III, 

• measuring the values of the metrics on the test clusters, 

• implementing the selected parallel algorithm with MPI/Pro, 

• performing experiments with the non-optimized algorithm, 

• validating the estimation of the execution time obtained with BOUM, 

• performing experiments with the optimized algorithm using a variable number of 

overlapped segments (with asynchronous mode of completion notification and 

independent message progress), 

• comparing the experimental results to the modeled estimations and validating the 

capability of the model to accurately describe the effects of overlapping, 

• performing experiments with the optimized algorithm on the message-passing 

middleware using polling completion notification and polling progress, and 

• validating the hypothesis that the MPI library architecture with blocking 

completion and asynchronous progress achieves higher performance gains 
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through overlapping than does the architecture with polling notification and 

polling progress. 

5.3 Experimental Cluster Configurations 

The experimental results presented in this chapter have been obtained from tests 

performed on the cluster configurations specified in Chapter IV and described in greater 

detail in Appendix C. Also, a special, label-based notation again has been used 

(introduced in Chapter IV) in order to specify the configuration characteristics of the test 

clusters, specifically: hardware platform, operating system, and network. In addition, this 

notation specifies the completion notification method used by the message-passing 

middleware – asynchronous (blocking) or synchronous (polling). 

5.4 Obtaining BOUM Parameters 

The parameters of BOUM were defined in Chapter III. These parameters are used 

in the expressions for the parallel execution times of the studied algorithms. The 

parameters of BOUM are as follows: 

• tc – time for basic unit computation, 

• o – message-passing overhead, and 

• b – inverse of the effective bandwidth. 

For purposes of accuracy, this presentation elects to measure tc for each algorithm 

individually, based on the sequential implementation of the particular algorithm. There 

are two major reasons for this choice. The first reason is that the time for a basic unit 
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computation is algorithm-specific. For instance, an algorithm for integer sorting performs 

comparison and assignment of integer values as its basic unit computation, while an 

algorithm for matrix-vector multiplication of double-precision elements performs 

multiplication and addition of double precision floating-point values. Evidently, the cost 

in time of the basic operation of the two algorithms may differ substantially, and 

therefore it must be modeled differently. 

The second reason is related to the accuracy of the asymptotic-complexity 

analysis. This analysis reflects only the highest order of basic operations and often 

ignores constant multiplicative factors. For example, the asymptotic complexity of the 

parallel FFT is represented as Θ(nlogn), meaning that the highest order of basic 

computations is proportional to nlogn. However, the actual algorithm performs on 

average a total of five multiplications and additions for each element, so a more precise 

representation of the complexity of the FFT algorithm would reflect this fact by using an 

expression proportional to 5nlogn. In order to avoid such specifics, the approach of this 

work is to accept that the basic unit computation is an aggregate “basic operation” that 

includes smaller units of work, such as additions and multiplications. Consequently, the 

approach for measuring tc is as follows: 

• Determine the asymptotic complexity of the sequential algorithm Θ(f(n)). 

• Measure the execution time of the sequential algorithm Ts. 

• Determine tc as tc = Ts/f(n). 
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This measurement approach reflects the specifics of the particular algorithm and 

the fact that the asymptotic complexity analysis ignores constant factors or factors with 

lower order than the highest order factor. This approach provides for an accurate 

measurement of the cost of the basic unit computation. Following this procedure, the 

values of tc will be determined individually for each combination of algorithm and target 

configuration. 

The measurement procedures of the communication-oriented BOUM parameters 

o and b are based on point-to-point ping-pong test, as commonly accepted in parallel 

processing and networking. Such experiments have already been presented in Chapter IV. 

The procedure is performed on each test configuration and is independent of the studied 

algorithm. Hence, o and b are viewed as configuration-specific parameters in contrast to 

tc, which is specific to both the algorithm and the target configuration. An important 

element of the procedure for determining the communication parameters is the accurate 

measurement of the overhead. As mentioned in Chapter III, assuming that the overhead is 

constant for all sizes may be too optimistic. Therefore, the measurement procedure is 

based on the definition of setup/finalization overhead os and initiation/completion 

overhead oi, as specified in Chapter III. The setup overhead os will be measured with the 

persistent MPI API. An MPI test program that creates and frees a communication request 

for all tested sizes is used for this purpose. The time for creation and releasing of the 

persistent request is recorded and then averaged over one send and one receive 

experiment. The pseudo code of the test program for measuring os is  shown in Figure  5.1.  

tb = time() 
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init_send(<args>, size = m, sreq) 
init_recv(<args>, size = m, rreq) 
free_request(sreq) 
free_request(rreq) 
te = time() 
os = (te – tb)/2 

Figure 5.1 Pseudo code for measuring setup overhead 

The initiation overhead oi is determined to be the duration between the moment 

when a persistent request for a zero-length message is started and the moment when the 

request is completed. The procedure for measuring oi is presented by the pseudo code in 

Figure 5.2. The requests used for measuring oi are also created with the persistent API. 

These requests correspond to messages in a ping-pong test. The time between the 

initiation of the first request (sreq) and the completion of the second request (rreq) at  the  

process with rank zero is in effect the round-trip time (RTT), including synchronization 

and completion notification times. The initiation overhead is determined to be ½ of RTT. 

The total overhead o for a given message of size m is found as the sum of the 

setup overhead os for this size and the zero-length request initiation overhead oi: o(m) =  

os(m) +  oi. According to this procedure, the total message overhead (in its initiation 

overhead component) accounts for the time associated with passing control information 

in the message-passing middleware’s system-specific header. Other parallel 

programming models that make use of overhead and throughput parameters often ignore 

this overhead. 

The procedure for measuring the inverse of the bandwidth b is similar to the 

pseudo code from Figure 5.2, and is presented in Figure 5.3. After the initiation overhead 
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oi is determined, the procedure in Figure 5.3 is executed for a given message size m for 

which the parameter b is to be determined. The time te - tb is the round-trip time RTT(m) 

for this message. Then, the time tbm that depends on the effective bandwidth is found as 

tbm = RTT(m)/2 – oi. Finally, b is found as b = tbm/m. 

if (rank == 0) peer = 1 else peer = 0 
init_send(<args>, size = 0, dst = peer, sreq) 
init_recv(<args>, size = 0, src = peer, rreq) 
if(rank == 0) 
tb = time() 

start(sreq) 
wait(sreq) 
start(rreq) 
wait(rreq) 

te = time() 
else if(rank == 1) 

start(rreq) 
wait(rreq) 
start(sreq) 
wait(sreq) 

endif 
free_request(sreq) 
free_request(rreq) 
oi = (te – tb)/2 

Figure 5.2 Pseudo code for measuring initiation overhead 

In summary, the procedure for measuring o and b for a given message size m is as 

follows: 

• Perform the experiment for determining the setup overhead os for this message, as 

shown in Figure  5.1.  

• Perform a ping-pong test for measuring RTT for a message with zero length and 

determine the initiation overhead oi, as shown in Figure 5.2. 

• Determine the overhead o = os + oi. 
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• Determine the bandwidth time tbm for this message and compute b = tbm/m, as  

suggested by the pseudo code in Figure 5.3. 

if (rank == 0) peer = 1 else peer = 0 
init_send(<args>, size = m, dst = peer, sreq) 
init_recv(<args>, size = m, src = peer, rreq) 
if(rank == 0) 
tb = time() 

start(sreq) 
wait(sreq) 
start(rreq) 
wait(rreq) 

te = time() 
else if(rank == 1) 

start(rreq) 
wait(rreq) 
start(sreq) 
wait(sreq) 

endif 
free_request(sreq) 
free_request(rreq) 
rtt = te – tb  
tbm = rtt/2 – oi 
b = tbm/m 

Figure 5.3 Pseudo code for measuring BOUM bandwidth parameter 

Below, the results for o and b on the selected experimental cluster configurations 

are presented. These results are listed in tables for message sizes in the range [0 – 1MB]. 

In these tables, the first column represents the message size in bytes. All times are 

expressed in microseconds for clarity of presentation. The bandwidth component bm of 

the message transmission time is shown next to the parameter b, in order to enable easier 

comparison with the overhead o. Each table represents the value of o and b for a 

particular test configuration with MPI/Pro operating in blocking and polling mode of 

completion notification. 
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Table 5.1 Measurements of BOUM parameters on sag-win-via configuration 

m 
[byte] 

blocking polling 
o 

[µsec] 
b 

[µsec/byte] 
bm 

[µsec] 
o 

[µsec] 
b 

[µsec/byte] 
bm 

[µsec] 
0 57.3 n/a 0 25.2 n/a 0.0 
4 57.3 0.025 0.1 25.2 0.015 0.1 
8 57.3 0.025 0.2 25.2 0.014 0.1 

16 57.4 0.027 0.4 25.2 0.015 0.2 
32 57.4 0.028 0.9 25.6 0.014 0.5 
64 57.6 0.027 1.7 25.2 0.014 0.9 

128 57.7 0.026 3.3 25.2 0.015 1.9 
256 57.8 0.027 6.9 25.2 0.018 4.6 
512 70.9 0.019 9.5 39.3 0.014 7.3 

1024 74.4 0.024 24.1 39.0 0.017 16.9 
2048 70.8 0.018 37.5 38.9 0.016 33.7 
4096 71.8 0.019 76.7 39.7 0.018 73.2 
8192 82.9 0.023 185.3 51.0 0.024 196.1 

16384 85.4 0.017 272.0 53.3 0.019 303.9 
32768 94.0 0.015 480.9 58.4 0.015 502.4 
65536 103.5 0.014 922.9 70.0 0.014 920.1 

131072 127.2 0.013 1754.3 95.8 0.013 1753.3 
262144 183.3 0.013 3400.4 145.3 0.013 3445.0 
524288 293.6 0.013 6774.2 260.7 0.013 6796.0 

1048576 520.0 0.013 13424.8 489.1 0.013 13470.5 

Tables 5.1, 5.2 and 5.3 demonstrate the dependencies of the overhead and 

bandwidth on the hardware platform, operating system, and the MPI completion-

notification mode. These dependencies are similar to those discussed in Chapter IV. This 

discussion was specifically focused on the relationships between overhead and hardware 

platform, overhead and operating system, overhead and MPI completion notification 

mode, and bandwidth and hardware platform. Please refer to Chapter IV for more detail 

regarding these relationships. 
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Table 5.2 Measurements of BOUM parameters on sag-lin-via configuration 

m 
[byte] 

blocking polling 
o 

[µsec] 
b 

[µsec/byte] 
bm 

[µsec] 
o 

[µsec] 
b 

[µsec/byte] 
bm 

[µsec] 
0 75.9 n/a 0.0 31.3 n/a 0 
4 75.9 0.006 0.0 31.4 0.014 0.1 
8 75.9 0.007 0.1 31.3 0.014 0.1 

16 75.9 0.007 0.1 31.5 0.014 0.2 
32 75.9 0.006 0.9 31.3 0.015 0.5 
64 75.9 0.006 0.4 31.3 0.014 0.9 

128 75.9 0.007 0.9 31.4 0.015 1.9 
256 75.9 0.007 1.8 31.3 0.012 3.2 
512 80.6 0.008 4.1 36.0 0.007 3.8 

1024 80.5 0.010 10.3 35.8 0.012 11.9 
2048 80.6 0.014 29.5 35.8 0.012 24.9 
4096 81.3 0.015 62.8 36.7 0.014 56.7 
8192 82.5 0.017 135.9 37.2 0.015 121.8 

16384 89.1 0.013 216.7 44.1 0.014 231.0 
32768 93.6 0.011 374.7 48.7 0.012 393.2 
65536 104.8 0.011 703.8 58.3 0.011 721.3 

131072 128.1 0.010 1355.4 82.6 0.010 1367.4 
262144 176.9 0.010 2657.5 130.8 0.010 2664.4 
524288 278.5 0.012 6242.9 235.2 0.011 5560.2 

1048576 499.2 0.010 10483.9 454.5 0.010 10528.0 

By presenting the bm quantity, tables 5.1, 5.2 and 5.3 can be used to quickly 

determine the message size for which the ratio R = o/bm is approximately one. This ratio 

has an important role for determining the algorithms that can benefit most from early 

binding, as suggested earlier in Chapter III. Another important observation from the 

overhead results on the three test configurations is that the overhead grows proportionally 

with increasing message size. This observation justifies the assumption made in Chapter 

III that the overhead in realistic systems is a linear function of the message size (i.e., o(m) 

const = o + vm)). 
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Table 5.3 Measurements of BOUM parameters on dim-lin-via configuration 

m 
[byte] 

blocking polling 
o 

[µsec] 
b 

[µsec/byte] 
bm 

[µsec] 
o 

[µsec] 
b 

[µsec/byte] 
bm 

[µsec] 
0 38.0 n/a 0.0 18.0 n/a 0 
4 38.0 0.014 0.1 18.1 0.014 0.1 
8 38.0 0.014 0.1 18.0 0.014 0.1 

16 38.0 0.014 0.2 18.0 0.014 0.2 
32 38.0 0.014 0.5 18.0 0.014 0.5 
64 38.0 0.014 0.9 18.0 0.014 0.9 

128 38.0 0.014 1.8 18.0 0.015 1.8 
256 38.0 0.016 4.1 18.0 0.015 4.0 
512 40.4 0.018 9.1 20.4 0.017 8.9 

1024 40.4 0.018 18.5 20.4 0.017 17.6 
2048 40.5 0.019 38.8 20.4 0.018 37.0 
4096 41.0 0.019 78.5 21.0 0.018 74.8 
8192 41.5 0.019 154.8 21.5 0.019 154.2 

16384 47.0 0.019 314.5 27.1 0.019 311.1 
32768 53.7 0.018 585.4 34.1 0.018 582.0 
65536 66.5 0.018 1156.1 46.6 0.017 1139.0 

131072 92.4 0.017 2241.7 72.6 0.017 2240.4 
262144 144.3 0.017 4459.0 128.3 0.017 4464.4 
524288 248.5 0.017 8837.9 228.0 0.017 8855.2 

1048576 455.5 0.017 17681.4 435.5 0.017 17676.5 

5.5 Experimental Results for Early Binding 

The experimental results presented in this section are based on the Jacobi and CG 

iterative solvers described in Chapter III. The results for both algorithms are provided in 

parallel for each stage of the specified experimental methodology. Since the 

communication and computation structures of both algorithms are similar, the discussions 

provided in this section often views the two jointly. Whenever necessary, specifics about 

the algorithms are outlined. 
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5.5.1 Implementation of Parallel Algorithms 

The parallel implementations of both the Jacobi and CG iterative solvers for 

systems of linear equations use 1-D data decomposition. The algorithms are based on an 

iterative procedure for obtaining a vector x (the unknowns in the system) with acceptable 

precision. This is accomplished through iterating over successive approximations of this 

vector. In each iteration i (0 < i ≤ k), the processes in the parallel algorithm compute a 

local instance of the vector x(i) and exchange this instance with the rest of the processes. 

At the end of the iteration, a convergence check is performed. The communication is 

implemented with MPI_Gather, MPI_Bcast, and  MPI_Allreduce. The  MPI_Allreduce 

operation is used in the convergence check. The MPI_Gather and MPI_Bcast calls are 

used for exchanging the local portions of the vector x. The algorithms were executed with 

problem sizes n = 1,024, 2,048, and 4,096. Both algorithms were executed with precision 

ε = 10-5. The algorithms were implemented in C and compiled with egcs-gcc 2.92 on 

Linux or Visual Studio C++ 6.0 on Windows. MPI/Pro was used for message passing. 

5.5.2 Estimating Parallel Performance with BOUM 

The theoretical expressions for the execution time of both the sequential and 

parallel implementations of the Jacobi and CG solvers were presented in Chapter III. The 

asymptotic complexity of the sequential algorithms is defined as Ts = Θ(f(n)). For both of 

the reviewed algorithms f(n) =  kn2tc, where  n is the problem size (i.e., number of 

equations in the system), k is the number of iterations necessary for convergence, and tc is 

the time for a basic unit computation. The number of iterations for convergence is an 
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important factor in the performance analysis of the iterative solvers. The experiments 

(0)show that for the selected values of the initial vector x , the coefficient matrix A, and  the  

solution vector b, that for all problem sizes the CG algorithm converges for 10 iterations. 

For the same values of x(0), A, and  b, the Jacobi algorithm converges for 22, 21, and 19 

iterations for the 1,024, 2,048, and 4,096 problem sizes, respectively. 

As indicated earlier, the basic unit computation time is measured as tc = Ts/f(n), 

where Ts is the execution time of the sequential implementation and f(n) is the function 

that represents the asymptotic complexity of the sequential algorithm: f(n) =  kn2tc. The  

measurements of the sequential times Ts of the two algorithms for all message sizes are 

shown in Table 5.4. This table also presents the results of tc for the two algorithms on the 

sag-lin-via cluster configuration. An average value of tc = 43.2 nanoseconds is used for 

all further estimations in the this section. 

Table 5.4 Computing Jacobi and CG basic unit computaiton time on sag-lin-via 

n 2 n 

Jacobi CG 

k Ts tc k Ts tc 
[sec] [nanosec] [sec] [nanosec] 

1024 1048576 22 0.974 42.2 10 0.453 43.2 
2048 4194304 21 3.726 42.3 10 1.811 43.2 
4096 16777216 19 13.46 42.2 10 7.225 43.1 

Using the value of tc as computed in Table 5.4, as well as the overhead and 

bandwidth parameters as measured earlier in this chapter, the parallel performance of the 

two algorithms can be estimated with BOUM based on the theoretical derivations 
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presented in Chapter III. Table 5.5 compares the execution times of the Jacobi algorithm 

as estimated with BOUM and the experimental execution times (with shaded headings). 

The estimated times are on average within 8% of the measured times, which indicates 

that BOUM provides an accurate representation of parallel performance for the 

combination of algorithms and target platform configurations studied. 

Table 5.5 Comparison of measured and estimated Jacobi execution times in seconds 

size 
[byte] 

1 2 4 8 
measured estimated measured estimated measured estimated measured 

1024 0.974 0.503 0.498 0.261 0.264 0.141 0.130 
2048 3.726 1.909 1.880 0.965 0.960 0.532 0.583 
4096 13.46 6.894 6.596 3.459 3.406 1.751 1.738 

5.5.3 Measuring Degree of Persistence 

The degree of persistence dp was defined in Chapter III as a metric intended to 

identify the capability of a parallel system to benefit applications that use early binding. 

Degree of persistence reflects the relative weight of the setup overhead in the total 

message overhead, dp = os/o, where  o = os + oi. The procedures for measuring the setup 

and initiation overheads were outlined earlier in figures 5.1 and 5.2. Following these 

procedures, Table 5.6 summarizes the values of the degree of persistence on the sag-win-

via, sag-lin-via, and  dim-lin-via test configurations for message sizes in the range [0, 

1MB], using MPI/Pro in both blocking and polling modes of notification. 
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Table 5.6 Measurements of the degree of persistence 

m 
[byte] 

sag-win-via sag-lin-via dim-lin-via 
blocking polling blocking polling Blocking polling 

0 0.14 0.30 0.10 0.23 0.08 0.17 
4 0.15 0.32 0.10 0.25 0.08 0.17 
8 0.15 0.32 0.10 0.23 0.08 0.17 

16 0.15 0.32 0.10 0.25 0.08 0.17 
32 0.14 0.33 0.10 0.23 0.08 0.17 
64 0.14 0.32 0.10 0.23 0.08 0.17 

128 0.15 0.32 0.10 0.23 0.08 0.17 
256 0.14 0.32 0.10 0.23 0.08 0.17 
512 0.31 0.57 0.15 0.33 0.14 0.27 

1024 0.34 0.56 0.15 0.33 0.14 0.27 
2048 0.31 0.56 0.15 0.33 0.14 0.27 
4096 0.32 0.57 0.16 0.35 0.15 0.29 
8192 0.41 0.66 0.17 0.35 0.16 0.31 

16384 0.42 0.68 0.23 0.46 0.26 0.45 
32768 0.48 0.71 0.27 0.51 0.35 0.56 
65536 0.53 0.76 0.35 0.59 0.48 0.68 

131072 0.61 0.82 0.46 0.71 0.62 0.79 
262144 0.73 0.88 0.61 0.82 0.76 0.88 
524288 0.83 0.93 0.75 0.90 0.86 0.93 

1048576 0.91 0.97 0.86 0.95 0.92 0.97 

The results in Table 5.6 show that the degree of persistence has low values for 

short messages and high values for long messages, on all tests configurations. The reason 

for this behavior is explained by fact that the initiation overhead component of the total 

overhead stays constant for all message sizes, and only the setup overhead changes as the 

messages grow larger. The setup overhead of MPI/Pro using VIA for transport is 

primarily dependent on pinning user buffers in physical memory. As mentioned in 

Chapter III and IV, the time for pinning a buffer is linearly proportional to the number of 

physical pages that the buffer occupies. This observation indicates that the setup 

overhead is a continuously growing function, and since the initiation overhead is 
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independent on the message size, the degree of persistence will increase with increasing 

message size. 

A higher degree of persistence generally indicates that early binding can be 

successfully used for minimizing the overall overhead by amortizing the setup overhead 

over multiple communication transactions. However, the overall impact of early binding 

on the communication performance depends, to a large degree, on the relative weight of 

the overhead in the total transmission time, Tc = o + bm. This relative weight is expressed 

through the ratio R = o/bm. For long messages, this ratio will have a low value because 

the bandwidth component dominates the total transmission time, which results in lower 

value of R, hence a low performance gain is realized from early binding. As stated in 

Chapter III, algorithms that benefit most from early binding are those that use messages 

with sizes that suggest relatively high values of both R and dp. 

Table 5.6 also shows that the degree of persistence reaches higher values in 

polling mode than it does in blocking mode. By definition the initiation overhead 

includes the completion notification time, which is based on kernel synchronization 

objects in blocking mode and presents a substantial portion of the total overhead. The 

higher values of the initiation overhead reduce the relative weight of the setup overhead 

in the total overhead and, therefore, the degree of persistence also decreases. 

Table 5.6 also demonstrates that the degree of persistence has lower values on 

configurations with fast processors than it does on configurations with slow processors, 

especially for short messages. This observation is explained by the strong relationship 
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between the setup overhead and CPU speed. Since the setup overhead is primarily a 

result of activities executed by the message-passing middleware and the low-level 

communication layers, increasing CPU speed leads to a proportional decrease in the time 

spent on these activities; hence, the setup overhead is reduced. In contrast, the initiation 

overhead mainly depends on the communication protocols and the network capabilities, 

which are affected to a lesser degree by CPU speed. Therefore, the initiation overhead 

stays almost constant with increasing CPU speed. As a result, the relative weight of the 

setup overhead in the total overhead is decreased on a fast processor, which leads to 

smaller values of the degree of persistence. 

5.5.4 Implementation of Algorithms with Early Binding 

This sub-section presents the results from the Jacobi and CG algorithms with 

early binding. For improved clarity, only the cumulative communication times of these 

algorithms are presented. All communication times are expressed in milliseconds. Figure 

5.4 presents the communication times of the Jacobi algorithm for problem size n = 1,024. 

The dashed curve represents the non early binding case. The continuous curve reflects the 

early binding case. Evidently, for this problem size, the algorithm with early binding 

reduces the cumulative communication times for all process counts, and specifically for p 

= 8. This observation has an important implication on the scalability of the algorithm. 

The scalability analysis based on fixed problem size indicates that increasing the number 

of processes decreases the message sizes that are produced by the parallel algorithm. The 

relative weight of the overhead in the total message communication time increases as the 
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Figure 5.4 Communication times of Jacobi algorithm with problem size 1,024 
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size becomes smaller, as indicated in Table 5.2, which represents the overhead and 

bandwidth-related components of the communication time. Increasing the relative weight 

of the overhead reduces the effective time for the actual transmission of data, which has 

been shown to be one of the major causes for scalability limitations in parallel systems. 

This effect is reported in the literature review in Chapter II regarding research in the area 

of performance and scalability analysis. The results in Figure 5.4 show that the negative 

effect of overhead on scalability can be addressed by early binding. This is an important 

observation that defines early binding as a software mechanism that can provide both 

performance enhancements and scalability improvements. 

Figure 5.5 presents the communication times for problem size 2,048 and 

graphically demonstrates the same behavior as Figure 5.4. The largest performance gain 

is achieved for p = 8, which indicates that the relative benefit of early binding increases 
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with scaling the parallel system. Figure 5.6 presents the times for problem size 4,096 and 

shows the same trend. 
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Figure 5.6 Communication times of Jacobi algorithm with problem size 4,096 
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The results obtained from the CG algorithm reaffirm the observation that early 

binding provides a significant improvement in communication performance and suggests 

a mechanism for addressing scalability on large-scale systems. Figure 5.7 presents the 

cumulative communication times of CG with problem size 2,048. 

5.5.5 Validation of Performance Estimates 

The performance analysis presented in Chapter III, in the section regarding early 

binding, provided a general expression for estimating the performance gain when early 

binding is applied to a specific parallel algorithm, specifically expression (3.16). This 

expression offers a straightforward method for estimating the communication speedup of 

slow/Tc
fast early binding Sc, defined as the ratio Tc . The estimation is based on the values of 

the ratio R = o/bm and the degree of persistence dp for the message size m that is used by 

the parallel algorithm to exchange the bulk of its data. Table 5.7 provides a breakdown of 
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the message sizes resulting from each problem size of the Jacobi algorithm for two, four, 

and eight of processes. 

Table 5.7 Message sizes produced by Jacobi algorithm 

Problem Number of processes 
size 2 4 8 
1024 2048 1024 512 
2048 4096 2048 1024 
4096 8192 4096 2048 

The estimated communication speedup resulting from early binding is based on 

the message sizes provided in Table 5.7 and the values of o, b, and  dp as calculated earlier 

in this chapter. These parameters are substituted in expression (3.36), which yields the 

estimates for each combination of problem size and number of processes. Finally, Table 

5.8 makes a comparison between the performance estimates based on BOUM and the 

actually measured communication speedups (with shaded column headings). 

Table 5.8 Comparison between estimated and measured speedups 

problem 
size 

2 4 8 
estimated measured estimated measured estimated measured 

1024 1.12 1.13 1.15 1.15 1.17 1.20 
2048 1.10 1.11 1.12 1.13 1.15 1.17 
4096 1.07 1.10 1.10 1.12 1.12 1.16 

As demonstrated in Table 5.8, for most combinations of problem size and number 

of processes, the performance estimates of the communication speedup are either exactly 

the same as the measured ones or differ only by a constant factor of 0.02. This shows that 

the theoretical framework introduced in Chapter III can predict the impact of early 



227 

binding on the communication performance of a parallel algorithm with a high degree of 

accuracy. 

5.5.6 Interpretation of Results and Conclusions 

The experimental results presented in this section support the hypothesis that 

early binding is an important source of communication and overall application 

performance improvement. This was demonstrated by comparing the communication 

times of two iterative parallel algorithms executed in two modes – with and without early 

binding. This comparison showed that a 20% cumulative communication time reduction 

could result from early binding for large number of processes. Another important 

observation is that the relative performance gain increases with increasing number of 

processes in a parallel job. This fact provides another justification for the focus on early 

binding as an important source of performance and scalability. 

The experimental results provided in this section support the hypothesis that 

BOUM, introduced in Chapter III, can accurately describe parallel performance on 

clusters of workstations. This was demonstrated by comparing the parallel execution 

times of the Jacobi and CG algorithms with those predicted by BOUM. On average, the 

difference between actual and predicted performance was within 8%. 

Also, this section investigated the capability of the theoretical framework to 

accurately describe the effect of early binding on performance. This analysis was 

performed with BOUM and the newly introduced metric degree of persistence. The 

estimations of the performance gain from early binding were compared to the measured, 
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actual gains. The estimated gains closely matched the measured ones, which supports the 

hypothesis that early binding can be described in a theoretical performance model used 

for accurate prediction of early binding effects. To the best of the author’s knowledge, the 

analysis based on the presented theoretical framework is the first attempt for an in-depth 

systematic study of early binding in parallel systems. 

5.6 Experimental Results for Overlapping 

This section presents experimental results and performance analysis for 

overlapping of communication and computation. The experimental results have been 

obtained from the parallel FFT algorithm described in Chapter III. This FFT algorithm 

suggests communication and computation structures that are suitable for overlapping. 

The performance analysis studies the descriptive power and estimation accuracy of 

BOUM and also focuses on the factors that determine overlapping efficiency. This 

section also provides practical procedures for measuring the new performance metrics 

introduced in Chapter III. These metrics provide valuable information about the 

capability of a parallel system to support overlapping and also play an important role in 

the performance analysis of parallel systems. 

5.6.1 Implementation of the Parallel Algorithm 

The parallel implementation of the studied FFT algorithm uses 1-D data 

decomposition for distribution of the workload among processes. The algorithm is 

implemented in C and compiled with egcs-gcc 2.92 on Linux or Visual Studio C++ 6.0 
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on Windows. The MPI implementation used for message passing is MPI/Pro. The time 

measurements obtained from the parallel FFT algorithm exclude the bit-reversal 

procedure for ordering the output elements in the frequency domain. The FFT algorithm 

with decimation in frequency accepts an ordered sequence in the time domain as input 

and produces a bit-reversed sequence in the frequency domain. The bit-reversal 

procedure is considered outside the scope of this study. 

5.6.2 Estimating Parallel Performance with BOUM 

Chapter III presents a theoretical performance analysis of the parallel FFT 

algorithm, which emphasizes the effects of overlapping on overall application 

performance. Using BOUM parameters, expression (3.38) specifies the execution time of 

the parallel FFT algorithm without overlapping: Tp = (logp)Tc(m) +  logn(tcme), where 

Tc(m) =  o + bm is the communication time of the messages produced by the algorithm. 

As indicated earlier, the time estimation for a basic unit computing tc is performed 

independently for each combination of algorithm and platform by determining the 

asymptotic complexity of the sequential algorithm and executing this algorithm on the 

target platform. The complexity of the sequential FFT algorithm can be expressed as a 

function f of the problem size n, specifically f(n) =  nlogn. Then, form (3.36) tc = Ts/nlogn, 

where Ts is the measured time from the execution of the sequential algorithm. The 

experimental algorithms were executed with problem sizes n = {512k, 1M, 2M, 4M}. 

The sequential times for these algorithms and the estimation of tc for the sag-lin-via and 

dim-lin-via configurations are presented in Table 5.9. Since the dim-lin-via configuration 
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is equipped with less memory, only problem sizes 512k and 1M were executed on this 

configuration. 

Table 5.9 Computing FFT basic unit computation time 

n Nlogn 
sag-lin-via dim-lin-via 

Ts 
[sec] 

tc 
[nanosec] 

Ts 
[sec] 

tc 
[nanosec] 

524,288 9,961,472 1.754 176.1 0.987 99.0 
1,048,576 20,971,520 3.723 177.5 2.089 99.6 
2,097,152 44,040,192 7.903 179.4 n/a n/a 
4,194,304 92,274,688 16.936 183.5 n/a n/a 

After finding tc, as provided in Table 5.9, all three parameters of BOUM are 

available, which enables the performance estimation of the FFT algorithm. First, the sizes 

of the messages exchanged during the global phase of the FFT algorithm are determined. 

Each FFT element is a complex number with single-precision, floating-point real and 

imaginary parts; hence, the size of the FFT element is Le = 8 bytes. Since 1-D data 

decomposition was used, the work set of each process is n/p elements. During the global 

phase, each process participates in a pair-wise message exchange with a peer process. 

The amount of data exchanged is m = meLe = n/pLe. Table 5.10 presents the sizes of the 

exchanged messages during the global phase of the FFT algorithm as a function of 

problem size and number of processes in the parallel run. 

Table 5.11 presents the measured and estimated execution times on the sag-lin-via 

cluster configuration using MPI/Pro in blocking mode. The results show that the 

performance estimation of BOUM has a high degree of accuracy. The estimated times 

differ only about 7% from the actually measured execution times. This fact demonstrates 
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the descriptive power of BOUM and justifies its selection as a parallel programming 

model for studying and predicting the performance impact of overlapping and early 

binding. 

Table 5.10 Message sizes of parallel FFT algorithm 

p 
n 

2 4 8 

512k 2 MB 1 MB 512 kB 
1M  4 MB  2  MB  1 MB  
2M  8 MB  4  MB  2 MB  
4M 16 MB 8 MB 4 MB 

Table 5.11 Comparison of estimated and measured execution times in seconds 

size 
1 2 4 8 

measured estimated measured estimated measured estimated Measured 
1M 3.723 1.963 2.009 1.030 1.068 0.539 0.580 
2M 7.903 4.156 4.234 2.174 2.242 1.135 1.231 
4M 16.936 8.874 9.088 4.629 4.830 2.411 2.555 

5.6.3 Measuring Degree of Overlapping 

The measurements for the degree of overlapping are obtained from MPI programs 

that use the MPI non-blocking, non-persistent API. This API is commonly used for 

implementing code sections in which communication and computation are overlapped. 

Thus, the measurements present relevant data to realistic scenarios. 

The persistent MPI API suggests a higher degree of overlapping than does the 

non-blocking, non-persistent API. The persistent API setup overhead can be excluded 

from the communication time. Since generally overhead cannot be overlapped with 

computation, eliminating the setup overhead results in a relative increase of the 
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communication time that can be overlapped. Thus, the persistent API is not only a major 

facilitator of early binding; it is also an important factor for achieving high degree of 

overlapping. However, the use of the persistent API depends on specific features of the 

algorithm and may not be applicable to a range of algorithms that can still benefit from 

overlapping. Also, the measurements of the degree of overlapping with the persistent API 

could prove too optimistic for the general case. For these reasons, and in order to obtain 

results applicable to wider range of algorithms, the MPI test programs used for measuring 

the degree of overlapping, as well as the CPU overhead and degree of asynchrony 

metrics, are implemented with the non-blocking, non-persistent API instead of with the 

more specific persistent API. (This suggests that algorithms and applications willing to 

make code changes in order to exploit persistence will do even better, in real situations, 

than the results presented here suggest.) 

Table 5.12 presents test results for measuring the degree of overlapping on the 

sag-win-via, sag-lin-via, and  dim-lin-via experimental configurations. As can be seen 

from this table, the degree of overlapping for all configurations reaches values close to 

one. This means that all parallel systems represented can support effective overlapping of 

communication and computation, especially for the message sizes that yield degree of 

overlapping higher than 0.5. It should be noted that for message size less than or equal to 

4,096 bytes, the degree of overlapping is effectively zero. Hence, for these sizes, the 

benefit of overlapping will be negligible. This behavior of the degree of overlapping is 

explained by the protocol implementations of MPI/Pro. 



233 

Table 5.12 Degree of overlapping 

size sag-win-via sag-lin-via dim-lin-via 
0 0.00 0.00 0.00 
4 0.00 0.00 0.00 
8 0.00 0.00 0.00 

16 0.00 0.00 0.00 
32 0.05 0.02 0.02 
64 0.01 0.03 0.03 

128 0.02 0.03 0.03 
256 0.02 0.04 0.04 
512 0.03 0.05 0.03 

1024 0.05 0.06 0.04 
2048 0.02 0.03 0.02 
4096 0.02 0.02 0.01 
8192 0.21 0.73 0.67 

16384 0.28 0.81 0.79 
32768 0.31 0.85 0.86 
65536 0.58 0.88 0.90 

131072 0.68 0.88 0.92 
262144 0.73 0.88 0.93 
524288 0.85 0.89 0.94 

1048576 0.86 0.89 0.94 

As mentioned in Chapter IV, MPI/Pro provides two different message passing 

protocols: short and long. The main goal of the short protocol is to minimize latency of 

short messages. This is achieved by avoiding message-passing overhead at the expense of 

increased CPU usage. Instead of pinning the user buffers for short messages, MPI/Pro 

makes one copy at each communicating side. These copies are intended to avoid the 

high-overhead memory pinning operation, which is more time consuming for short 

message sizes than is the entire “wire” time. The long protocol implements a three-step 

rendezvous procedure and its main goal is to achieve maximum sustainable bandwidth. In 

contrast to the short protocol, the long protocol pins user buffers in physical memory at 
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both the sender and receiver process and uses RDMA operations, thus avoiding the extra 

copies. For long messages, the additional copies become a major bandwidth-limiting 

factor. MPI/Pro switches from short to long protocol when the time spent on pinning user 

buffers becomes shorter than the time spent on memory copies. Typically the switchover 

size is the size for which the ratio R = o/bm becomes one. 

Evidently, the short protocol does not provide sufficient opportunities for 

overlapping because the CPU is engaged in copying memory of user buffers into 

previously pinned system buffers. During memory copy, the CPU cannot perform useful 

computation, which results in a low degree of overlapping. This is also demonstrated in 

Table 5.13, which shows the CPU overhead for different size messages. For message 

sizes served by the short protocol, the CPU is actively involved in communication. As 

soon as MPI/Pro switches to the long protocol, the degree of overlapping increases 

significantly. If the switchover is shifted toward shorter message sizes, the degree of 

overlapping for these messages will increase. However, this increase is likely to result in 

an increased overall communication time because of increased overhead, which can 

effectively outweigh the benefit of overlapping. 

5.6.4 Measuring CPU Overhead 

The CPU-overhead metric demonstrates what portion of its cycles the CPU 

spends on communication. CPU overhead is time that cannot be used for computation. 

The CPU overhead metric presents another look at the capability of a parallel system to 

support effective overlapping. If CPU overhead is high, then the parallel system will keep 
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the CPU busy performing communication-related activities and achieving effective 

overlapping will be impossible. In contrast, if the CPU overhead is low, the CPU will 

spend only a small portion of its time on communication and, therefore, more CPU cycles 

will be dedicated to useful computation. Table 5.13 presents the measurements of the 

CPU overhead metric for the sag-win-via, sag-lin-via, and  dim-lin-via configurations in 

blocking mode of the MPI/Pro library. 

Table 5.13 Processor overhead 

size sag-win-via sag-lin-via dim-lin-via 
0 0.94 0.65 0.55 
4 0.93 0.64 0.54 
8 0.92 0.63 0.52 

16 0.90 0.61 0.51 
32 0.88 0.58 0.48 
64 0.85 0.57 0.47 

128 0.82 0.53 0.44 
256 0.79 0.51 0.49 
512 0.77 0.50 0.51 

1024 0.74 0.51 0.52 
2048 0.70 0.55 0.53 
4096 0.65 0.58 0.54 
8192 0.49 0.25 0.20 

16384 0.40 0.20 0.14 
32768 0.22 0.17 0.90 
65536 0.15 0.10 0.04 

131072 0.11 0.05 0.02 
262144 0.09 0.03 0.02 
524288 0.07 0.02 0.01 

1048576 0.05 0.02 0.01 

It is important to note that low CPU overhead alone does not guarantee that the 

parallel system will provide a high degree of overlapping. Chapter III specifies a number 

of requirements for effective overlapping; CPU overhead is only one of these 
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requirements. Sufficient memory bandwidth and asynchronous (independent) message 

progress are among the other important requirements. Sufficient memory bandwidth is 

necessary to enable the CPU to access memory locations needed for computation while 

communication is taking place. If the memory bandwidth is insufficient, even when the 

CPU overhead is low, the parallel algorithms will exhibit only limited benefits from 

overlapping. The effect of message progress is demonstrated further in this section. 

5.6.5 Measuring Degree of Asynchrony 

Independent message progress facilitates overlapping of communication and 

computation by releasing the main user thread from participating explicitly in activities 

related to progressing submitted message requests. This enables the user thread to submit 

a communication request and then schedule a computing activity, which, if the other 

requirements for overlapping are met, can be overlapped with the communication activity 

associated with the submitted request. The capability of the parallel system, and 

especially of the message-passing middleware, to support independent progress is 

measured by the metric – “degree of asynchrony.” This metric was introduced in Chapter 

III. Degree of asynchrony measures the capability of a parallel system to make 

asynchronous progress of communication requests while the CPU performs computation. 

The pseudo code of the test program for measuring the degree of asynchrony is 

presented in Figure 5.8. The goal of this code is to measure how much of the 

communication has progressed during the computation activity. For this purpose, the 

duration of the communication activity is first measured independently as tcomm. Then, the 
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duration of the communication activity executed concurrently with the computation 

activity tasync is measured as the sum of two components. The first component is the time 

spent in posting the asynchronous request by irecv while the second component is the 

time spent on synchronization and completion notification in test/wait. The degree of 

asynchrony is determined as da = 1 –  tasync/tcomm. 

If the entire communication activity has completed between the irecv and 

test/wait operations, then tasync = 0 and the degree of asynchrony da = 1. Inversely, if no 

communication has taken place between irecv and test/wait, tasync = tcomm and da = 0.  The  

communication time includes the time for synchronization and completion notification. 

These operations are performed in the context of the user thread; therefore, they cannot 

be “progressed” independently by the message-passing middleware This fact reduces the 

effective value of the degree of asynchrony for short messages, as can be seen from Table 

5.14 in the columns with shaded headings. 

In the MPI test program for measuring degree of asynchrony, irecv, test, and  wait 

are implemented with MPI_Irecv, MPI_Test, and  MPI_Wait, respectively. The 

computation activity is chosen to be significantly longer than the communication activity 

(i.e., tcomp >> tcomm). It is important to note that the goal of this experiment is not to 

measure how long the combined execution of the communication and computation 

activity is. Rather, this experiment determines what portion of the communication can 

progress independently of the user thread while this thread performs a long computation. 

The former goal is achieved through the degree-of-overlapping metric presented earlier. 
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tb = time() 
Compute(); 
tcomp = time()- tb 

if(rank == 0) 
// measure tcomm 

barrier 
tb = time() 

irecv(<args>, size = m, src = 1, rreq) 
wait(rreq) 

tcomm = time() – tb 
// measure tasync 
barrier 
tb = time() 

irecv(<args>, size = m, src = 1, rreq) 
tasync += time() – tb 
Compute(); 
tb = time() 

test(rreq, &flag) 
if(flag is false) 
wait(rreq) 
tasync += time() – tb 
else if(rank == 1) 

barrier 
send(<args>, size = m, dst = 0) 

barrier 
send(<args>, size = m, dst = 0) 

endif 
da = 1 –  tasync/tcomm 

Figure 5.8 Pseudo code for measuring degree of asynchrony 

Table 5.14 presents experimental measurements for the degree of asynchrony. In 

order to demonstrate the impact of the MPI message progress capabilities, Table 5.14 

compares results obtained with both blocking and polling modes of MPI/Pro. The 

blocking mode uses asynchronous message completion and independent progress for all 

message sizes, while the polling mode uses polling notification and polling progress for 

short messages, and polling notification and independent progress for long messages. 

Chapter IV presented a detailed description of these modes. Table 5.14 clearly shows that 

the message progress plays an important role in achieving a high degree of asynchrony. 
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Table 5.14 Degree of asynchrony 

size 
sag-win-via sag-lin-via dim-lin-via 

blocking polling blocking polling blocking polling 
0 0.12 -4.93 0.43 -15.62 0.06 -15.13 
4 0.15 -5.02 0.44 -30.31 0.09 -25.19 
8 0.17 -4.95 0.43 -30.31 0.15 -25.45 

16 0.14 -4.98 0.47 -31.65 0.22 -25.21 
32 0.16 -4.96 0.45 -31.72 0.26 -23.20 
64 0.18 -4.84 0.46 -30.30 0.32 -27.81 

128 0.19 -4.84 0.45 -26.86 0.35 -20.40 
256 0.20 -4.74 0.44 -29.23 0.38 -20.25 
512 0.20 -4.54 0.49 -23.43 0.44 -0.17 

1024 0.23 -4.03 0.49 -16.43 0.59 0.07 
2048 0.25 -0.59 0.53 -10.86 0.75 0.42 
4096 0.49 0.24 0.68 0.34 0.91 0.70 
8192 0.64 0.62 0.76 0.68 0.89 0.81 

16384 0.69 0.60 0.81 0.75 0.93 0.89 
32768 0.77 0.74 0.87 0.84 0.95 0.93 
65536 0.85 0.83 0.92 0.90 0.97 0.95 

131072 0.91 0.89 0.94 0.94 0.97 0.97 
262144 0.93 0.93 0.95 0.95 0.97 0.97 
524288 0.95 0.95 0.96 0.96 0.98 0.97 

1048576 0.96 0.97 0.97 0.97 0.98 0.98 

Table 5.14 shows that independent message progress (blocking mode) facilitates a 

high degree of asynchrony for medium- and long-size messages. This means that if the 

user thread submits a non-blocking communication request and then initiates a 

computation operation, MPI/Pro will guarantee the timely progress of the message 

associated with this request. This progress is a critical requirement for effective 

overlapping. The low degree-of-overlapping values for short messages reflect the fact 

that the completion notification time for these messages is longer than the actual 

transmission time. Since completion notification is performed within the context of the 
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user thread, there is not much to be “progressed” independently of the user thread; hence, 

the effective value  of  the degree of  asynchrony  is low.  

In contrast to independent progress, polling progress not only fails to facilitate a 

high degree of asynchrony, it results in a communication slowdown. This is demonstrated 

by the negative degree-of-overlapping values for messages that use polling progress (size 

< 4,096). As specified earlier, the expression for computing degree of asynchrony is da = 

1 –  tasync/tcomm. This expression can produce a negative result only if tasync is larger than 

tcomm. If  tasync > tcomm, this indicates that attempting to make asynchronous progress in 

polling mode will yield a performance slowdown. The fact that tasync becomes larger than 

tcomm is explained by the fact that for a receive operation, the polling progress engine 

selects some constant number of iterations to execute aggressive polling. This polling 

checks whether a matching message should arrive shortly after the receive request is 

posted (denoted with irecv in Figure 5.4). The number of aggressive polls is 

implementation-dependent and is often determined empirically. However, its success 

depends, to a large degree, on the behavior of the user algorithm as well as the underlying 

system hardware and software. If the aggressive polling does not match an incoming 

request, then the time spent on polling is pure overhead that results in an effective 

increase of the communication time. 

This observation has critical importance for validating the hypothesis that 

although polling progress, together with polling notification, can yield the lowest latency 

as measured by ping-pong tests, polling progress does not ensure timely transmission of 

https://tcomm.If
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asynchronous messages, which can result in an effective communication slowdown. This 

scenario was described in Chapter IV, Figure 4.1 where the impact of message progress 

on the effective bandwidth was studied. The experimental results obtained from the tests 

for measuring the degree of asynchrony prove the hypothesis that polling progress results 

in reduced effective bandwidth in real parallel algorithms with non-trivial communication 

and computation structures. The behavior of algorithms with such structures is not 

captured adequately by the ping-pong latency test; hence, ping-pong tests cannot provide 

realistic estimations of the overall capabilities of a parallel system to achieve optimal 

application performance. The ping-pong tests represent a narrow range of traffic patterns 

rarely seen in realistic algorithms. 

The results for the degree-of-asynchrony metric support the hypothesis that the 

ping-pong test provides only a limited view on the performance of a parallel system, and 

more elaborate evaluation procedures and different performance analysis approaches are 

necessary. This chapter provides such analysis, which is based on a number of new 

performance metrics, specifically: degree of overlapping, segmentation efficiency, degree 

of asynchrony, degree of persistence, and also on the commonly used CPU overhead 

metric. 

5.6.6 Results from Optimized FFT Algorithm with Overlapping 

This subsection presents experimental results obtained from the parallel FFT 

algorithm implemented with overlapping. The selection of the number of overlapped 

segments s is implemented as a run-time option, which facilitates the collection of 
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voluminous experimental data. Experimental results only from the global phase of the 

FFT algorithm are presented. As mentioned in Chapter III, the parallel implementation of 

FFT presented in this work suggests a two-phase structure: a global phase that includes 

communication and computation, and a local phase that includes only computation. Since 

the goal of overlapping is to effectively hide communication, this performance-enhancing 

technique can be applied only to segments of the algorithms that both communicate and 

compute. Therefore, the scope of this section is focused on the global phase. 

Table 5.15 presents the execution times of the global phase of the FFT algorithm 

on the sag-lin-via configuration for three problem sizes: 1M, 2M, and 4M, as specified in 

the first row of the table. The second row represents the number of processes working on 

a particular problem size. The first column of the table specifies the number of segments 

used for the implementation of algorithm’s overlapped portion. All experimental results 

are performed using MPI/Pro in the blocking mode. If the completion notification mode 

of MPI/Pro is not specified in the following discussion, blocking mode should be 

assumed. Later in this section, specific analysis of the impact of MPI/Pro’s completion 

notification mode on the effective overlapping is presented. In this analysis, results 

obtained in both modes are explicitly compared. 

The results from Table 5.15 clearly show that overlapping of communication and 

computation significantly improves the overall performance of the global phase of the 

FFT algorithm. Improvements of up to 30% over the non-optimized algorithm with 

overlapping are achieved. Also, this table shows that the number of segments used for 
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overlapping plays an important role in reaching optimal performance. In order to 

illustrate the dependency of the benefit of overlapping on the number of segments, the 

graphs in figures 5.9, 5.10, and 5.11 depict the change of execution time as a function of 

problem size, number of segments, and number of processes. 

Table 5.15 Execution times for FFT global phase 

s 1M 2M 4M 
2 4 8 2 4 8 2 4 8 

1 0.212 0.207 0.180 0.425 0.417 0.343 0.855 0.833 0.675 
2 0.176 0.173 0.144 0.354 0.348 0.288 0.714 0.696 0.574 
4 0.160 0.157 0.133 0.345 0.315 0.269 0.645 0.627 0.524 
8 0.152 0.158 0.134 0.327 0.316 0.258 0.627 0.627 0.514 

16 0.150 0.160 0.152 0.301 0.316 0.264 0.624 0.629 0.517 
32 0.150 0.167 0.146 0.298 0.324 0.279 0.605 0.628 0.545 
64 0.154 0.179 0.181 0.320 0.334 0.297 0.598 0.635 0.545 

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1.000 

Ex
ec

ut
io

n 
tim

e 
[s

ec
] 

1M p=2 

2M p=2 

4M p=2 

1 2 4 8 16 32 64 
Number of segments 

Figure 5.9 Overlapped execution time on sag-lin-via with p = 2  
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Figure 5.10 Overlapped execution time on sag-lin-via with p = 4  
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The graph in Figure 5.9 demonstrates that the effect of overlapping increases with 

increasing the number of segments. However, this effect has non-linear behavior as 

predicted by the analysis in Chapter III. The effect quickly reaches optimal values for s in 

the range [4, 8] and subsequent relative gains are much smaller. This behavior is 

attributed to the fact that, by breaking the exchanged messages into segments, the relative 

value of the message overhead grows, which affects the value of the degree of 

overlapping, as reported in Table 5.12. As predicted by the analysis in Chapter III, the 

benefit of increasing the number of segments is affected negatively by the increased 

cumulative overhead of the smaller segments. The general shape of the curves in Figure 

5.9, as well as in figures 5.10 and 5.11 follows the shape predicted earlier by the 

theoretical analysis of overlapping as a function of number of segments and depicted in 

Figure 3.10. 
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Figure 5.11 Overlapped execution time on sag-lin-via with p = 8  
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An interesting trend can be noticed when the graphs in Figures 5.9, 5.10, and 5.11 

are compared. The curves on the graph with p = 2 reach their optimum point for number 

of segments ≥ 32. In contrast, the curves on the graph that represents process counts p = 8  

reach their optimal point for number of segments s ≈ 8. This difference is explained by 

the difference in message sizes exchanged in the particular runs. The message sizes for p 

= 2 are four times larger than the message sizes for p = 8. This trend shows once again 

the impact of the overhead on overlapping. For shorter messages (i.e., larger p), the 

relative weight of the cumulative overhead for the same number of segments becomes 

larger because the overhead has higher relative weight in the transmission time of shorter 

segments. In order to illustrate this dependency, the curves of one problem size for the 

three different process counts are presented in Figure 5.12. 
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Figure 5.12 shows that the optimal point sb2 for the curve that corresponds to p = 

2 is between s = 16 and  s = 32, the optimal point sb4 for p = 4 is between s = 8 and  s = 

16, and the optimal point sb8 for p = 8 is  at  s ≈ 8. Therefore, it can be concluded that sb8 < 

sb4 < sb2. This demonstrates that reducing message sizes (either by increasing the number 

of processes or by reducing the problem size) shifts the optimal number of segments to 

lower values and also decreases the relative impact of overlapping. 
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Figure 5.12 Overlapped execution time of 2M FFT on sag-lin-via with varying p 

5.6.7 Impact of MPI Completion Notification on Overlapping 

This subsection focuses on the impact of the completion notification mechanism 

of the MPI library on the effect of overlapping. In the hypothesis of this dissertation, it 
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was asserted that message-passing libraries with asynchronous (blocking) completion 

notification provide more opportunities for effective overlapping than do libraries with 

synchronous (polling) notification. In order to verify this hypothesis, results from the 

same problem sizes on the same configurations but with different completion notification 

modes (of MPI/Pro) are presented in Figures 5.13 and 5.14. Figure 5.13 compares the 

effect of overlapping on execution time for problem size n = 2M  and  p =  2. Clearly, the  

graph shows that although the curve shape of the two modes is similar, the absolute gain 

of blocking mode is significantly higher than that of polling mode. Both curves reach 

their optimum for s in the same range [16,32]. 
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However, the best execution time for polling mode is only 11% better than that of 

the non-overlapped implementation, while the best execution time for blocking mode is 

30% better than that of the non-overlapped time. This comparison clearly shows the 

superiority of blocking mode over polling mode with respect to supporting effective 

overlapping. This conclusion is further supported by Figure 5.14 that presents the 

execution times of the same problems size for p = 8. In this figure, both the blocking and 

polling mode curves have almost the same shape and both curves reach their optimum for 

approximately eight segments. However, as demonstrated earlier for p = 2, the  

performance gain of polling mode is much smaller than the performance gain of blocking 

mode. In  fact, for  problem  size  n = 2M and number of processes p = 8, the maximum 

gain of polling mode is only 6% while the maximum gain in blocking mode is 25%. 
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5.6.8 Comparison between Experiments and Theoretical Analysis 

The optimal number of segments sb was theoretically derived in expression (3.51). 

Using this expression and the values of do and R measured earlier, the estimated optimal 

number of segments for the parallel FFT with problem size n = 2M and number of 

processes p = 2, 4, and 8 are respectively 13, 12 and 10. The experimental results for this 

problem size were presented in Figure 5.12. From this figure, it can be assessed that the 

optimum number of segments for the execution time for p = 2 is in the range [16, 32], for 

p = 4 is in the range [8, 16], and for p = 8 is approximately equal to eight. Although the 

estimated optimal numbers of segments do not exactly match the experimentally 

measured ones, the estimates can serve as a good indication about the range and the 

relationship between the optimal points for different problem sizes. 

5.6.9 Interpretation of Results and Conclusions 

This section presented experimental results from a parallel implementation of FFT 

optimized using overlapping of communication and computation. The results 

demonstrated that overlapping is an important source of parallel performance 

improvement that can be applied to a range of algorithms with suitable communication 

and computation structure. A common approach for achieving effective overlapping was 

reviewed, namely identifying communication transactions that can be divided into 

smaller segments, and subsequently overlapped in a pipelined fashion with independent 

computation. This section provided experimental results that demonstrated the impact of 

number of segments on overlapping. In addition, this section validated the descriptive and 
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predictive capabilities of BOUM by comparing the estimated execution times with the 

experimental execution times. The estimations based on the model differed from the 

actual measurements by only a small fraction indicating that BOUM accurately captures 

the hardware and software specifics of the parallel system as experienced by the 

applications. 

This section also demonstrated the descriptive power of a set of new metrics 

defined in Chapter III, specifically degree of overlapping and degree of asynchrony. 

These metrics, together with CPU overhead, provide an in-depth look at the complex 

interactions between the software and hardware components of a parallel system and how 

these interactions affect overlapping. Further, this section provided support of the 

hypothesis that an MPI library with asynchronous completion notification and 

independent progress facilitates effective overlapping, while MPI libraries with polling 

notification and polling progress offer only minimal benefits of overlapping. Also, it was 

shown that software architectures that provide the lowest point-to-point latency as 

obtained by ping-pong tests exhibit sub-optimal behavior when subjected to such 

common techniques as asynchronous processing and overlapping. In fact it was shown 

that polling MPI libraries result in effective communication performance slowdown when 

asynchronous processing is attempted. 



CHAPTER VI 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

This dissertation investigated advanced software techniques for improving 

performance on clusters of workstations and approaches for designing efficient message-

passing middleware, specifically MPI middleware. This investigation focused on MPI 

middleware capabilities needed to deliver maximum performance to user processes and 

provide efficient support for early binding, asynchronous processing, and overlapping of 

communication and computation. The findings of this work are relevant to a wide 

audience inasmuch as cluster computers using MPI for interprocess communication are 

the preferred choice for upgrading existing or building new scalable computing facilities. 

This work presented an in-depth study of the performance-related architectural 

characteristics of clusters and provided a comparison between clusters and traditional 

Massively Parallel Processors (multicomputers). This comparison revealed that, although 

clusters have a number of features similar to multicomputers, they differ significantly in 

important performance-impacting areas. These differences justify a new look at the 

overall architecture of parallel systems based on clusters, and specifically, on the design 

of the communication software stack incorporating the low-level messaging system 

software and the message-passing middleware. 
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Clusters interconnected with high-speed networks, such as the VIA-based 

Giganet, were the main area of concentration of the experiments accomplished in this 

study. These experiments were compared with results obtained on clusters interconnected 

with commonly used networks, such as Ethernet with the TCP/IP transport. High-speed 

networks, and especially the networks that are built according to the VIA specification, 

represent a current trend in network design to support modes of operation that facilitate 

traditional communication performance parameters, such as low latency and high 

bandwidth, and at the same time provide other important features that drive the 

improvement of overall application performance. Among these features are early binding, 

low CPU overhead, asynchronous processing, and overlapping of communication and 

computation 

These valuable and widely applicable performance-enhancing techniques are 

presently underutilized in practice because of inadequate support by existing message-

passing libraries, and are rarely considered by parallel algorithm designers. Furthermore, 

commonly accepted methods for performance analysis omit these techniques and focus 

primarily on more obvious communication characteristics, such as latency of short 

messages and bandwidth of longer messages. This dissertation addressed these questions 

and concentrated on describing early binding and overlapping of communication and 

computation as fundamental approaches for improving parallel performance and 

scalability. These approaches can be applied successfully to a number of practical cases 

and can also be used in conjunction with other, more direct approaches, such as 
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increasing CPU speed, memory bandwidth, peripheral bus throughput, and network 

physical data rates. 

6.1 Proof of Hypothesis and Summary of Findings 

This dissertation proved the hypothesis that early binding and overlapping are 

important sources of performance improvement. This was demonstrated by practical 

experiments with common parallel algorithms that were optimized by early binding and 

overlapping. The experimental methodology used in this work provided a performance 

comparison of the algorithms before and after applying the optimizations studied. This 

comparison clearly revealed the performance benefits of early binding and overlapping. 

Further, this work proved the hypothesis that theoretical models for parallel 

computation can effectively describe early binding and overlapping, and also successfully 

estimate the performance benefits of these mechanisms. A theoretical framework, 

consisting of the Bandwidth and Overhead-based User-level parallel processing Model 

(BOUM) and a set of new performance metrics, was introduced to address the 

insufficient support for early binding and overlapping in existing parallel models. The 

performance analysis based on this framework provided expressions for parallel 

performance that explicitly account for early binding and overlapping. The descriptive 

power of the theoretical framework was demonstrated by experimental validation of the 

accuracy of BOUM to estimate algorithm’s absolute performance and an algorithm’s 

performance gain when optimized using the studied performance-enhancing mechanisms. 
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This dissertation introduced a set of new performance metrics whose goal is an 

abstract and accurate representation of parallel performance. These metrics facilitate a 

quantitative analysis of complex system hardware and software interactions as well as 

interactions between application and system software. The new metrics are degree of 

persistence, degree of overlapping, segmentation efficiency, and degree of asynchrony. 

Also, an analysis of the commonly used CPU overhead characteristic of communication 

systems and its impact on overlapping was presented. The new metrics capture specifics 

of parallel systems, and especially of message-passing middleware, which are often 

ignored by performance analysis based on traditional models and metrics. This work 

attributed the limited extant use of early binding and overlapping in practice to a lack of 

theoretical description and relevant metrics. This dissertation addressed this insufficiency 

by providing a theoretical framework based on a specifically developed model and a set 

of new metrics. This framework provides explicit description of early binding and 

overlapping and also predicts the performance impact of these mechanisms. 

This dissertation also demonstrated that message-passing middleware plays a 

critical role in either propagating or masking the performance capabilities of lower 

communication stack layers to user applications. The architecture of the message-passing 

middleware and its impact on overall application performance is often studied with 

insufficient depth. Common performance evaluation procedures are reduced to measuring 

point-to-point latency of short messages using simple ping-pong tests. These tests have 

insufficient descriptive power and present a limited view of the parallel system as a 
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whole, and the message-passing middleware in particular. This view fails to account for 

such performance-improving sources, such as overlapping of communication and 

computation, asynchronous processing, and early binding. Furthermore, point-to-point 

performance metrics provide only one dimension of the communication infrastructure. 

For both an accurate and relevant analysis, aggregate performance metrics are also 

necessary. The ping-pong tests put unnecessary weight on short-message latency. A large 

number of medium- to coarse-grain data parallel algorithms use long messages that 

exhibit reduced latency influence and increased bandwidth influence. Since the problem 

size of many applications is scaled up as the number of processors of the parallel system 

is scaled, the data granularity of these applications tends to be maintained even. 

This work demonstrated that message-passing libraries with architectures that 

facilitate the lowest latency numbers achieve this by sacrificing CPU cycles in order to 

reduce message overhead. This, in turn, affects the capability of these libraries, and 

hence, the entire parallel system, to perform asynchronous message progress and to 

provide effective overlapping of communication and computation. 

The author demonstrates the benefits of overlapping, asynchronous processing, 

and early binding by using practical algorithms implemented with MPI/Pro. While 

MPI/Pro is a commercial-grade implementation of the MPI-1.2 standard, it has been 

extensively used in the design and performance evaluation discussions presented here, 

without being the primary deliverable of this work in and of itself. The major design goal 

of MPI/Pro was delivering maximum communication performance to parallel 
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applications without sacrificing the computing resources of the host system. In order to 

achieve this goal, MPI/Pro provides a number of architectural choices for completion 

notification and message progress that enable various modes of operation. MPI/Pro offers 

its users the ability to tailor the behavior of the MPI library to their needs, specifically, 

they can select the completion notification and message progress modes through a run-

time switch. Using this unique feature, the author performed a number of experimental 

tests for proving the hypothesis of this work. These experiments demonstrated that 

MPI/Pro facilitates effective use of overlapping and early binding. 

This work extensively study approaches for improving parallel performance on 

clusters of workstations interconnected with high-speed networks. Clusters are commonly 

regarded as a generic instance of traditional multicomputer parallel architectures. This 

view offers a quick and low cost transition to the new parallel environment. As a result, 

well-known practices, software packages, and performance analysis techniques are 

generally applied to clusters. However, clusters differ from multicomputers in a number 

of important areas. By identifying these differences (presented in Chapter II), this work 

justifies the special approach to cluster software design and performance analysis. 

Presently, most of the cluster users in the world are building applications on 

middleware that was initiated as research or proof-of-concept efforts and usually 

designed to be portable, while also providing portable services. The design of such 

middleware does not account for important performance-enabling features, such as 

asynchrony, overlapping, and early binding. Some of the reasons for these design 
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omissions are based on evidence that the communication infrastructure available at the 

time of initial design did not provide sufficient support for these features (although early 

binding has always been optimizable to a certain degree). Certain design choices impose 

strong limitations on the behavior of user applications. As a result, legacy MPI programs, 

as well as newer MPI programs, tend to miss the benefits of MPI's performance-revealing 

semantics. Consequently, even newer MPI implementations may not generate significant 

gains for such applications, without application modification. 

This work provided an in-depth analysis of message-passing middleware 

architectures and their implications on communication and overall application 

performance. This analysis revealed the importance of such architectural solutions as the 

methods for completion notification and message progress. Also, this work provided a 

new MPI implementation that, in addition to the commonly recognized latency and 

bandwidth performance features, also facilitates effective use of early binding and 

overlapping of communication and computation. The author’s wish is that this MPI 

implementation, together with the suggested new metrics and performance analysis, will 

attract the attention of message-passing middleware and application software designers 

and expand the scope of the studied software approaches for optimizing parallel 

performance. 

6.2 New Terms and Concepts 

This dissertation considered issues that were insufficiently described before in the 

theory and practice of parallel processing. Therefore, in order to capture important 
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performance–related interactions and behaviors of the components of a parallel system, a 

number of new concepts and terms were introduced. These new terms and concepts are 

summarized as follows: 

• A methodology for classification of message-passing middleware libraries was 

offered. This classification is based on the methods for message completion 

notification and message progress. Asynchronous (blocking) and synchronous 

(polling) methods for completion notification were specified. The message 

progress was classified as asynchronous (independent) and synchronous (polling). 

According to the introduced classification methodology, four categories of 

message-passing libraries were identified. MPICH is an instance of all-polling 

libraries. MPI/Pro enables users to tailor MPI/Pro’s behavior according to this 

classification. Specifically, MPI/Pro supports a mode with blocking notification 

and independent progress, an all-polling mode for short messages (similar to 

MPICH’s design), and a mode with polling notification and independent progress 

for long messages. 

• A model for parallel computation (BOUM), based on performance attributes as 

observed by applications, was introduced. This model is an important component 

of the presented theoretical framework. The major requirement of the model is to 

provide an explicit description of early binding and overlapping. The model was 

used to predict the performance of parallel algorithms. The accuracy of the model 

was verified through an experimental procedure, presented in Chapter V. 
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• Degree of persistence. This is a new performance metric that captures the 

capability of a communication system to support effective early binding. Using 

this metric, parallel software designers can predict the actual benefit of applying 

early binding to algorithms. Also, system software designers can use this metric to 

evaluate the quality of their implementation on a particular hardware platform and 

operating system. 

• Degree of overlapping. The goal of this performance metric is to facilitate 

quantitative analysis of a parallel system’s capacity to deliver maximum effect of 

overlapping of communication and computation to the application processes. This 

is an important tool for estimating the performance benefits of overlapping on a 

particular parallel system. This metric captures a number of system features that 

are difficult to analyze but significantly affect the efficiency of overlapping. 

These range from purely hardware features, such as memory bandwidth and 

peripheral bus throughput, to purely software features, such as the architecture of 

the message-passing middleware. 

• Segmentation efficiency. This metric was introduced in order to assist parallel 

algorithm designers that employ overlapping of communication and computation. 

A common approach for implementing overlapping is to break large messages 

into smaller segments that can be pipelined and overlapped with computation. The 

effectiveness of the segmentation procedure depends on the ratio between the 

overhead and bandwidth components of the segment communication time on the 
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target platform. Segmentation efficiency provides a guideline for determining the 

optimal number of segments that yields maximum overlapping. 

• Degree of asynchrony. This metric was introduced to quantify the capability of a 

system to move user data while user processes are performing activities unrelated 

to communication. This capability is an important prerequisite for effective 

overlapping. The degree-of-asynchrony metric was used to assess the capabilities 

of different message-passing middleware architectures to support asynchronous 

message progress. The analysis based on this metric clearly showed that libraries 

that use polling progress exhibit sub-optimal behavior when user processes 

attempt to schedule concurrent communication and computation activities. 

6.3 Future Work 

A number of interesting issues remain for future work at the conclusion of this 

dissertation. Work is needed to provide fully asynchronous collective communication 

functions, as shown in FastMPI and MPI/RT. Asynchronous collective communication 

supports overlapping of communication and communication in a broader sense than is 

supported by point-to-point asynchronous operations. Since a large number of parallel 

algorithms use collective communication primitives in their performance critical parts, 

these applications cannot benefit from overlapping. Some of these problems can be 

addressed by augmenting MPI’s API and services for better persistent communication, as 

considered in Appendix A. 
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This study focused on cost-neutral software techniques for improving overall 

parallel performance. Specifically, the impact of asynchronous processing on short-

message latency was investigated. It was assessed that the software infrastructure to 

support these techniques efficiently results in fixed increase of communication overhead 

for short messages, which, however, is outweighed by the overall performance gains 

obtained by using these techniques. This study can be further extended to investigate 

fixed/variable-cost trade-off approaches in which the initialization cost of a given 

mechanism may be high, but such a one-time investment may deliver substantially higher 

performance when reused many times. 

This dissertation considered early binding and overlapping of communication and 

computation as two fundamental sources of parallel performance improvement on 

clusters. These software mechanisms were studied independently and their effect on 

performance was demonstrated individually. This work showed that the communication 

overhead of message segments when overlapping is performed leads to a diminishing 

effect as the number of segments grows. It was also shown that, for certain classes of 

algorithms, early binding could significantly reduce the effective cost of overhead. This 

might be used to offset the negative effect of segmentation on the efficiency of 

overlapping. A future study may focus on the combined effects of overlapping and early 

binding and also investigate their interaction with other software approaches for 

performance improvement. 
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The MPI implementation provided here was specifically optimized for VIA 

networks. VIA offers a number of advanced features that facilitate efficient 

communication with low CPU overhead, asynchronous processing, and overlapping. The 

VIA standardization forum (VIDF) is currently defining quality-of-service attributes that 

can be attached to VI connections. Future research could study how these attributes may 

be used by MPI, or other message-passing middleware systems, such as MPI/RT, for 

achieving more efficient, predictable communication further improving overall 

application performance and/or predictability. Also, careful analysis of the VIA 

communication model suggests that there are untapped opportunities for speeding up the 

transmission of very short messages. This speedup can be achieved by a specialized 

transfer scheme for short messages, rather than using the general-purpose descriptor-

based scheme, which requires unnecessary transactions on the peripheral bus. 

New technologies, such as InfiniBand, VI/TCP, and the integration of storage and 

networking, will accelerate the need for middleware to be cognizant of resource 

utilization issues, and to provide emerging options for quality of service, both for 

message passing and for concurrent and streaming I/O. Furthermore, exploration deeper 

into the question of direct exploitation of distributed shared memory concepts with 

InfiniBand (and VI Architecture) remains important complements to the infrastructure 

offered by the MPI interface. 

Future work is needed in order to explore questions such as co-scheduling 

between user threads, progress threads, and system activities. Clearly, the importance of 
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threads in concurrent processing is increasing, and hardware thread support will be the 

norm in just a few years. This trend suggests that more users will encounter issues related 

to message passing in multithreaded environments. The author, in collaboration with 

Anthony Skjellum and Matthew Gleeson, has provided an initial study on the issues 

related to achieving efficient use of multi-grained parallelism with MPI and threads. The 

results of this thread-oriented study are provided in Appendix B. 
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Interface to MPI Persistent Collective (MPIPC) Library 

#include <stdlib.h> 
#include <mpi.h> 

typedef void * MPIPC_Request; 
typedef int MPIPC_Status; 

int MPIPC_Gather_init( 
void 
int 
MPI_Datatype 
void 
int 
MPI_Datatype 
int 
MPI_Comm 
MPIPC_Request 
); 

int MPIPC_Bcast_init( 
void 
int 
MPI_Datatype 
int 
MPI_Comm 
MPIPC_Request 
); 

int MPIC_Reduce_init( 
void 
void 
int 
MPI_Datatype 
MPI_Op 
int 
MPI_Comm 
MPIPC_Request 

); 

int MPIPC_Request_start( 
MPIPC_Request 

); 

int MPIPC_Request_wait( 
MPIPC_Request 
MPIPC_Status 

); 

int MPIPC_Request_free( 
MPIPC_Request 

*sendbuf, 
sendcount, 
sendtype, 
*recvbuf, 
recvcount, 
recvtype, 
root, 
comm, 
*req 

*buffer, 
count, 
datatype, 
root, 
comm, 
*req 

*sendbuf, 
*recvbuf, 
count, 
datatype, 
op, 
root, 
comm, 
*req 

req 

req, 
*status 

*req); 

// collective request handle type 
// collective status type 

// MPI_Gather persistent request 

// MPI_Bcast persistent request 

// MPI_Reduce persistent request 

// initiate persistent request 

// wait on persistent request 

// release persistent request 
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Internal Interface for Implementing MPIPC Library 

#include <stdlib.h> 
#include "mpi.h" 

#define SUCCESS 
#define MPIPC_TAG 

(0) 
(16347) 

typedef enum 
{ 

FALSE, 
TRUE 

} bool_t; 

typedef enum 
{ 

BCAST, 
GATHER, 
REDUCE 

} coll_op_t; // identifier for type collective operation 

struct _mpipc_req_t; 
typedef int (start_ft)(struct _mpipc_req_t *r); // start function type 
typedef int (wait_ft)(struct _mpipc_req_t *r); // wait function type 

typedef struct _mpipc_req_t // internal representation of MPIPC_Request 
{ 

coll_op_t type; 
int np; 
int rank; 
int root; 
int num_recv; 
MPI_Request *recvreq; 
int num_send; 
MPI_Request *sendreq; 
start_ft *start_fn; 
wait_ft *wait_fn; 
bool_t has_root; 
bool_t is_done; 

} mpipc_req_t; 

typedef enum 
{ 

ROOT_TO_LEAVES, 
LEAVES_TO_ROOT 

} tree_dir_t; // identifier for direction of tree algorithms 

typedef enum 
{ 

NOOP, 
SEND, 



274 

RECV 
} tree_op_t; // type for operation in tree algorithms 

typedef struct 
{ 

int NumRanks; 
int LocalRank; 
int RootRank; 
int NumPhases; 
int CurrentPhase; 
tree_dir_t Direction; 
unsigned int Mask; 
unsigned int BigMask; 
bool_t IsFinished; 
bool_t ToMyself; 

} tree_t; 

// prototypes of operation-specific start functions 
int MPIPC_Start_gather(mpipc_req_t *r); 
int MPIPC_Start_reduce(mpipc_req_t *r); 
int MPIPC_Start_bcast(mpipc_req_t *r); 

// prototypes of operation-specific wait functions 
int MPIPC_Wait_gather(mpipc_req_t *r); 
int MPIPC_Wait_reduce(mpipc_req_t *r); 
int MPIPC_Wait_bcast(mpipc_req_t *r); 

// interface to a binary tree object used in tree algorithms 
int TreeInit( 

); 

int 
int 
int 
tree_dir_t 
tree_t 

NumRanks, 
LocalRank, 
RootRank, 
Direction, 
**Tree 

); 

int TreeNextOp( 
tree_t 
int 
tree_dir_t 

*Tree, 
*PeerRank, 
*Operation 

); 

int TreeFree( 
tree_t *Tree 
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Introduction 

This paper discusses a parallel programming model that utilizes MPI for 

communication between networked nodes and multiple threads for intra-box parallelism. 

First, the MPI and the multithreaded models are briefly reviewed. Then, the combined 

programming model is introduced. Special attention is paid to the requirements and 

architectural features both of MPI and the low-level message-passing layer for achieving 

efficient parallel processing with the combined model. The distinction between thread 

safety and thread awareness is discussed. The document specifically concentrates on the 

Sandia Portals messaging interface and the MPI implementation that MPI Software 

Technology develops for Sandia. Because the MPI standards do not provide sufficient 

guidelines to describe multithreaded parallel programming, this document will also 

become a portability baseline for such programs. 

Overview of Message Passing and Multithreading Models for Parallelism 

Message passing is one of the best-understood and most widely used models for 

programming parallel computers. With the introduction of portable interfaces for 

message passing such as MPI, the cost of the parallel applications software has been 

significantly reduced. This has lead to further growth of the user base of parallel 

processing with message passing. MPI allows for porting both the parallel source code 

and the application’s performance. MPI enables parallel programmers to design and 

implement algorithms at an abstract level without taking into account distinct features of 

the target platforms. When the parallel programs are executed on a specific platform they 
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can benefit from the most efficient hardware and software mechanisms available through 

the MPI implementation on the target platform. 

In the message-passing model both the sender and the receiver participate in the 

message transfer, which leads to implicit synchronization between the communicating 

processes. This synchronization is not suitable for a number of parallel algorithms. 

Typically such algorithms have highly unstructured and irregular communication patterns 

and the synchronization imposed by message passing leads to extra overhead and 

performance degradation. Furthermore, algorithms that exchange a large number of short 

data items incur substantial overhead by message passing systems that use packet 

encapsulation in several levels, thus leading to low coefficient of useful data transferred. 

Shared memory is the major alternative model to message passing for exploiting 

concurrency. Multithreading is one of the approaches for accessing the shared memory 

model from the programmer’s viewpoint. As opposed to message passing, multithreading 

can be used only within a single machine. At present, multiprocessor systems are often 

used for cost-effective increase of the processing capabilities of high-end servers, 

workstations, cluster nodes, and home computers. Currently, platforms with four 

processors are commonly used, while some companies offer higher-degree SMP nodes, 

notably IBM, SGI, Sun. Further architectures with larger SMP counts are always being 

developed, and these become building blocks for certain of our customers. 

A significant impediment for utilizing efficiently the number of processors on a 

single platform is imposed by the limitations of the memory subsystems. Even though the 

efficiency of the additional processors when executing memory intensive applications 
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may be relatively low, utilizing these processors is still cost effective considering the low 

additive price of each new CPU on the motherboard. At present, more scalable memory 

subsystems with higher throughput are being developed. This will improve the efficiency 

of the multi-processor systems. These are some of the reasons that support the hypothesis 

that intra-box concurrency is going to become even more important in the context of 

high-performance computing. An example of this trend the recently selected architecture 

of the 30T machine at LANL based on 32-way Alpha GS320 servers. 

Using threads for intra-box concurrency1 is probably the most natural choice, 

especially when the host operating system supports native threads at kernel level. Such 

operating systems are Sun Solaris and Microsoft Windows NT/2000. Threads offer a 

wide variety of schemes for constructing concurrent applications, which allows them to 

be used for implementing a wide range of parallel algorithms. Another strong side of 

threads is that their interaction with the host platform can be highly optimized 

considering the fact that threads are integral part of the operating system. A significant 

drawback of the multithreaded model for concurrency is that threads are implemented 

differently in different operating systems and programs that use threads are not portable. 

This problem has been significantly alleviated with the introduction of POSIX Threads 

(pthreads). Pthreads are available on most Unix operating systems. This enables 

concurrent programs with pthreads to be ported with minimal effort across platforms. 

1 Message passing with MPI provides implicit synchronization and explicit message transfer; thread programming 
provides explicit synchronization with implicit message transfer. These complement each other well, and threads 
evidently match the SMP model well. MPI always requires a single copy of a message, even on an SMP, whereas 
threads can share data. 
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Clusters of workstations interconnected with high-speed networks are rapidly 

becoming the platform of choice for building systems for high-performance parallel 

computing. Often these clusters are built with multi-processor nodes. This introduces two 

(or more) different media for exchanging data between any two processors on the cluster 

- the network interconnect and the memory bus of a multiprocessor computer node. 

Several approaches are available for taking advantage of the different communication 

media. One of the most widely used approaches is an MPI implementation that supports 

both a network and an SMP device. The network device provides optimal communication 

over the network interconnect while the SMP device utilizes possibly the most efficient 

mechanisms for inter-process communication offered by the host operating system. A 

number of available MPI implementations - among which are MPICH and MPI/Pro -

have multi-device architectures. However, enabling multiple communication devices in 

an MPI implementation is only one of the requirements for efficient multi-device mode 

of operation. Another important requirement is ensuring minimal interdependency and 

providing high overall efficiency when all devices are engaged in communication 

simultaneously. This particular issue is often disregarded in the literature that discusses 

multi-device MPI implementations. Fundamentally, these issues are related to the internal 

architecture of the MPI library and the message completion and notification mechanisms. 

The second approach for utilizing efficiently network and intra-box 

communication in a cluster of SMP machines is by using threads for local 

communication and MPI for communicating between the nodes. This approach attempts 

to exploit the strong sides of both MPI and threads. Threads provide an intuitive interface 
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for SMP communication while MPI provides portable and high-performance 

communications over the network interconnect. Among the weaknesses of the combined 

MPI + threads solution are the increased complexity of applications’ code and the 

potentially reduced code portability. A serious impediment for the combined approach is 

the fact that only few of the available MPI implementations can support multithreaded 

applications. Furthermore, clear guidelines of what an acceptable multithreaded MPI 

program is are needed. This discourages application programmers from attempting to 

exploit the benefits of the combined approach, since portability may be impacted, by both 

of these factors. 

Message Passing Programs with Threads 

Two main models for writing MPI programs with threads can be distinguished. 

These models can be denoted as symmetric and asymmetric. The asymmetric model uses 

one communication thread and multiple worker threads. The communication thread is 

dedicated to communication activities only while the worker threads perform 

computation. According to this model, the communication thread is the only thread that 

makes MPI calls. Its primary goal is to transfer data prepared by the worker threads and 

receive messages from remote processes. Worker threads are loosely synchronized with 

the communication thread through OS kernel objects (semaphores or events). Whenever a 

worker thread has a buffer ready to be sent, it notifies the communication thread about 

the availability of the message and its attributes as well as the destination process and 

thread. The communication thread than makes an MPI call that reflects this specification 
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and delivers the message to the target process with appropriate tag and logical context ID. 

On the receive side, the communication thread receives the message and notifies the 

corresponding worker thread about message arrival. 

The symmetric model does not require a specialized communication thread. 

Instead, all worker threads perform both communication and computation. This model 

presents a uniform view of all threads, which leads to a simpler code structure. Also, the 

symmetric model suggests higher degree of concurrency, which can be effectively 

utilized if the hardware and the MPI implementation can ensure concurrent progress of 

communication and computation. The symmetric model provides more opportunities for 

efficient parallel processing with multithreading than the asymmetric model. First, the 

extra overhead for synchronizing the worker threads with the dedicated communication 

thread though kernel objects is eliminated. Second, on systems with a high degree of 

local parallelism, the communication thread would clearly become a performance 

bottleneck. Third, the symmetric model can efficiently exploit the capabilities of an MPI 

library and networking architecture that can support concurrent communication activities. 
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Finally, from software engineering standpoint, the source code of the application will be 

easier to maintain since the threads will have symmetric implementations and 

functionality. 

Thread Safety and Thread Awareness of MPI 

Although at first glance it might be difficult to make a clear separation between 

thread safety and thread awareness the following definition of these terms will help in 

understanding important issues in the design and implementation of MPI and the low 

level messaging layers, such as Portals. Thread safety is defined as the quality of a 

software system and in particular MPI to enable programs that use multiple threads while 

the software system in question is in active state. In the case of MPI this would mean that 

the parallel application makes MPI calls between MPI_INIT and MPI_FINALIZE from 

multiple threads. Thread awareness is defined as a quality of the system to not only 

enable multithreaded programs but also provide certain optimizations such that the 

threads can simultaneously make independent progress while participating in 

communication. 

Thread safety Thread
awareness

Thread safety Thread 
awareness 

Figure B.2 Requirements for thread safety and thread awareness 
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Thread awareness is introduced to distinguish systems that offer complex 

approaches to achieving optimal multithreading mode of operation from systems that use 

trivial approaches such as big (or giant) locks around the entire MPI library/interface. In 

this context, thread awareness can be viewed as a stronger and more desirable 

characteristic than thread safety. Thread safety can be viewed as a sufficient requirement 

for supporting the asymmetric model of programming MPI with threads. In this model 

only the communication thread makes calls to MPI. 

Consequently, even if the MPI library is thread aware and presents optimizations 

for multithreaded mode, these optimizations will not be utilized by the MPI application. 

So, for multithreaded MPI programs that use the asymmetric model, thread safe and 

thread aware MPI library are to large extent equivalent. On the other hand, programs 

written on the symmetric model will clearly benefit from the optimizations presented by 

the thread aware MPI implementation. 

Multithreaded Semantics for Programming MPI 

The MPI-1 standard does not treat the issue of multithreading. The only statement 

that is relevant to multithreading is that the MPI library is expected to work with 

multithreaded user applications. In contrast, the MPI-2 standard2 introduces a section in 

the external interfaces chapter that is specifically dedicated to the interaction between 

MPI and threads. This section proposes an MPI_THREAD_INIT API for applications 

that use threads. However, the use of this API is not mandatory and is left to the 
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discretion of the user. The standard has consequently missed a clear opportunity to 

introduce a standardized interface between multithreaded programs and MPI, which 

could have lead to the development of MPI libraries that provide optimizations based on 

this interface. It is likely that because the API is optional, some early implementations of 

MPI-2 will not implement this API or it will be a null operation. Then, applications 

created for these early implementations may choose not to use the thread MPI API, thus 

limiting the opportunities for efficient support of multiple threads provided by more 

elaborate MPI-2 implementations. 

Further, the MPI-2 standard leaves open the discussion on the semantics for using 

the MPI interface by multithreaded applications. Even when used alone, multithreading 

and message passing are rather complex mechanisms for concurrent processing. 

Correctness and determinism are always a significant concern in a concurrent system. 

These issues are further complicated when multithreading and message passing are used 

in conjunction. Consequently, an elaborate discussion on the semantics of the interaction 

between threads and MPI is necessary. 

The only requirement that is related to the semantics of multithreaded user 

programs is the restriction on the multithreaded user application to use multiple 

“conflicting” communication MPI calls. The standard does not provide a clear 

interpretation of the term “conflicting”. By the definition of the four levels of thread 

compliance, it is clear that in MPI_THREAD_MULTIPLE mode, the user program can 

2 The MPI-2 standard is a superset of the MPI 1.2 standard. 
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call the MPI library from multiple threads without any restrictions. Hence, when working 

in a MULTIPLE mode, the library should allow multiple concurrent communication calls 

too. So by inference, it can be concluded that any two communication calls should not be 

treated as conflicting. The semantics of what constitutes conflicting calls should be 

clarified before making assumptions about how MPI should support multithreaded 

programs. This is especially important for this work, whose goal is to go beyond thread 

safety and provide guidelines for an efficient cooperation of threads and MPI. 

In order to facilitate its goals to study the design and internal architecture of MPI 

and low-level communication software such that they allow efficient use of multiple 

threads in applications, this work assumes the weakest interpretation of the rule for 

avoidance of multiple conflicting calls. According to this interpretation, any user thread 

can perform any MPI call regardless of what other concurrent threads might be doing at 

this moment. The correct semantics of these multiple MPI calls is left to the user. For 

example, this interpretation allows two user threads to call MPI_BCAST over the same 

communicator simultaneously. Evidently, the MPI library cannot guarantee that all 

transfers associated with one of the broadcasts will be initiated before none of the 

transfers associated with the other broadcast is started. If the user does not take the 

necessary steps, the outcome of the concurrent operations may be incorrect. Since the 

MPI library has no knowledge of which thread has submitted the communication 

requests, it cannot ensure the necessary serialization of the transfers for achieving the 

correct semantics of the MPI broadcast operation. The interpretation presented here 

allows for this concurrency in order to facilitate cases when two or mode threads can 
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initiate communication operations, possibly the same, over different communicators or 

with different user tags (for point-to-point operations). In these cases, a stricter 

interpretation of the conflicting rule may restrict unnecessarily the user application of 

exploiting concurrency that might be provided by the MPI library and low-level 

communication system. 

Another interesting use case that demonstrates important consequences for MPI 

library is the case when two or more threads call MPI_WAIT on one or more requests. In 

one of its clarifications, the standard states the MPI library should ensure independent 

progress of two or more threads that wait on different requests. This automatically 

eliminates the possibility of using a big/giant lock around the interface and guaranteeing 

true blocking semantics. Since threads are allowed to complete their request regardless of 

the status of the other threads, each thread should acquire the lock, check for completion 

of the request, and release the lock in a polling loop so that the other threads can check 

for completion of their requests. If this is not guaranteed, deadlocks may occur. Further 

elaboration on this situation as well as a discussion on the more general case with MPI_ 

WAITANY is provided later in this document in the section that focuses on Portals. 

A significantly more complex is the scenario with two or more threads waiting on 

the same request. In this case, in order to avoid deadlocks, the MPI library should enable 

all threads to continue when the request is completed. The MPI library has to keep track 

of how many and which threads make concurrent MPI_WAIT calls (or worse, 

MPI_WAITANY calls) on the same requests and then use a mechanism to signal all of 

them when the request is completed. If all threads return with success, this may lead to 
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non-determinism. A more acceptable outcome would be if only one thread returns with 

success and the others return from the blocking call with failure or some special status. 

The thread that returns with success will have its MPI_STATUS object updated 

accordingly. Providing a correct implementation of this semantics is a significant 

challenge. There are three approaches to solving the problem. The simplest of all is if the 

MPI library takes a restricts the conflicting rule to not guarantee that multiple threads 

waiting on the same request will all progress after this request is completed. Then, the 

user will have to make sure that the application never calls a blocking completion 

function on the same request. Thus, the entire responsibility for correctness is shifted to 

the user. The second approach requires a special device thread (may be more than one) 

that will make independent progress and signal the user threads. The device threads will 

ensure that no deadlock will occur. In the third approach, the device threads may be 

eliminated but the messaging layer will have to provide sufficient mechanism to 

guarantee that multiple user threads can make calls to synchronization objects signaled 

directly by the communication layer. 

Requirements to MPI for Thread Safety and Thread Awareness 

As a first step toward designing a thread safe and a thread aware MPI 

implementation a set of requirements will be defined. Often, MPI implementors proceed 

with development focused on usability, performance, and portability, while leaving 

thread safety issues for later stages of the library evolution. While theoretically feasible, 

this approach to MPI design leads to sub-optimal systems incorporating solutions that 
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primarily aim to support multithreading mode without emphasis on performance 

optimizations. This paper strives to identify and study important interactions between a 

multithreaded user program and MPI with their impact on the low-level communication 

software. The goal is to reach sufficient level of understanding of these interactions and 

consequences so a coherent set of requirements can be defined, which later can be used as 

a foundation of a successful design. The requirements mainly focus on protecting shared 

MPI or messaging layer resources as well as communication channels that might be 

accessed simultaneously by more than one user or MPI library internal threads. 

User programs interact with MPI through opaque handles, such as MPI_COMM, 

MPI_DATATYPE, and MPI_REQUEST. These opaque handles have an internal 

representation (MPI objects) and are organized in containers. MPI provides API functions 

for constructing, manipulating, and releasing these objects. One clear requirement for a 

thread-safe MPI is providing atomic creation and destruction of the internal objects 

represented by the opaque handles. For example, MPI has to allow multiple user threads 

to create derived data types by calling simultaneously MPI_TYPE_STRUCT. In a similar 

fashion, user threads should be allowed to construct communicators, key values, and 

requests. It is the MPI implementation's responsibility to provide sufficient protection of 

the internal objects and containers to enable thread safety in this aspect3. The constructors 

3 It is desirable to use optimistic locking of objects, rather than pessimistic (overkill) locking. Information about 
whether a program is multithreaded, or whether specific instances of MPI objects are used in multiple user threads are 
needed for optimistic schemes. The semantics of MPI, including the optional nature of thread-related calls, weakens 
the opportunity to do locking optimistically, without using out-of-band profiling or other types of restriction of the 
semantics of the user program, either through dynamic discovery of its emergent semantics, annotation, or by repetitive 
observation generating feedback to the library for subsequent runs. 



289 

and destructors of all objects with the exception of the request object are invoked 

relatively infrequently and they do not require optimizations for multithreading. 

A more challenging task is the creation and manipulation of MPI_Request 

objects. Throughout the lifecycle of a parallel application, whether single threaded or 

multithreaded, a large number of requests are generated, stared, waited or tested on, and 

released. The START and WAIT/TEST operations are especially sensitive to overheads 

so they should be carefully designed for thread safety. At the same time, these operations 

provide the largest opportunity for thread awareness optimizations. A trivial approach to 

these sensitive operations would be to serialize them with locks, but then programs 

written in the symmetric model will not actually exhibit any significant benefit of the 

potentials for concurrent communication. 

In a multithreaded MPI program that uses the symmetric model, more than one 

thread per MPI process can participate in communication, which explicitly or implicitly 

can lead to concurrent transfers to or from the same peer process. Since the library has no 

knowledge of the number of user threads, these threads cannot be assigned specific tags 

that might be used for creating safe communication spaces in MPI. A safe 

communication space in MPI is defined only over a communicator. User tags can be used 

to present a two-dimensional view of this space, but a program must intentionally adopt 

such a convention. 

The active component in MPI is the process and no allowances for thread 

identifiers are made. Consequently, two user threads that belong to the same process may 

initiate a send operation to the same destination. In such situations a thread-safe MPI 
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library should ensure atomicity of message transfers so that bytes of the two concurrent 

messages to the same destination do not get mixed. The atomicity of the transfers can be 

achieved using several approaches. The distinction of these approaches is based on the 

semantics and capabilities of the lower communication layers that are used by MPI for 

transferring the messages as well as the thread safety/awareness of these layers. 

The classification of the messaging layers is made from MPI’s point of view. The 

first group of messaging systems is passive. Such communication layers are TCP, VIA, 

and Myrinet GM. TCP is a stream oriented protocol and is implemented in the operating 

system (kernel calls are used through the OS API) while VIA and GM are message 

oriented and rely on OS bypass mechanisms with intelligent network controllers; most 

VIA and GM calls do not generate kernel context switches. Regardless of the 

implementation, all of the above mentioned systems are considered passive for the 

purposes of this discussion. Passive layers can be viewed primarily as data movers. When 

used with passive layers, MPI participates actively in all phases of the protocols as well 

as matching and progress. Since multiple threads may access the same socket or VI 

connection at the same time, MPI has to lock these channels in order to ensure atomicity 

of the message transfers4. Myrinet GM is not thread safe by definition, so a special care 

must be taken for all calls to the GM API. MPI implementations with internal threaded 

architectures, such MPI/Pro for VIA and TCP will take some of the user thread-safety 

measures even in a single threaded user processes. These implementations use a system 

4 MPI provides pair-wise ordering between pairs of processes, per communicator. 
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thread that ensures independent progress of messages and asynchronous completion of 

requests. Such implementations can support multi-device mode of operation as well as 

multiple simultaneous MPI_WAIT calls from different threads. This is achieved by 

delegating the synchronization interface between the messaging layer and MPI to the 

system thread. Then, user threads can block on an event associated with each particular 

request, which allows independent completion of the requests. MPI layered on top of a 

passive messaging layer is obligated as a minimum to protect the communication 

channels built by the communication layer and possibly the entire API. In both cases the 

requirements to the passive layer for achieving a thread-safe MPI are minimal. Thread-

safety is implemented by MPI itself. 

The active messaging layers, such as Sandia Portals and Los Alamos ULM, raise 

the abstraction of the interface between MPI and the messaging layer by not only 

performing data movement but also progress, matching of incoming messages, buffer 

management, and protocol implementation. These messaging layers facilitate a low-

overhead and scalable MPI and at the same time provide sufficient set of primitives that 

suggest an MPI implementation without an internal system thread. In the context of 

thread safety, this means that the MPI implementation may delegate some of the thread 

safety concerns to the messaging layer, thus increasing the potentials for internal 

concurrency and efficient processing in multithreaded mode. As a consequence, MPI 

does not need to perform explicit locks over the channels and synchronizations 

objects/primitives. This will enable multiple user threads to initiate communication 

activities or synchronization for request completion concurrently, which as defined 
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earlier is considered a feature of thread awareness. Consequently, for achieving an 

efficient multithreaded mode of operation of MPI applications, both the MPI library and 

the underlying communication layer has to cooperate in providing maximum concurrency 

in the accesses to latency sensitive shared data structures, communication channels, 

synchronization objects, and system buffers. 

The final thread safety requirement discusses the impact of the mechanisms for 

ensuring thread safety and thread awareness on programs that do not use multithreading. 

This is especially important for MPI implementations that do not have thread 

architecture, so they do not need to have internal protection of the shared data structures 

and communication channels in a single threaded user application mode. Such MPI 

implementations are MPI/Pro for Portals and MPI/Pro for ULM. These MPI libraries 

should allow single-threaded MPI programs to operate without incurring overhead 

necessary for ensuring thread safety. Since almost all of the legacy MPI codes are single-

threaded, thread-enabled MPI libraries should provide adequate support for these 

applications without performance degradation caused by multithread-oriented 

optimizations that might be present in these libraries for the benefit of other applications. 

For example, the MPI implementation developed by MPI Software Technology for 

Sandia Portals uses a mechanism that allows the library to work in a mode that bypasses 

all of the locks and kernel calls for synchronization. This mode can be selected in run-

time through an environment variable set by the user or by a call to the MPI-2 API 

function MPI_THREAD_INIT(). By setting the environment variable or calling the 

function the user waives the requirement for thread safety and promises not to use 
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multiple threads in his application. Thus, single-threaded application will not incur extra 

overhead introduced in the library by the multithread mechanisms5. 

Analysis of a Thread-Aware MPI Design for Portals 

Assumptions 

This discussion assumes the use of the Portals 3.0 API in the implementation of a 

library conforming to MPI 1.2 and supporting multi-threaded MPI applications. In 

particular we discuss design decisions based on the "Thread-aware MPI for Sandia 

Cplant" implementation by MPI Software Technology, Inc. 

The MPI implementation should not require any internal threads of its own to 

cleanly support multi-threaded applications over Portals. The MPI library need only 

support a single Portals interface (NI). 

NOTE: This section assumes a high degree of familiarity with the Portals API and 

in particular the MPI section of the paper “The Portals 3.0 Message Passing Interface”. 

Readers can find this document at http://www.cs.sandia.gov/~bright. 

Goals 

The MPI library should strive for a high degree of internal concurrency in order to 

allow the user's threads to execute MPI calls as independently as possible without 

blocking on one another unnecessarily, which may hurt efficiency. Allowing requests to 

complete as independently as possible also helps avoid deadlock situations that may 

5 This type of solution is acceptable provided the user application knows that no libraries use threads internally. In 

http://www.cs.sandia.gov/~bright
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occur if multiple requests' progresses are highly interdependent in complex (possibly 

non-local) ways. 

The implementation of all MPI calls that are defined as "blocking" should block 

"nicely", that is, use a fixed amount of overhead to complete regardless of the amount of 

wallclock time spent in the call. This allows the programmer to use the maximum CPU 

time available to his multi-threaded application. 

Request Initialization 

Initializing a send or receive request currently involves little interaction with 

Portals. Portals doesn't require any heavy-weight operations like pinning of the user 

memory that can be performed at request initialization. 

NOTE: There is an opportunity to bind the memory descriptor for a short-protocol 

send to the NI at initialization time with PtlMDBind(). This is currently being done at 

start time. 

Request Activation 

Send 

Depending on the protocol being used for the send, the sender either posts a 

match entry (ME) to the global Portals match list and attaches the memory descriptor 

(MD) to it (rendezvous protocol) or just binds the MD directly to the NI (eager protocol). 

The sender then starts the transfer by calling PtlPut(). There is only one match list 

other words, the single-threaded behavior of the application is a global property, not a property per communicator. 
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associated with all send operations of an MPI task, regardless of communicator or 

destination rank. 

There is no need for the MPI library to actively "make progress" on sends. The 

data transfer can be completely handled by Portals and the receiver once the send has 

been posted: the receiver pulls data directly from the sender via PtlGet() during the data 

transfer phase of the rendezvous protocol. There is no need for a sender thread to 

participate, so the event queue only needs to be checked when testing for the start 

(PTL_EVENT_SENT) or completion of a long send request (PTL_EVENT_GET or 

PTL_EVENT_ACK). 

NOTE: separated send and recv event queues would mean a thread could not 

MPI_WAITANY on a send and recv request without polling both queues. More about 

this below in the “Completion” discussion. 

Expected Receive 

A data transfer is "expected" from the receiver's point of view if the matching 

receive request has already been posted when the sender starts the send. If the send hasn't 

come in yet, the receiver inserts a ME into the recv match list and attaches the 

appropriate MD to it with the MD's threshold = 0. The receiver than uses PtlMDUpdate() 

to atomically enable the ME while making sure the matching send doesn't come in at the 

same time. When the matching send arrives Portals automatically returns an ACK back to 

the sender if needed and disables the receiver's ME. The receiver eventually finds a 

PTL_EVENT_PUT in his event queue and knows that the data has arrived. 
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Unexpected Receive 

A data transfer is "unexpected" for the receiver if the send starts before the 

receive request has been posted. If the eager protocol is being used for a short message, 

the incoming data will match the ME for a preposted unexpected receive buffer. As far 

as Portals is concerned this is very similar to the expected case discussed above. Eager 

protocol for a long message is detected as an error by MPI. 

When the long protocol is used, the incoming data will skip the preposted buffers 

and leave only a PTL_EVENT_PUT in the event queue. Eventually the receiver will find 

the event and do a PtlGet() to fetch the data from the sender's ME, followed by a 

PTL_EVENT_REPLY that indicates all the data has been received. 

Request Completion 

Request completion is the most interesting part of the request lifecycle in a 

thread-aware MPI implementation because the calling thread may block in a completion 

call until one or more requests are complete. Allowing a thread to block efficiently so 

other threads may run while at the same time maintaining lowest possible latency for all 

threads is a significant challenge. The semantics of the underlying network API directly 

influence how this problem can be approached. 

NOTE: At time of writing the thread-safety semantics of Portals are still 

somewhat undefined. The current MSTI implementation of MPI for Portals serializes all 

calls to the Portals API by maintaining a single lock (the “big Portals lock” or “BPL”) 



297 

that any thread must acquire before calling Portals. Discussion below describes the 

limitations of the BPL design. 

Test 

A non-blocking test for completion like MPI_TEST is the most straightforward of 

the completion calls. A thread calling MPI_TEST tries to acquire the BPL and if 

successful, polls the NI for incoming events with PtlEQGet(). Events are passed to the 

protocol-handling parts of MPI, which may eventually mark a request complete. The 

thread then releases the BPL, checks for completion of the request in question and 

returns. 

Wait 

MPI_WAIT is the simplest of the blocking completion calls, since it blocks the 

calling thread based only on the status of a single request. In single-threaded mode it is a 

straightforward matter to implement MPI_WAIT by having the MPI application block on 

calls to PtlEQWait() until the event-handlers mark the interesting request complete. In a 

multi-threaded application this is not safe to do, since the thread calling PtlEQWait() 

holds the BPL, preventing any other threads from using Portals. This leads to obvious 

deadlock situations. 

The current MPI implementation therefore uses PtlEQGet() instead of 

PtlEQWait(), which means it has to constantly acquire the BPL, poll Portals, release the 

BPL, and yield to the scheduler until the request is complete. This behavior is not thread-
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aware, since it wastes CPU cycles polling for completion instead of blocking cleanly until 

something happens in the network. 

If we can assume that Portals allows ME manipulation concurrently with event 

queue access, we could break the BPL apart and create a separate lock for the event 

queues. This would allow some threads to nicely block in MPI_WAIT while others post 

send and receive requests. Unfortunately this creates an ordering dependency among 

requests, since they may block trying to get the event queue lock while another thread 

waits for an unrelated operation to complete. This can lead to subtle deadlock situations 

that may be hard to debug. 

Assuming again the above, if MPI used a separate event queue for every request 

instead of a single global queue for all operations it may be possible to cleanly wait on a 

single request, since a request may only be waited on by one thread at a time. All threads 

would then only have to share an event queue for unexpected messages. 

Waitany 

MPI_WAITANY is the most demanding of the blocking completion calls. All of 

the other calls in the MPI_WAIT family can trivially be implemented in a thread-aware 

fashion on top of a thread-aware MPI_WAITANY. The difficulty with this call is that it 

is desirable for the thread to block waiting for completion of any one of several requests. 

These requests may involve communication to completely separate endpoints over 

distinct communicators. 
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MPI_WAITANY is currently implemented with the same naive polling loop 

described above for MPI_WAIT. If the implementation were to adopt the event-queue-

per-request strategy described for MPI_WAIT, MPI_WAITANY would still have to be 

implemented as a polling loop because PtlEQWait() gives the ability to block on a single 

event queue only. The best solution for MPI_WAITANY with the current Portals API is 

to have a single unified event queue that anyone can wait on, but we are still faced with 

the locking problems described for MPI_WAIT. 

Table B.1 Implementation of MPI communication calls with Portals 

MPI Call Portals Calls Used 

MPI_SEND_INIT PtlMDBind 

MPI_RECV_INIT none 

MPI_START (send) PtlMEInsert, PtlMDAttach, PtlPut 

MPI_START (recv) PtlMDBind, PtlGet, PtlMEInsert, PtlMDAttach, 

PtlEQGet, PtlMDUpdate 

MPI_TEST PtlEQGet 

MPI_WAIT PtlEQWait (currently PtlEQGet) 

MPI_WAITANY PtlEQWait? (currently PtlEQGet) 

Requirements to the Low–Level Messaging Layer (Portals) for Thread Safety and 

Thread Awareness 

As can be seem from the design overview above, the current MPI implementation 

over Portals is non-optimal for multithreaded MPI applications because of blocking 
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completion operations that are not thread aware. It does not seem to be much of a burden 

to serialize calls to set up memory descriptors or match entries, or even calls to PtlPut() 

or PtlGet(). However the event queues need to have well-documented behaviors in the 

face of multi-threaded applications. 

The shortcomings of the current MPI_WAIT may be solvable by setting up a 

receive queue for every posted request. For this to work, Portals would need to support 

an arbitrarily large number of event queues and also allow multiple threads to 

concurrently call PtlEQWait() on distinct event queues. For MPI_WAITANY to work 

efficiently, Portals should provide a select()-style call that allows a single thread to wait 

on multiple event queues for the next incoming event. 

One possibility that has been considered is that it may be useful to allow multiple 

threads to concurrently wait on the same event queue. This would allow threads calling 

MPI_WAITANY to wait on the event queue without taking a lock, avoiding the deadlock 

problem discussed above. It would be sufficient for the purposes of MPI to have 

semantics as follows for multiple threads in PtlEQWait(): If multiple threads are blocking 

in PtlEQWait() and an event arrives, one of the threads will receive the event and the 

others will receive PTL_EQ_EMPTY, just as if a call to PtlEQGet() had been made on an 

empty queue. Of course, for single-threaded applications the calling thread would always 

get the event, so the extended PtlEQWait() semantics would boil down to be the same as 

documented. 

The problem with multiple threads waiting on the same queue is outlined in 

Figure B.3. Thread A has no way of knowing that Thread B received the event that it was 



Thread A Thread B t 

MPI_Wait on Request A 

PtlEQWait  on shared EQ  

EQWait returns 
PTL_EQ_EMPTY 

Check if Request A 
is complete 

PtlEQWait  on shared EQ  

EQWait returns Event A 

Mark Request A “complete” 

PtlEQWait on shared EQ 

PtlEQWait on shared EQ 

MPI_Wait on Request B 

Figure B.3 Multiple threads waiting on one queue 
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waiting for, so it goes back into PtlEQWait and doesn’t check again until another event 

comes. It should be noted that MPI_WAITANY is much less commonly used than 

MPI_WAIT. A design that results in a thread-aware MPI_WAIT but a non-optimal 

MPI_WAITANY may be considered acceptable by most users. 

There are other opportunities for parallelism within the MPI implementation. If it 

were possible to share unexpected buffers between match lists, MPI could use a different 

portal index for each communicator so that multiple threads could make independent 

progress over communicators that are as independent as possible. 
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Enabling Efficient Multithreading in MPI Applications 

This section aims to provide guidelines for writing efficient MPI programs that 

use multiple threads. 

Task parallel programs may share a communicator with different threads 

If multiple send and/or receive threads per process exist, the use of tags is a good 

way to pass messages between such multithreaded processes. Because efficient MPI 

implementations may optimize for a small number of message tags, the number of such 

tags should be kept small. Without loss of portability, it may also be more efficient to 

pick low numbered tags, as these may be those that are the optimized small number of 

tags in some implementations. Blocking send and receive are best used in the multiple 

threads, rather than launching non-blocking calls in the multiple threads. If persistent 

communication is used, this will unfortunately be non-blocking, but may still be better 

because of performance optimizations possible in good MPI's when early-binding 

send/receive are exploited. 

Data parallel programs should use one communicator per collective operation, and 

multiple communicators 

In parallel to the use of multiple threads with a single communicator for point-to-

point operations, one collective operation may be posed at a time in a communicator. 

The user program must serialize the use of these (a reasonable optimization by MPI 

implementations will prevent a sequence of collectives from getting confused). Using 
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MPI_Comm_dup, additional equivalent communicators can be created before they are 

needed, in order to allow multiple collective operations to be posed by multiple threads 

across a set of MPI processes. 

MPI Programs should use available thread assertions of MPI-2 

Threads should use MPI_Thread_init() when that API addition is supported, in 

order to help MPI distinguish multi-threaded and single-threaded applications. 

MPI programs should avoid WAIT/TEST on same requests 

Because the MPI standards are not clear on the allowability of waiting on the 

same request, it is suggested to avoid such multithreaded programs. If an implementation 

supports multiple threads waiting on the same request, so that one gets an affirmative 

result, and the others gets an error, then this capability will almost certainly come at the 

cost of performance. 

A design lemma of the MPI Forum has traditionally been that serialization of 

multiple threads per MPI process should result in a correct MPI program, without new 

behavior. Under such an interpretation (strict), a program that in multiple threads waits 

on the same request would be termed "erroneous" and not "unsafe" according the MPI 

nomenclature. 
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1. SAG cluster (annotated with label sag in the dissertation): 

Cluster nodes: 
CPU: 1 x Intel Pentium II @ 350 MHz 
RAM: 288 MB 
Chipset: 440 BX 
Operating system: dual-boot Windows NT 4.0 and RedHat Linux 6.2 

Network-1: Giganet cLAN: 
switch: 8-port GNX 5000 
NIC: 8 x GNN 1000, rev. C 
link-rate: 1.25 Gb/sec 

Network-2: Ethernet: 
switch: 12-port 3Com PowerStack 
NIC: 3Com 59x 
link-rate: 100 Mb/sec 

2. DIM cluster (annotated with label dim in the dissertation): 

Cluster nodes 8: 
Type: Dell Precision 410 
CPU: 1 x Intel Pentium III @ 733 MHz 
RAM: 128 MB 
Chipset: 440 BX 
Operating system: dual-boot Windows 2000 and RedHat Linux 6.2 

Network-1: Giganet cLAN: 
switch: 30-port GNX 5030 
NIC: 8 x GNN 1000, rev. C and rev. D 
link-rate: 1.25 Gb/sec 

Network-2: Ethernet: 
switch: 30-port 3Com PowerStack 
NIC: 3Com 59x 
link-rate: 100 Mb/sec 

3. AC3 cluster (annotated with label ac3 in the dissertation): 

Cluster nodes 64: 
Type: Dell PowerEdge 6250 
CPU: 4 x Intel Pentium II Xeon @ 450 MHz 
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RAM: 4096 MB 
Chipset: 440 BX 
Operating system: Windows 2000 

Network: Giganet cLAN 
switch: a 64-node fabric built with 32-port GNX 5030 
NIC: 64 x GNN 1000, rev. C and rev. D 
link-rate: 1.25 Gb/sec 
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Methodology for classification of message-passing libraries according to their methods 

for message completion notification and message progress 

This methodology identifies two methods for message completion notification: 

asynchronous (blocking) or synchronous (polling). The message progress is also 

classified as asynchronous (independent) or synchronous (polling). According to 

the classification methodology, four categories of message-passing libraries are 

consequently identified: {polling notification, polling progress}, {polling 

notification, independent progress}, {blocking notification, polling progress}, and 

{blocking notification, independent progress}. The commonly used MPICH 

implementation of MPI is an instance of an all-polling library. MPI/Pro provides 

options to users to select the behavior of MPI/Pro. Specifically, MPI/Pro supports 

a mode with blocking notification and independent progress, an all-polling mode 

for short messages (similarly to MPICH), and a mode with polling notification 

and independent progress for long messages. 

Model for parallel computation based on performance attributes as observed by user 

processes – Bandwidth and Overhead [based parallel processing] User-level Model 

(BOUM) 

A parallel programming model that provides for explicit description of early 

binding and overlapping of communication and computation. The model has been 

used in this dissertation to predict the performance improvement of parallel 

algorithms that use early binding and overlapping. The accuracy of the model is 
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verified through an experimental procedure, presented in Chapter V of the 

dissertation. 

Degree of persistence 

A performance metric that captures the capability of a communication system to 

support effective early binding. Using this metric, parallel software designers can 

predict the actual benefit of applying early binding to algorithms. Also, system 

software designers can use the metric to evaluate the quality of their 

implementation on a particular hardware platform and operating system. 

Degree of overlapping 

A performance metric whose goal is to facilitate quantitative analysis of the 

capacity of a parallel system to deliver maximum effect of overlapping of 

communication and computation to application processes. This metric is an 

important tool for estimating the performance benefits of overlapping on a 

particular parallel system. This metric captures a number of system features that 

are difficult to analyze but at the same time significantly affect the efficiency of 

overlapping. These range from purely hardware features of the system such as 

memory bandwidth and peripheral-bus throughput to purely software features, 

such as the architecture of the message-passing middleware. 
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Segmentation efficiency 

This metric has been introduced to assist the designers of parallel algorithms that 

employ overlapping of communication and computation. A common approach for 

implementing overlapping is by breaking large messages into smaller segments 

that can be pipelined and overlapped with computation. The effectiveness of the 

segmentation procedure depends on the ratio between the overhead and 

bandwidth components of the communication time for the segments on the target 

platform. Segmentation efficiency provides a guideline for determining the 

optimal number of segments that yields maximum overlapping. 

Degree of asynchrony 

A performance metric has also been introduced to present a quantification 

analysis of the capability of a system to move user data while user processes are 

performing activities unrelated to communication. This capability is an important 

prerequisite for effective overlapping. This metric can be used in order to assess 

the capabilities of different architectures of the message-passing middleware to 

support asynchronous message progress. In this dissertation, the analysis based on 

degree of asynchrony showed that libraries that use polling progress exhibit sub-

optimal behavior when user processes attempt to schedule concurrent 

communication and computation activities. 
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