5,118 research outputs found

    Differential temporal beta‐diversity patterns of native and non‐native arthropod species in a fragmented native forest landscape

    Get PDF
    An important factor that hinders the management of non‐native species is a general lack of information regarding the biogeography of non‐natives, and, in particular, their rates of turnover. Here, we address this research gap by analysing differences in temporal beta‐diversity (using both pairwise and multiple‐time dissimilarity metrics) between native and non‐native species, using a novel time‐series dataset of arthropods sampled in native forest fragments in the Azores. We use a null model approach to determine whether temporal beta‐diversity was due to deterministic processes or stochastic colonisation and extinction events, and linear modelling selection to assess the factors driving variation in temporal beta‐diversity between plots. In accordance with our predictions, we found that the temporal beta‐diversity was much greater for non‐native species than for native species, and the null model analyses indicated that the turnover of non‐native species was due to stochastic events. No predictor variables were found to explain the turnover of native or non‐native species. We attribute the greater turnover of non‐native species to source‐sink processes and the close proximity of anthropogenic habitats to the fragmented native forest plots sampled in our study. Thus, our findings point to ways in which the study of turnover can be adapted for future applications in habitat island systems. The implications of this for biodiversity conservation and management are significant. The high rate of stochastic turnover of non‐native species indicates that attempts to simply reduce the populations of non‐native species in situ within native habitats may not be successful. A more efficient management strategy would be to interrupt source‐sink dynamics by improving the harsh boundaries between native and adjacent anthropogenic habitats.Portuguese FCT‐NETBIOME – ISLANDBIODIV grant 0003/2011.info:eu-repo/semantics/publishedVersio

    Nestedness in mutualistic networks

    Full text link
    James et al. (2012) presented simulations that apparently falsify the analytical result by Bastolla et al. (2009), who showed that nested mutualistic interactions decrease interspecific competition and increase biodiversity in model ecosystems. This contradiction, however, mainly stems from the incorrect application of formulas derived for fully connected networks to empirical, sparse networks.Comment: 2 pages, 1 figur

    Mutualism supports biodiversity when the direct competition is weak

    Get PDF
    A key question of theoretical ecology is which properties of ecosystems favour their stability and help maintaining biodiversity. This qu estion recently reconsid- ered mutualistic systems, generating intense controversy about the role of mutu- alistic interactions and their network architecture. Here we show analytically and verify with simulations that reducing the effective intersp ecific competition and the propagation of perturbations positively influences struct ural stability against envi- ronmental perturbations, enhancing persistence. Notewor thy, mutualism reduces the effective interspecific competition only when the direct interspecific competition is weaker than a critical value. This critical competition i s in almost all cases larger in pollinator networks than in random networks with the same connectance. Highly connected mutualistic networks reduce the propagation of e nvironmental perturba- tions, a mechanism reminiscent of MacArthur’s proposal tha t ecosystem complexity enhances stability. Our analytic framework rationalizes p revious contradictory re- sults, and it gives valuable insight on the complex relation ship between mutualism and biodiversity

    Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems

    Get PDF
    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests

    A generalized framework for analyzing taxonomic, phylogenetic, and functional community structure based on presence-absence data

    Get PDF
    Community structure as summarized by presence–absence data is often evaluated via diversity measures by incorporating taxonomic, phylogenetic and functional information on the constituting species. Most commonly, various dissimilarity coefficients are used to express these aspects simultaneously such that the results are not comparable due to the lack of common conceptual basis behind index definitions. A new framework is needed which allows such comparisons, thus facilitating evaluation of the importance of the three sources of extra information in relation to conventional species-based representations. We define taxonomic, phylogenetic and functional beta diversity of species assemblages based on the generalized Jaccard dissimilarity index. This coefficient does not give equal weight to species, because traditional site dissimilarities are lowered by taking into account the taxonomic, phylogenetic or functional similarity of differential species in one site to the species in the other. These, together with the traditional, taxon- (species-) based beta diversity are decomposed into two additive fractions, one due to taxonomic, phylogenetic or functional excess and the other to replacement. In addition to numerical results, taxonomic, phylogenetic and functional community structure is visualized by 2D simplex or ternary plots. Redundancy with respect to taxon-based structure is expressed in terms of centroid distances between point clouds in these diagrams. The approach is illustrated by examples coming from vegetation surveys representing different ecological conditions. We found that beta diversity decreases in the following order: taxon-based, taxonomic (Linnaean), phylogenetic and functional. Therefore, we put forward the beta-redundancy hypothesis suggesting that this ordering may be most often the case in ecological communities, and discuss potential reasons and possible exceptions to this supposed rule. Whereas the pattern of change in diversity may be indicative of fundamental features of the particular community being studied, the effect of the choice of functional traits—a more or less subjective element of the framework—remains to be investigated

    Cognitive constraints, contraction consistency, and the satisficing criterion

    Get PDF
    © 2007, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0

    Quantifying loopy network architectures

    Get PDF
    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the Asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.Comment: 17 pages, 8 figures. During preparation of this manuscript the authors became aware of the work of Mileyko at al., concurrently submitted for publicatio

    Lose the plot: cost-effective survey of the Peak Range, central Queensland

    Get PDF
    The Peak Range (22˚ 28’ S; 147˚ 53’ E) is an archipelago of rocky peaks set in grassy basalt rolling-plains, east of Clermont in central Queensland. This report describes the flora and vegetation based on surveys of 26 peaks. The survey recorded all plant species encountered on traverses of distinct habitat zones, which included the ‘matrix’ adjacent to each peak. The method involved effort comparable to a general flora survey but provided sufficient information to also describe floristic association among peaks, broad habitat types, and contrast vegetation on the peaks with the surrounding landscape matrix. The flora of the Peak Range includes at least 507 native vascular plant species, representing 84 plant families. Exotic species are relatively few, with 36 species recorded, but can be quite prominent in some situations. The most abundant exotic plants are the grass Melinis repens and the forb Bidens bipinnata. Plant distribution patterns among peaks suggest three primary groups related to position within the range and geology. The Peak Range makes a substantial contribution to the botanical diversity of its region and harbours several endemic plants among a flora clearly distinct from that of the surrounding terrain. The distinctiveness of the range’s flora is due to two habitat components: dry rainforest patches reliant upon fire protection afforded by cliffs and scree, and; rocky summits and hillsides supporting xeric shrublands. Plants endemic to the Peak Range are mainly associated with the latter of these habitats

    Randomizing bipartite networks: the case of the World Trade Web

    Get PDF
    Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis rests upon the definition of suitable null models, i.e. upon the choice of the portion of network structure to be preserved while randomizing everything else. However, quite surprisingly, little work has been done so far to define null models for real bipartite networks. The aim of the present work is to fill this gap, extending a recently-proposed method to randomize monopartite networks to bipartite networks. While the proposed formalism is perfectly general, we apply our method to the binary, undirected, bipartite representation of the World Trade Web, comparing the observed values of a number of structural quantities of interest with the expected ones, calculated via our randomization procedure. Interestingly, the behavior of the World Trade Web in this new representation is strongly different from the monopartite analogue, showing highly non-trivial patterns of self-organization.Comment: 22 pages, 13 figure

    Axiomatic Foundations for Satisficing Behavior

    Get PDF
    A theory of decision making is proposed that supplies an axiomatic basis for the concept of "satisficing" postulated by Herbert Simon. After a detailed review of classical results that characterize several varieties of preference-maximizing choice behavior, the axiomatization proceeds by weakening the inter-menu contraction consistency condition involved in these characterizations. This exercise is shown to be logically equivalent to dropping the usual cognitive assumption that the decision maker fully perceives his preferences among available alternatives, and requiring instead merely that his ability to perceive a given preference be weakly decreasing with respect to the relative complexity (indicated by set inclusion) of the choice problem at hand. A version of Simon's hypothesis then emerges when the notion of "perceived preference" is endowed with sufficiently strong ordering properties, and the axiomatization leads as well to a constraint on the form of satisficing that the decision maker may legitimately employ.
    corecore