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Mutualism supports biodiversity when the direct
competition is weak
Alberto Pascual-Garcı́a1,w & Ugo Bastolla1

A key question of theoretical ecology is which properties of ecosystems favour their stability

and help maintaining biodiversity. This question recently reconsidered mutualistic systems,

generating intense controversy about the role of mutualistic interactions and their network

architecture. Here we show analytically and verify with simulations that reducing the effective

interspecific competition and the propagation of perturbations positively influences structural

stability against environmental perturbations, enhancing persistence. Noteworthy, mutualism

reduces the effective interspecific competition only when the direct interspecific competition

is weaker than a critical value. This critical competition is in almost all cases larger in

pollinator networks than in random networks with the same connectance. Highly connected

mutualistic networks reduce the propagation of environmental perturbations, a mechanism

reminiscent of MacArthur’s proposal that ecosystem complexity enhances stability. Our

analytic framework rationalizes previous contradictory results, and it gives valuable insight on

the complex relationship between mutualism and biodiversity.
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W
hich properties of ecosystems enhance their stability
against environmental perturbation, favouring the
maintenance of biodiversity, is a key question of

theoretical ecology. In this context, the concept of complexity
had a preeminent role1, starting from the inspiring proposal
by MacArthur that the complexity of ecosystems favours
their stability2, disputed by the model of May3. Currently,
ecologists prefer to focus on ecosystem architecture rather
than complexity4,5, but the essence of the question remains
the same.

MacArthur argued that a perturbation would be more
easily damped, thus diminishing its negative effect on the
rest of the system, when the number of interactions is large
because there is a large number of possible paths for the flux of
nutrients2. Nevertheless, his argument was not based on any
explicit dynamical model. On the other hand, May’s classical
analysis of the complexity-stability relationship adopted
population dynamics equations close to a feasible equilibrium
point (that is, all abundances are positive), finding that the
probability that the system is dynamically stable against
perturbations of the species abundances rapidly vanishes as
the number of species and interactions increases.

May’s approach has been extremely influential, but it has
limitations6. First, as recognized by May himself, environmental
perturbations can modify all parameters of the population
dynamics and not just species abundances, thus the dynamical
stability analysis, which assumes that parameters are fixed,
addresses a limited spectrum of perturbations. Second, the
constraints imposed by feasibility may even guarantee
dynamical stability, such as in the case of diagonally stable
interaction matrices.

A complementary approach is based on the analysis of
structural stability, which quantifies how the system responds
to changes of the parameters, such as growth rates or interaction
strengths. Although the structural stability of ecosystems against
environmental perturbations is arguably a main determinant of
the maintenance of biodiversity, its study is less common in
theoretical ecology than in other fields of computational biology7,
with few exceptions8–12.

In recent years, both because of new empirical data and new
theoretical approaches, much of the theoretical work on
ecosystem stability addressed mutualistic networks of plants
and pollinators and plants and seed dispersers4,9,10,12–19. Despite
intense work, these studies disagree on the effect of mutualism on
persistence. Whereas some indicated that, in some conditions,
mutualism increases the persistence of model ecosystems9,10,12,14,
others reached the opposite conclusion15, and different studies
highlighted either nestedness9,12 or connectance14,15 as the
network property that most influences persistence. In particular,
we and coworkers showed analytically that fully connected
mutualistic networks favour structural stability by reducing
the effective competition between species in the same group
(plants or pollinators), and that the more nested a sparse
mutualistic network is, the weaker its effective competition9. On
the basis of these results, we argued in9 that nested mutualistic
networks increase structural stability. However, this conclusion is
not valid in general, as we show in the present paper.
Subsequently, the idea that nested mutualistic interactions
tend to favour stability seemed to be confirmed by the
simulations by Thebault and Fontaine14, but it was later
criticized by James et al.15, whose simulations showed that
mutualistic interactions tend to be deleterious for ecosystem
persistence, and that the network property that better correlates
with persistence is connectance and not nestedness. Our
work started as a technical response to this paper10, but it later
became more complex. Meanwhile, Rohr et al. published a paper

based on similar ideas that seemed to show that nested
mutualistic interactions are always good for the persistence of
ecosystems12, something that is contrasted by the results that we
present here.

Here we propose a novel framework that allows analytically
predicting and numerically testing the structural stability
of model ecosystems. Our analysis starts observing that, if the
interaction matrix has a mathematical property called diagonal
stability, every feasible equilibrium is globally dynamically
stable20, so that structural stability can be measured as the
maximum perturbation of parameters that maintains feasibility.
It is interesting to note that the effective competition is
strongly related with global stability, since diagonal stability of
the effective competition matrix is a necessary and almost
sufficient condition for global stability of the full interaction
matrix21. We found that structural stability defined in this way
can be predicted based on three quantities: (1) the effective
interspecific competition8, which expresses the competition
between animals or between plants that results both from their
direct interaction and from their interaction with species in the
other group, (2) the propagation of perturbations, which
describes how the perturbations of the intrinsic growth rates
affect the productivity of each species and (3) the vulnerability of
the unperturbed system, which measures the deficit in
productivity of the species that can be most affected by
perturbations. These quantities are differently influenced by the
connectance and the nestedness of mutualistic networks,
providing analytical understanding of which topological
properties are more relevant in different regimes of parameters.
Whereas the first quantity is directly related with the dynamical
stability, the second quantity is strongly related with the ideas
put forward by MacArthur2. In this way, the analysis of structural
stability encompasses the arguments proposed by both
MacArthur and May, reconciling their perspectives.

Results
Numerical assessment of structural stability. Following previous
work9, we model two groups of S(P) plants and S(A) animal
species. We only report the equations for plants, since those for
animals can be obtained interchanging the superscripts P and
A. Species interact through within-group fully connected
competition matrices b Pð Þ

ij of Lotka–Volterra (LV) type and
between-group mutualistic interactions g Pð Þ

ik that are non-zero
only if there is a link between i and k in the mutualistic network
and that saturate for large abundance13,22,23

1

N Pð Þ
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where N Pð Þ
i denotes the abundance of species i, a Pð Þ

i is its intrinsic
growth rate, and 1/h Pð Þ

i is the maximum mutualistic growth rate.
In this work, abundances are measured in units such that the
intraspecific competition is b Pð Þ

ii ¼ 1 for all species. The ratio
between interspecific and intraspecific competition is ro1.

We set gik ¼ g0gik, where g0 denotes the scale of mutualistic
interactions. We distinguish between strong mutualism, when at
the equilibrium point the mutualistic interactions are close to
saturation (large g0N), and weak mutualism otherwise. Since the
saturation term is proportional to the mutualistic degree, species
with large degree may be in the strong-mutualistic regime while
species with small degree are in the weak regime. The signs of the
intrinsic growth rates distinguish between facultative mutualism
if the ai are positive and obligatory mutualism if they are negative.
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Given a realization of the ecological interactions bij and
gik, if we randomly draw the intrinsic growth rates ai we obtain
with high probability unfeasible equilibria (that is, some
abundance is not positive), in particular if the number of links
per species (degree) of the mutualistic network is broadly
distributed. Therefore, we determined the ai by imposing that
the equilibrium is feasible and dynamically stable and studied its
structural stability against perturbations of the growth rates
through the step-wise procedure described below. For details, see
Methods and Fig. 1.

1. Abundances and interactions: We draw positive unperturbed
equilibrium abundances �Ni40 and interactions bij and
gik such that gik¼ g0gik.

2. Dynamical Stability: We choose the scale g0 of mutualistic
interactions such that the equilibrium is dynamically
stable for all networks. For facultative mutualism, we find
two critical values g 1ð Þ

0 o g 2ð Þ
0 (Supplementary Fig. 1) such

that the equilibrium is stable both for g0og 1ð Þ
0 and for

g04g 2ð Þ
0 . The dependence of g 1ð Þ

0 , g 2ð Þ
0 on network architecture

is reported in Supplementary Fig. 3. For obligatory mutualism
strong for animals and weak for plants, the equilibrium is
stable for all values of g0, as predicted below.

3. Feasibility: We set the unperturbed growth rates ai in
such a way that the vector �Ni is a fixed point of
equation (1). Notably, if the variance of the abundances is
small the ai that we obtain are negatively correlated with the
mutualistic degree, which can be interpreted as a trade-off
between the number of interactions and their metabolic
cost. On the other hand, the unperturbed growth rates
ai are identically distributed if the mutualistic interactions
are absent and the competition network is fully connected,
as assumed here.

4. Structural Stability: We perform 100 independent simulations
in which we randomly perturbate all growth rates by a relative
amount D. The percentage e of simulations where at least
one species becomes extinct versus D follows a sigmoidal
curve with vertical tangent close to the point Dc at which
e¼ 0.5, providing a natural measure of structural stability.

Structural stability is often defined as the volume of the space
of growth-rate parameters compatible with the coexistence
of all species. However, a direct measure of this volume for
a large number of species requires exponentially long computa-
tions. Our proposed measure is much simpler and it is
ecologically relevant, since it simulates the effect of environmental
perturbations, so that, the larger Dc, the more likely is that the
system maintains coexistence against perturbations.

Simulated regimes and numerical results. We studied either
facultative mutualism, or mutualism that is facultative for plants
and obligatory for animals. A natural way to achieve this regime
is to choose larger equilibrium abundances for plants than for
animals, and large saturated mutualistic growth rates 1/h Að Þ

i for
animals (see Methods). For simplicity, we did not consider
obligatory mutualism for plants, or mixed situations in which
mutualism is obligatory for some animals and facultative
for others. We studied meta-parameters that correspond
to several combinations of regimes (facultative or obligatory,
weak or strong mutualism, weak or strong competition), descri-
bed in Table 1.

For all parameters sets, we simulated a representative
set of 125 mutualistic networks characterized through two
properties (Supplementary Fig. 5): (1) The connectance,
k¼hd(P)/S(A)i¼ hd(A)/S(P)i, where d Xð Þ

i represents the degree

of species i in group X and (2) The ratio between the second
and the first moment of the degree distribution,
~n Pð Þ¼ d Pð Þ=S Að Þ� �2

D E
=k;~n Að Þ¼ d Að Þ=S Pð Þ� �2

D E
=k. The quantities

~n Að Þ and ~n Pð Þ are related to the fraction of shared links, and they
are well approximated by the nestedness defined in (ref. 9)
(see Methods), so we can transfer predictions from one quantity
to the other.

Figure 2 (top panels) shows that mutualistic networks affect
structural stability in a complex way in different regimes
of parameters. The figure shows two sets of networks in
the facultative weak-mutualistic regime characterized by
small (r¼ 0.05) and large (r¼ 0.23) interspecific competition
(regimes A and C). Additional regimes are presented in the
Supplementary Note 2. For reference, we plot as an horizontal
line the structural stability of a competitive system without
mutualism. Mutualism tends to increase the structural stability
for r¼ 0.05, but it tends to decrease it for r¼ 0.23. Moreover, for
r¼ 0.05 structural stability is positively correlated with the
connectance and its correlation with nestedness depends on
whether the connectance is large or small, while for r¼ 0.23
structural stability is negatively correlated with the connectance
and positively correlated with the nestedness.

The effective competition framework. To interpret the above
results, we adapted the effective competition framework, origin-
ally developed in8 for LV equations. The scheme of the
computation is summarized in Fig. 3 and described in this and
the next subsections. First of all, we linearize the dynamical
equations close to the equilibrium point �N Pð Þ

j , �N Að Þ
i , obtaining an
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Figure 1 | Scheme of the numerical measurement of structural stability.

Each box describes a step of the simulation.
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equivalent LV system with effective growth rates aLV
i and effective

interactions gLV
ik (see Methods).

From this linearized system, we separate the equilibrium
equations as

P
j

C Pð Þ
ij N

Pð Þ
j ¼p Pð Þ

i for plants and equivalent for
animals8 (see Methods). The matrix C(P) represents the effective
competition between plant species, which includes their indirect
interactions through animals. Similarly, p(P) is the effective
productivity vector, accounting for intrinsic growth rates and
ecological interactions. Although in this work we focus on
mutualism, this formalism allows to deal with predation simply
by changing the sign of the interactions between plants and animals.

The effective competition framework allows reducing the
complexity of a two-guilds system containing competitive and
mutualistic (and/or predatory) interactions into an equivalent
competitive system for a single guild. While the complete
interaction matrix has both positive and negative components,
we expect that the components of C(P) are positive, so that the
Perron–Frobenius theorem implies that its main eigenvector
v(P),1 has only positive components24. However, positivity of all
components of C(P) is not necessary since v(P),1 is also positive if
the non-diagonal components are negative and small in absolute
value, for instance larger than � 1/(S(P)� 1) in units such that
Cii¼ 1. The main eigenvector v(P),1 yields the optimal
productivity vector that guarantees positivity of the equilibrium
abundances of all species8.

Effective competition hinders structural stability. Here and in
the following, we omit for simplicity the superscripts A and
P whenever no ambiguity arises. The main eigenvalue of
C allows computing the effective interspecific competition
reff (see Methods) measured in units of the intraspecific com-
petition. It was shown in8 that the smaller reff, the larger the
structural stability. Given a productivity vector pi, we define the
vulnerability of species i as Zi pð Þ � 1� pi=p1v1

i , where
p1¼

P
j

pjv1
j is the projection of the productivity vector onto v1.

Sufficient condition for feasibility is maxi{Zi(p)}rZc�
Seff/(Seffþ S), which we call feasibility condition8. Here S is the
number of species and Seff¼ (1�reff)/reff is a natural scale of
biodiversity. The larger reff and S, the more difficult it is to fulfil
feasibility, consistent with the classic result of May3. In particular,
for Seff � S (large S or reffE1) the condition only holds if the
productivity vector is almost parallel to v1.

Competition critically determines the influence of mutualism.
Since nestedness tends to reduce reff (ref. 9), it was suggested that

nested mutualistic networks favour structural stability.
Nevertheless, we found here that the effect of mutualism on the
effective competition depends on the value of the direct
competition parameter r. A simple computation, reported in
the Methods section, predicts that, for small g0, the effective
competition is

reff Pð Þ¼r Pð Þ þ x Pð Þ r Pð Þ � rc Pð Þ
� �

; ð2Þ

with x(P)40. In particular, reff(P) is smaller than the value r(P)

found for pure competition only if the direct interspecific
competition r(P) is smaller than the critical value rc(P),
otherwise mutualistic interactions enhance reff(P). This point is
a central result of our study that was not noted in previous
works9,12. In the weak-mutualistic regime (small g0, small �N and
small connectance, regimes A and C) rc(P) is given by

r
c Pð Þ¼~n Að Þ � kF r Að Þ; S Að Þ� �

1�~n Pð ÞF r Að Þ; S Að Þð Þ ð3Þ

(see Methods), where F r Að Þ; S Að Þ� �
� 1�ð 1� r Að Þ

r Að ÞS Að Þ þ 1� r Að ÞÞ. Fully
connected networks (k¼ 1, ~n¼1) have rc¼ 1, thus for these
networks mutualism always reduces reff as previously shown in
ref. 9.

Equation (3) shows that rc(P) increases with the nestedness of
the mutualistic network (which is well approximated by ~n) and, as
a consequence of equation (2), reff decreases with nestedness, as
confirmed by Fig. 2 (middle panels). Since x(P) is proportional to
kS(A)g0

2, reff decreases with the connectance and with g0 if rorc

but increases otherwise, consistent with Fig. 2. Finally, the
networks for which reff¼ r, hence rc¼r (horizontal lines in
Fig. 2), have an almost constant nestedness, that is, rc depends
weakly on connectance when k is small.

Connected networks reduce the propagation of perturbations.
Next, we quantify how much the mutualistic networks amplify or
damp the perturbations of the intrinsic growth rates, which in our
model represent the environmental variability. We numerically
compute the vulnerability Z(D)¼maxi{Zi(p(D))}, where pi(D) is
the productivity vector obtained by perturbing the growth rates a
with a random perturbation of amplitude D. For large D,
Z(D)EZv(p0)þDZ0(p0) is approximately linear. We call
Z0(p0) propagation of perturbations and Zv(p0) unperturbed
vulnerability, which depend on the unperturbed productivities
p0 (see Methods). The larger Z0, the more destabilizing are the
effects of perturbations.

Table 1 | Regimes and parameters studied in this work.

Parameter regime A B C D E F G H

Mutualistic behaviour Facultative Obligatory

Competition strength Low High Low High

Mutualistic
strength

(Plants)
Weak Strong Weak Strong

Weak Strong Weak Strong
(Animals) Strong

�(A), �(P) 0.05 0.23 0.05 0.23
γ0 0.15 0.05 102 0.15 103

N 1 100 1 1000 1
∧ ∧

N (P)/N (A) 1 7 · 107

h (A) 0.1 0.23 0. 066

h (P) 0.1 0.25

The meaning of the parameters is explained in the main text and in the Methods section.
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It can be shown analytically that Z0 decreases with the number
of mutualistic interactions (see Methods). Thus, we expect that
connected networks decrease Z0 and enhance structural stability,
consistent with our numerical results (Fig. 2 third row). From the
same figure we see that Z0 increases with nestedness, as expected,
since networks with equal connectance and larger nestedness

have more heterogeneous degree distribution, hence they contain
more species with few links that are more vulnerable to
perturbations.

Analytical prediction of structural stability. Finally, we predict
the structural stability for the effective competition system. We
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Figure 2 | Structural stability and related quantities versus network properties. We represent here two regimes of facultative weak mutualism. Each

point represents one of the 125 artificial networks. Error bars quantify the s.d. of the mean over 50 realizations of the parameters and the ecological

dynamics. The horizontal lines refers to the absence of inter-species interactions, that is, pure direct competition. Note that the effective competition is

smaller than the direct competition for small r¼0.05 (a) while the opposite occurs for large r¼0.23 (b).
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tested numerically that, under random perturbations, the feasi-
bility condition becomes almost necessary, that is, it is extremely
unlikely to extract feasible systems that violate it
(A. Pascual-Garcı́a et al., unpublished). Thus, we predict Dc as the
maximum value of D such that the condition holds, which
satisfies the equation Z(Dc)¼ Zc, yielding the result

D Xð Þ
c ¼

1
Z0 Xð Þ

1�reff Xð Þ

reff Xð Þ SðXÞ � 1ð Þþ 1

� �
1� e Xð Þ
� �

� Z Xð Þ
v

� 	
; ð4Þ

where X indicates either plants or animals, E Xð Þ ¼ 0 for facultative
mutualism and for animals, while for plants in obligatory
mutualism E Pð Þ is related with the minimum plant abundance that
maintains the most vulnerable animal species (see Methods). The
critical perturbation Dc is the smaller between D Að Þ

c and D Pð Þ
c .

Thus, according to our theory, Z0, reff and Zv are sufficient to
predict the structural stability Dc. The good agreement between
theory and simulations is shown in Fig. 4 for eight different
mutualistic regimes (A to H). Additional regimes are studied in
the Supplementary Note 3.

Understanding the influence of network architecture. The
influence of the network architecture on structural stability,
summarized in Fig. 5, is mediated through the quantities
Z0, reff and Zv. We analyse here the situation in which

the unperturbed vulnerability Zv is small. This requires that
the variance of the abundances is small in the units that we are
using (see Discussion). The influence of Zv is studied in the
Supplementary Note 3.

In the facultative strong-mutualistic regime (B and D)
and in the obligatory regimes (E to H) we expect that rco0
except for fully connected networks, see equation (25) in
Methods, thus r4rc. In these regimes, reff is slightly
larger than r and it is insensitive to network properties
(Supplementary Fig. 6), therefore the main determinant of
structural stability is the connectance through its diminishing
influence on Z0.

In contrast, in the facultative weak-mutualistic regimes
(A and C) we find rc40. In all cases, the nestedness decreases
reff but it also increases Z0. The connectance decreases reff for
rorc but increases it for r4rc, as predicted by Equation (3),
and decreases Z0 in all cases (Fig. 2). These different behaviours
generate a complex picture, explaining some discrepancies found
in the literature. In regime A, the connectance decreases both
Z0 and reff, having a strong positive influence on structural
stability (Fig. 2a, r¼ 0.05). The influence of the nestedness is
modest, since it reduces reff but it increases Z0 (Fig. 2a),
with contradictory effects on structural stability. In regime
C the connectance increases reff, while it has only a small effect
on Z0, resulting in a negative influence on structural stability
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Figure 3 | Flux of the analytical prediction of structural stability. The steps to compute the interspecific effective competition parameter reff and the

propagation of perturbations Z0 are represented in the left and right column, respectively.
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(Fig. 2b, r¼ 0.23), while the nestedness has a weak effect
on Z0 but it has a strong diminishing effect on reff, thus enhancing
structural stability.

Critical competition of mutualistic networks. Equation (3)
expresses the critical rc(P) for plants as a function of the prop-
erties of the mutualistic network and of the direct competition
parameter r(A). By iterating these equations for both plants and
animals until a fixed point (rc(P), rc(A)), we can determine the
intrinsic critical competition of the mutualistic network such that
whenever both r(P)orc(P), r(A)orc(A) hold, mutualistic inter-
actions reduce the interspecific competition. We verified that the
fixed point is independent of the initial values (r(P), r(A)).

We show in Fig. 6 the results of this computation for
59 pollinator networks downloaded from the Web of Life
dataset25. The larger rc is, the more mutualism favours

biodiversity. As expected from Equation (3), rc increases
with the nestedness (Fig. 6a,c). It also increases with the
connectance (Fig. 6b), but this happens because in observed
networks nestedness and connectance are correlated. In contrast,
when nestedness is fixed, rc is negatively related with
the connectance, in agreement with Equation (3) (Fig. 6d).
Furthermore, rc decreases with the number of species (Fig. 6e),
which can be explained both by Equation (3) and by the
negative relation between the nestedness and S.

We then computed the Z-scores of rc of observed mutualistic
networks with respect to random networks with the same
connectance and number of species. Notably, these Z-scores are
positive, which implies that reff is lower for real than for random
networks, they are significant in most cases, and they increase
with the number of species (Fig. 6f), that is, larger mutualistic
networks have rc that diverges more from that of a random
network.

Discussion
Here we developed a new framework to assess the structural
stability of mutualistic model ecosystems. The good agreement
between the analytical results and the numerical experiments
indicates that the complexity of the full interaction matrix with
(S(A)þ S(P))2 elements can be summarized by six quantities,
namely the effective interspecific competition reff, the propaga-
tion of perturbations Z0 and the vulnerability of the unperturbed
system of both plants and animals, which suffice to accurately
predict structural stability. This simplification greatly facilitates
the understanding of this model ecosystem by investigating how
these quantities depend on the network architecture and
parameters.

Our results underscore the critical role of the direct
interspecific competition, showing that mutualistic interactions
decrease the effective competition only when the direct competi-
tion is weak, otherwise they increase it. This analysis can be
extended to predatory interactions, and we can analytically see
that their dependence on competition is the opposite of the one of
mutualism, since predatory interactions reduce the effective
competition for strong direct competition and increase it
otherwise (see Supplementary Note 4). These results may have
far reaching consequences for the design and control not only of
model ecological systems, but also of economical systems, if the
analogy remains valid. They suggest that a cooperative association
enhances stability only if the competition is weak, otherwise it has
destabilizing effects.

For facultative mutualism we found that in most real
pollinator networks the critical competition is larger than it
would be in an equivalent random network with the same
connectance, meaning that mutualism reduces the effective
competition and favours structural stability even for larger direct
competition. The critical competition parameter decreases with
the number of species, essentially because of the decrease of the
connectance, however its Z–score increases, meaning that large
mutualistic networks are more different from random networks.
There is currently no empirical data that can establish whether
real mutualistic ecosystems act above or below the critical
competition, but we can distinguish two kinds of situations. In
the first situation the connectance of the competition network is
constant, as assumed in the present model. If this hypothesis is
correct, our results suggest that mutualism favours biodiversity in
small ecosystems, which are characterized by large rc4r, but it
hinders it in large ecosystems. Alternatively, the connectance of
the competition network may decrease with the number of
species, as it happens for the mutualistic network, so that
r decreases with the number of species. In this situation weak
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facultative mutualism may be always beneficial for structural
stability and biodiversity.

Furthermore, the effective competition framework reveals an
inverse relation between reff and abundances. In fact, for large S,
the feasibility condition requires that the productivity vector is
almost parallel to the main eigenvector of the effective
competition matrix v1 (ref. 8). In this case, the equilibrium
abundances of a feasible and diverse ecosystem are
�Ni / v1

i = reff S� 1ð Þþ 1
� �

. This allows integrating in the same
theoretical framework the recent proposal that nested mutualistic
networks may be the result of positive selection to maximize the
abundance of individual species19. Finally, dynamical stability is
also negatively correlated with reff (Supplementary Note 1;
Supplementary Fig. 2), as we analytically predict in the Methods
section, thus it is positively correlated with structural stability
(Supplementary Fig. 4). Therefore, when reff is reduced,
structural stability, dynamical stability and species abundance
increase at the same time.

Besides the effective competition, the other quantity that has
a strong influence on structural stability is the rate at which

environmental perturbations propagate into perturbations of the
effective productivities. We found that this rate decreases for
increasing connectance, which in this way exherts a positive
influence on structural stability. This mechanism is highly similar
to the one proposed by MacArthur to argue that ecosystem
complexity favours stability2. However, for strong direct
competition the connectance increases the effective competition
(which, in this regime, is more relevant than the propagation of
perturbations), and it has a negative influence on structural
stability—a result closer to the perspective of May3.

Third, structural stability is influenced by the vulnerability
of the unperturbed system, Zv(p0), which is small if the
abundances of the unperturbed system are narrowly distributed,
thereby enhancing structural stability. To interpret this result,
note that we adopt units such that the intraspecific competition
bii, related with the carrying capacity, is the same for all
species of animals and plants. To achieve this, we must
use different abundance units for each species. From the original
units ~Ni, for instance number of individuals per square kilometre,
we obtain a mathematically equivalent dynamical system with
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bii�1 through the change of units Ni¼~Ni

ffiffiffiffiffi
~bii

q
, bij¼~bij=

ffiffiffiffiffiffiffiffiffiffi
~bii

~bjj

q
,

gik¼~gik=

ffiffiffiffiffiffiffiffiffiffiffi
~bii

~bkk

q
, ai¼~ai=

ffiffiffiffiffi
~bii

q
. Therefore, our model ecosystem

with narrowly distributed bii and Ni may arise from broadly
distributed ~bii and ~Ni in units of number of individuals. If the
unperturbed vulnerability is not small, the structural stability drops
to zero when Zv(p0)EZc. This is why in the main text we focus our
attention on the small Zv regime, as we did in our previous work10.
The same was assumed by Rohr et al.12, who chose the ai that
maximize the structural stability computed as in ref. 8, which
implies Zv(p0)E0. However, their method is only valid when the
mutualistic growth rates are linear, and it cannot be reliably
applied with the saturation term.

Our results help rationalizing why previous works obtained
qualitatively different relationships between network architecture
and stability9,10,12–18. These discrepancies have mainly two
origins: The types of perturbation that challenge the model
ecosystems, and the parameter regimes that are simulated.

First of all, the dynamical stability does not hold without the
biologically realistic saturation term hi40 in the functional
response, in particular for species with large degree, for systems
with g04g 2ð Þ

0 , and in the obligatory weak-strong regime. Previous
studies that analysed dynamical stability without taking into
account saturation26,27 reached conclusions that are only valid in
the special case hi�0 (ref. 13). Therefore, it is crucial to adopt the
saturation term.

James et al.15 extracted the growth rates from the same
distribution for all mutualistic species, whereas in feasible systems
the growth rates are negatively correlated with the mutualistic
degree. Their method produced unfeasible equilibria with much
higher probability for mutualistic systems than for competitive
systems, which explains why they found that mutualism hinders
biodiversity. Imposing feasibility, as we do here and in ref. 10,
provides a less biased comparison of ecological interactions or
network properties. Moreover, feasibility constrains ecological
parameters: it predicts a trade-off between the number of
mutualistic interactions and the intrinsic growth rate and, for
obligatory mutualism, it requires that the ratio between plant and
animal abundances must be N(P)/N(A)42 � 105, consistent with the
empirical estimate N(P)/N(A)E5� 106 (ref. 28) (see Methods).

Okuyama and Holland13 did not consider interspecific
competition (r¼ 0). In this case, the effective competition
framework predicts Zc¼ 1, and the equilibrium is feasible if all
species have positive producivity pi40, which always happened
since they chose positive growth rates. Consistently, their system
did not feature any extinction. However, feasibility becomes
a severe problem for ra0.

Also Thébault and Fontaine14 considered r¼ 0, but in
their study the growth rates were negative so that feasibility
was violated when pio0. In this case we expect a strong
correlation between survival probability and number of links, as
also found by James et al.15, since more links decrease the
probability that pio0, Consistently, they found that connectance
favours persistence and nestedness has a weak and negative effect.
They also found a positive effect of nestedness and connectance
on resilience, consistent with the fact that, in the studied weak
competition regime rorc, these variables tend to decrease reff

with a positive effect on dynamical stability. This also rationalizes
the similar result found by Okuyama and Holland13 and similar
results in a posterior work of the same group17.

Bastolla et al.9 adopted the same framework discussed here, but
they considered fully connected networks for which rorc¼ 1,
which explains the conclusion that nested mutualistic interactions
favour biodiversity. The work by Rohr et al.12 is most similar to
the framework that we used here and in a previous work10.
However, apparently they did not compare the structural stability

of mutualistic and competitive systems, therefore they could not
detect the change of regime that happens at the critical
competition coefficient rc, probably also because they did not
analyse small r. Their reported result that nestedness favours
structural stability is consistent with our findings.

Valdovinos and coworkers showed that the stability of
pollination networks can be enhanced by adaptive foraging
(AF), a strategy through which pollinators devote more effort to
more rewarding plants. Whereas in our model shared mutualistic
interactions indirectly reduce the interspecific competition, in the
regime of the model that they investigate and in the absence of AF
shared resources induce an indirect competition between
pollinators (for resources) and between plants (for pollinator
effort). AF reduces this indirect competition16, thereby enhancing
stability. Therefore, in the absence of AF nestedness increases
competition and has a negative impact on stability that is reversed
by AF (ref. 18). It would be interesting to investigate more
formally the correspondence between their model and our
simpler model in the framework of effective competition. We
expect that in their model shared mutualistic interactions with AF
reduce the effective competition similarly to how they do in our
model in which AF is not represented, and that the critical
competition has a role in their model as well.

Despite key questions still lack a definite answer, the theoretical
framework that we presented brings analytic understanding on a
dispute that has engaged several research groups. Our framework
may pave the way to predict the effect on structural stability of
changes in natural ecosystems, such as the introduction or
removal of species and their interactions. Depending on the
parameter regime, changes that modify either the connectance or
the nestedness may have a more severe effect. In conclusion,
computational modelling of complex ecological systems, though
still in its infancy, identifies different regimes that may enhance
the predictive power. These are hopefully good news for
increasingly important conservation strategies, in particular for
the critical role of pollination services29.

Methods
Networks descriptors. Each network is described by its adjacency matrix for
plants, aik, whose transpose is the adjacency matrix for animals. The degree of
a species, d Pð Þ

i ¼
P

k aik and analogous for animals, is its number of mutualistic
interactions, whose average determines the connectance k¼

P
ik aik= S Að ÞS Pð Þ� �

.
Nestedness n is defined as proposed in ref. 9,

n Pð Þ �

P
ioj

P
k

aikaT
kjP

ioj
min d Pð Þ

i ; d Pð Þ
j

� � : ð5Þ

namely the average number of shared links between species of the same group
normalized to one. From the above equation it appears that the nestedness of
plants is correlated with the second moment of the degree of animals, in such a way
that for small connectance more broadly distributed degrees imply larger

nestedness: n Pð Þ¼½ 1
S Að Þ

P
kðd

Að Þ
k =S Pð ÞÞ2 � k=S Pð Þ�=½ 1

S Pð Þ

P
i

d Pð Þ
i

S Að Þ
i

S Pð Þ �k=S Pð Þ�, where
species are ranked inversely to the number of links.

Construction of mutualistic networks. The mutualistic networks studied in this
paper have S(A)¼ 46 animal and S(P)¼ 47 plant species, as found in a field study at
Cainama, Venezuela30 that was selected because (i) it has a similar number of plant
and animal species and (ii) has connectance k¼ 0.07 close to the median of the
entire set of mutualistic networks (k¼ 0.09) and nestedness n¼ 0.15. We used the
observed degrees of plants and animals of this network, dP,obs and dA,obs, as
a starting point to generate 125 random networks with different combinations of
connectance and nestedness as follows. First, we randomly draw links with
probability Prob aik¼1ð Þ¼f ðdP;obs

i þ dA;obs
k Þ=ðS Að Þ þ SðPÞÞ. Networks drawn with

f¼ 1 have on the average the same connectance as the observed network and a
degree distribution that interpolates between the observed network and a random
network with uncorrelated links. The connectance is modified through the
parameter f. For each value of connectance, we obtain different values of the
nestedness by applying the algorithm by Medan et al.31 that swaps links
maintaining the degree. Each swapping is selected with a Metropolis criterion that
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enforces the target nestedness. Convergence is typically achieved after
20,000 swaps.

Parameterizing the dynamical equations. For each network, we model the multi-
species population dynamics through equation (1)9,10,15. We generate the fully
connected direct competition matrix as

b Pð Þ
ij ¼ r Pð Þ þ dij 1�r Pð Þ

� �� � bij

N̂ Pð Þ ; ð6Þ

where the metaparameters r(P), r(A)A[0, 1] set the direct interspecific competition
measured in units of intraspecific competition, N̂ Pð Þ and N̂ Að Þ set the scale of the
carrying capacity for plant and animal populations, respectively, dij is Kronecker’s
delta and bij are dimensionless random numbers uniformly distributed in [1� db,
1þ db]. We parameterize mutualistic interactions as

g Pð Þ
ik ¼ g0gik¼g0aik

c Pð Þ
ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N̂ Pð ÞN̂ Að Þ
p ð7Þ

where g0 measure the strength of mutualism with respect to competition
and the dimensionless parameters c(P) are uniformly distributed between
1� dc and 1þ dc if aik¼ 1 and they are zero if aik¼ 0. The maximum
mutualistic growth rates 1/hi are chosen equal to 1/H(P) for plants, and
1/H(A) for animals. We then draw the equilibrium abundances as �N Pð Þ

i ¼ei �NN̂ Pð Þ.
The results presented in the main text were obtained with ei uniformly
distributed in [1±dN], with dN¼ 0.15, while in Supplementary Note 3 we
present results obtained with log-normal distributions with larger variance.
We can transform the dynamical equations into the units discussed in the

main text, ~b Pð Þ
ij ¼b

Pð Þ
ij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b Pð Þ

ii b Pð Þ
jj

q
¼ r Pð Þ þ 1�rðPÞ

� �
dij

� �
bij=

ffiffiffiffiffiffiffiffiffi
biibjj

p
(~b Pð Þ

ii � 1),

~g Pð Þ
ik ¼g

Pð Þ
ik =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b Pð Þ

ii b Að Þ
kk

q
¼g0cik=

ffiffiffiffiffiffiffiffiffiffiffi
biibkk
p

and ~N Pð Þ
i ¼N Pð Þ

i

ffiffiffiffiffiffiffiffi
b Pð Þ

ii

q
¼ei

ffiffiffiffiffi
bii
p

N
ffiffiffiffiffiffiffiffiffi
N̂ Pð Þ
p

. The
rescaled interaction matrices only depend on the metaparameters r(A), r(P) and g0.
The positive metaparameters �N , N̂ Pð Þ and N̂ðAÞ influence whether the system is in
the strong mutualistic regime (mutualistic interactions are close to saturation). In
most simulations we considered the dimensionless parameter �N ¼ 1, but in regimes
B and D we used �N ¼ 100 to set the system in the strong-mutualistic regime while
maintaining the dynamical stability.

Obligatory and facultative mutualism. Unperturbed growth rates a Að Þ
i are

determined such that the equilibrium abundances satisfy the fixed point equations
obtained by equating to zero the right hand side of equation (1). We distinguish
between facultative mutualism (the a Að Þ

i are positive) and obligatory mutualism
(the a Að Þ

i are negative, mutualistic interactions are necessary for surviance).
We consider either mutualism that is facultative for both plants and animals or
mutualism that is facultative for plants and obligatory for animals. Since the
a Að Þ

i are not independent parameters, we must obtain obligatory mutualism by
appropriately choosing the metaparameters.

We found that obligatory mutualism arises when the ratio between plant and
animal biomasses N̂ Pð Þ=N̂ Að Þ and the maximum mutualistic growth rates of animals
1/H(A) are large. In fact, the feasibility of obligatory mutualism requires that the
maximum mutualistic growth rate of animals, 1/h(A), must be larger than the
abundance loss at equilibrium because of competition,

1

h Að Þ
i

4 S Að Þ � 1
� �

r Að Þ þ 1
� � �N Að Þ

j

D E
N̂ Að Þ ¼ S Að Þ � 1

� �
r Að Þ þ 1

� �
�N: ð8Þ

However, hi cannot vanish, otherwise the equilibrium would be dynamically
unstable23, and it also favours feasibility through the trade-off between the
number and the strength of mutualistic interactions, since large numbers
of mutualistic interactions approach saturation reducing their individual
strength. Thus, for obligatory mutualism we choose H(A) slightly smaller than
the upper limit equation (8), H(A)¼ 0.75/(S(A)r(A)þ 1� r(A)) �N . For plants
there is no upper limit and we choose H(P)¼ 0.25. Furthermore, the conditions that
growth rates are negative for animals and positive for plants translate into the
inequalities

g0

ffiffiffiffiffiffiffiffiffi
N̂ Pð Þ

N̂ Að Þ

s X
k

c Að Þ
ik 4

S Að Þr Að Þ þ 1� r Að Þ

1� h Að Þ
i S Að Þr Að Þ þ 1� r Að Þð Þ

8i

g0

ffiffiffiffiffiffiffiffiffi
N̂ Að Þ

N̂ Pð Þ

s X
k

c Pð Þ
ik o

S Pð Þr Pð Þ þ 1� r Pð Þ

1� h Pð Þ
i S Pð Þr Pð Þ þ 1� r Pð Þð Þ

8i

ð9Þ

where we assumed that the equilibrium abundances are equal. Both conditions
require that the ratio of the abundances between plant and animal populations
N̂ Pð Þ=N̂ Að Þ must be large. The most stringent is the first one obtained from the
animals growth rates, which we write asffiffiffiffiffiffiffiffiffi

N̂ Pð Þ

N̂ Að Þ

s
4

1

g0 mini d Að Þ
i

� � S Að Þr Að Þ þ 1� r Að Þ� �
1� h Að Þ

i S Að Þr Að Þ þ 1� r Að Þð Þ
h i : ð10Þ

where d Að Þ
i ¼

P
k c Að Þ

ik is the weighted degree of animal i. This condition requires
that also equation (8) is fulfilled. If the smallest mutualistic degree is one, the
number of animal species is S(A)¼ 50, the competition is strong (r(A)¼ 0.25)
and the system is in the weak mutualist regime (g0¼ 0.1) we obtain
N̂ Pð Þ=N̂ Að Þ42:5�105. This value is consistent with empirical estimates28.
Nevertheless, to achieve obligatory mutualism in a larger range of parameters, we
use N̂ Pð Þ=N̂ Að Þ¼7�107.

Parameter regimes. With our assumptions, the dynamical equations depend on
the mutualistic network, on seven meta-parameters that determine the interaction
matrices (r(A), r(P), H(A), H(P), g0 and N̂ Pð Þ=N̂ Að Þ), the equilibrium abundances �Nð Þ
and through them the ai, and on the 3 parameters db, dc and dN that control the
broadness of the distributions. We present results for several regimes of meta-
parameters, described in Table 1.

Dynamical stability. To assess dynamical stability, we take the derivatives of
equation (1) close to the fixed point and we transform the dynamical system into
an equivalent Lotka–Volterra (LV) system with effective mutualistic interactions
gLV

ik and effective growth rates aLV
i defined as

gLV
ik ¼

gik

1þ zið Þ2
; aLV

i ¼ai þ
1
hi

zi

1þ zi

� �2

; zi¼hi

X
l

gil
�Nl : ð11Þ

Any species can have either weak mutualism, if its equilibrium mutualistic growth
rate is far from saturation zi � 1ð Þ, or strong mutualism zi � 1ð Þ.

The equilibrium is locally stable if the eigenvalues of the community matrix
Jik¼ �NiAik have negative real parts, where Aik is the interaction matrix of the LV
system. Furthermore, the LV system is globally stable if its interaction matrix is
diagonally stable20, which also implies global stability of the complete
equation (1)21. Both the local and global stability conditions require that the
effective mutualistic interactions gLV are small enough. Since the gLV increase
with g0 in the weak regime and decrease in the strong regime, reaching
a maximum in between, the equilibrium is stable both for g0og 1ð Þ

0 and for g04g 2ð Þ
0 .

The saturation factors zi are proportional to the products H Pð Þg0
�NN̂ Að Þ for plants

and H Að Þg0
�NN̂ Pð Þ for animals. Clearly, increasing �N improves the stability.

For each set of meta-parameters and each network and for a typical realization
of the random variables bij, cik and ei, we numerically determine the critical
mutualistic strengths g 1ð Þ

0 and g 2ð Þ
0 that guarantee local stability (see Supplementary

Note 1 for details), and we use these computations to choose the values of g0

adopted in our simulations.

Numerical measure of structural stability. For each network and each set of
metaparameters, we randomly draw 50 realizations of the interaction matrices and
the equilibrium abundances, and we determine the critical values of g0 at which the
system looses dynamical stability (see above). Computations are only performed
for g0 in the allowed range for all networks. Subsequently, we generate 100 random
perturbations of the intrinsic growth rates, a0i¼ ai(1þDri), where ri is a random
number extracted in [� 1, 1] and ai are the unperturbed intrinsic growth rates. We
integrate the ecological dynamics with the Bulirsch-Stoer algorithm with adaptive
step until convergence, considering extinct species whose abundance falls below
10� 8 of the initial value. For each D we record the fraction of simulations in which
at least one species got extinct and we obtain through interpolation the critical
perturbation Dc at which this fraction equals 0.5.

Prediction of structural stability. We outline here the steps of the analytical
prediction of structural stability, which are schematically represented in Fig. 3.
The first step of the computation is the equivalent LV system used to compute
dynamical stability, which represents the dynamics close to the fixed point. Second,
we compute the effective competition matrix C(P)¼b(P)� cLV(P)(b(A))� 1 cLV(A)

and the productivity vectors p(P)¼ aLV(P)þ cLV(P)(b(A))� 1a LV(A) and equivalent
for animals8. Third, through diagonalization of these matrices we obtain the
effective competition parameters reff(P) and reff(A),

reff Pð Þ¼ 1
S Pð Þ � 1

l1 C Pð Þ� �
P

i
C Pð Þ

ii =S Pð Þ
� 1

0
B@

1
CA: ð12Þ

where l1(C(P)) is the maximum eigenvalue of matrix C(P), together with the main
eigenvectors v(P)1 and equivalent for animals (see Supplementary Note 1 for the
interpretation of these quantities). In the following, we omit the superscripts
P or A whenever no ambiguity arises. It was shown in ref. 8 that the structural
stability is inversely related with the effective competition parameter, in the sense
that sufficient condition for all species having positive abundance larger than
nc (a threshold abundance below which a species is not viable) is that all
productivities fulfil the inequalities

Zi pð Þ � 1� pi

v1
i p1
	 Seff

Sþ Seff
1� nc

Nh i

� �
8i: ð13Þ

where Seff¼ (1�reff)/reff is a biodiversity scale set by the effective competition.
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The larger reff or the number of species S, the more difficult is to satisfy the above
conditions.

We call Zi the vulnerability factors. Interestingly, their weighted average is zero:P
i Zi v1

i

� �2¼0. To compute how a perturbation of the intrinsic growth rates affects
Zi, we face the difficulty that the perturbation modifies the equilibrium abundances,
and consequently the equivalent LV system. We simplify the computation by
noting that, when mutualistic interactions are far or close to saturation, the
changes in cLV and aLV because of changes in equilibrium abundances are small
and they can be neglected (except for obligatory mutualism, see below). Thus, we
assume that the cLV, the effective competition matrices and their eigensystems are
the same as in the unperturbed system. We extract perturbed growth rates
aLV

i Dð Þ¼aLV
i D¼0ð Þ 1þDrið Þ, from them we compute the perturbed productivities

pi(D), we project them onto the main eigenvector obtaining p1 Dð Þ¼
P

j pj Dð Þv1
j

and the vulnerability factor Zi Dð Þ¼1� pi Dð Þ= v1
i p1 Dð Þ

� �
. Finally, we compute

Z(D)¼maxi{Zi(D)} and we average this quantity over 100 realizations of
the perturbations. Each individual Zi is a linear function of D, however the
most vulnerable species v is not the same at D¼ 0 and at large D, so that
Z(D) is linear only for large enough D where v does not change, Z(D)EZvþDZ0.
Therefore, we obtain the propagation of perturbations and the unperturbed
vulnerability as

Z0 ¼ Z D1ð Þ� Z D0ð Þð Þ
D1 �D0ð Þ ; Zv¼Z D0ð Þ� Z0D0 ð14Þ

for D0¼ Zc� 0.05 and D1¼ Zcþ 0.05.
For obligatory mutualism we have to consider that the plant abundance after

the perturbation must remain large enough so that all aLV Að Þ
i are positive. Thus, it is

not justified to neglect the change in equilibrium abundances because of the
perturbation. We consider the worst case of an animal species i that only feeds on a
single plant k. Positivity of N Að Þ

i requires that

b Að Þ
ii

�N Að Þ
� �0

i
¼ aðAÞ
� �0

i
þ 1

hi

z0i
1þ z0i

� �2

�
X
j 6¼ i

b Að Þ
ij

�N Að Þ
� �0

j
40 ð15Þ

where z0i¼hig
Að Þ

ik
�N 0 Pð Þ

k is the saturation factor after the perturbation. To focus on
the saturation factor, we neglect changes of the term a Að Þ

i �
P

j 6¼ i b
Að Þ

ij
�N Að Þ� �0

j ,
whose value before the perturbation is bii

�N Að Þ
i � 1=hið Þ zi= 1þ zið Þð Þ2, and we

obtain the inequality

� h Að Þ
i b Að Þ

ii
�N Að Þ

i o
z0i

1þ z0i

� �2

� zi

1þ zi

� �2


 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂ Að ÞN̂ Pð Þ
p

h Að Þ
i g0

1

N
Pð Þ

k

� 1

n Pð Þ
c

 !
; ð16Þ

where n Pð Þ
c is the minimum plant abundance after the perturbation that can

maintain the animal species, that is, the minimum abundance such that the
above inequality holds, which we want to estimate, and we neglected terms of
order z� 2

i and z0i
� �� 2

. Multiplying both sides times Nk
(P), using b Að Þ

ii ¼1=N̂ Að Þ

and approximating the abundances with the average over the community,
N Pð Þ

k 
 hN Pð Þ
l i¼�NN̂ Pð Þ and N Að Þ

i 
 hN Að Þ
j i¼�NN̂ Að Þ, we can estimate the

minimum plant abundance as

n Pð Þ
c

N Pð Þh i¼
1

1þ 1
2 g0 h Að Þ �Nð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂ Pð Þ=N̂ Að Þ

q : ð17Þ

Equation (17) estimates the minimum abundance of plants in equation (13), while
for animals we can consider n Að Þ

c ¼ 0 since we set the unperturbed abundances such
that N Að Þ� �

=N̂ Að Þ¼ N Pð Þ� �
=N̂ Pð Þ¼1. Using the fact that Z is a linear function of D,

Z¼ ZvþDZ0 , we find from equation (13)

D Að Þ
c ¼

1
Z0 Að Þ

Seff Að Þ

S Að Þ þ Seff Að Þ

� �
� Z Að Þ

v

� 	
; ð18Þ

D Pð Þ
c ¼

1
Z0 Pð Þ

Seff Pð Þ

S Pð Þ þ Seff Pð Þ

� �
1� f Pð Þ

1
n Pð Þ

c

N Pð Þh i

 !
� Z Pð Þ

v

" #
; ð19Þ

where f Pð Þ
1 is the fraction of plant species that are the only connection of

at least one animal species in obligatory mutualism. The quantity f Pð Þ
1 n Pð Þ

c /hN(P)i is
indicated as E in the main text. Finally, Dc¼ minðD Að Þ

c ;D Pð Þ
c Þ.

Predicting the propagation of perturbations. In equation (4), the propagation of
perturbations Z0 is numerically computed through eqution (14). We can predict it
analytically in the same approximation used above. We consider perturbations
ai-ai(1þDri), where ri are independent random variables with normal
distribution. The effective growth rate is aLV

i ¼ aiþmi and we neglect changes of
mi¼ (1/hi)(zi/(1þ zi))2 on perturbation. The productivity after perturbation is
pi(D)¼ p0

i þDqi, where qi is a Gaussian variable with mean zero and variance

q Pð Þ
i

� �2
¼ a Pð Þ

i

� �2
þ
X

k

Gika
Að Þ

k

� �2
ð20Þ

where G¼ gLV(P)(b(A))� 1. To estimate Z0 , we compute Zi(p(D)) at first order in D:

Zi p Dð Þð Þ ¼ 1� pi þDqi

v1
i p1 Dð Þ 
 1� p0

i

p0ð Þ1v1
i

� �
þD

q1= p0ð Þ1ð Þp0
i � qi

p0ð Þ1v1
i

� �
¼ Zi p0ð ÞþD q1

p0ð Þ1 Zi qð Þ� Zi p0ð Þ½ �;
ð21Þ

where we denote by x1 the projection of vector x on the main eigenvector v1,
x1¼

P
j

xjv1
j . The resulting vulnerability Zi is a linear function of D that depends on

the random variables qi and q1. The variance of the denominator of equation (21) is

given by qið Þ2 þ p0
i = p0ð Þ1

� �2
q1ð Þ2 � 2 p0

i = p0ð Þ1
� �

q1qi . It is easy to see that

q1ð Þ2¼
P

i v1
i ai

� �2 þ
P

j

P
i v1

i Gij
� �2a2

j and q1qi¼v1
i a

2
i þ

P
j

P
i v1

kGkjGij
� �

a2
j . They

both share the main qualitative property of qið Þ2, that is, they are all sums of diþ 1
positive terms. Thus, to simplify formulas, in the following we estimate the variance

of the denominator of equation (21) simply through qið Þ2.
The feasibility condition depends on the most vulnerable species, which is

different in the unperturbed system D¼ 0 (the species i that maximizes Zi(p0)) and
for large D (the species v that maximizes Zi(D)). If D is large enough, the most
vulnerable species is the species that maximizes Zi(q)� Zi(p0) and it does not
change for larger D, so that the maximum value of Zi(D) increases linearly as
Z(D)�maxi{Zi(D)}EZv(p0)þDZ0(p0). Z0 must be computed for the species with
maximum Zi, leading to

Z0 
 maxi

qi � q1= p0ð Þ1
� �

p0
i

p0ð Þ1v1
i

0
@

1
A

/ maxi

SðPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðPÞi

� �2
þ
P

k
Gika

ðAÞ
k

� �2
s

P
j

aðPÞj þmðPÞj þ
P

k
Gjk aðAÞk þmðAÞk

� �� 	
0
BBBB@

1
CCCCA ð22Þ

where we estimate qi with its root mean square value multiplied times
a constant, vi

1E1/
ffiffiffi
S
p

and v1
i p0ð Þ1 


P
j p0

j =S, and we take into account
that p0 depends on the effective growth rates aLVðAÞ

i ¼aðAÞi þmðAÞi .
The above formula is complex, and we prefer to compute Z0 numerically with

equation (14), but it makes clear two important qualitative points: (1) Zi decreases
with the number of links (that is, the number of non-zero components Gik),
Zi / 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
di þ 1
p

, thus Z0 decreases with the connectance of the mutualistic network
and (2) Z0 is larger for obligatory mutualism, in which the terms a and m have
opposite sign.

Analytical insights from effective competition. The effective competition matrix
plays a central role in determining structural stability, dynamical stability and
species abundances. This role stems from the equilibrium equations
�NðPÞi ¼

P
j

CðPÞ
� �� 1

ij pðPÞj and equivalent for animals. As it was shown in8, the
structural stability is inversely related to the effective competition through
equation (13). When S or reff are large, equation (13) implies that the productivity
vector must be directed along v1: pi 
 p1v1

i . This in turn implies that the
equilibrium abundances are also directed along v1 and that they are also inversely
related to reff: �NðPÞ�1p1= reff SðPÞ � 1

� �
þ 1

� �
. Finally, by computing the trace of

the effective competition matrix we can easily see that reff is inversely related with
the mean value of the minor eigenvalues of the effective competition matrix:

1
S� 1

X
a41

la Cð Þ¼ 1�reff
� �Pi

Cii

S
: ð23Þ

It was shown in ref. 21 that the diagonal positivity of the effective competition
matrix is a necessary condition for global stability of the full dynamical system.
This suggests that the larger the mean of the eigenvalues of the effective
competition matrix is, the more likely it is that the system is globally stable, that is,
we expect a negative relationship between reff and dynamical stability.

The central role of the effective competition matrix makes it useful to estimate
its dependence on the network structure. To this end, we approximate the fully
connected direct competition matrices with the mean-field matrices
bðAÞij ¼rðAÞ þ 1�rðAÞ

� �
dij and equivalent for plants, we use rescaled units for

simplicity, and we get

CðPÞij ¼b
ðPÞ
ij � gðPÞ bðAÞ

� �� 1
gðAÞ � 1� rðPÞ

� �
dij þrðPÞ � mðPÞij

� � 1

N̂ðPÞ

mðPÞij ¼
N̂ðPÞN̂ðAÞ

1� rðAÞð Þ
X

k

gLVðPÞ
ik gLVðAÞ

kj � 1

SðAÞ þ SðAÞ0

X
kl

gLVðPÞ
ik gLVðAÞ

lj

" #
:

ð24Þ

with S0
(A)¼ (1� r(A))/r(A). Approximating l1 Cð Þ¼

P
ij

Cijv1
i v1

j 
 1
S

P
ij

Cij , the
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effective interspecific competition equation (12) can be computed as

reffðPÞ 
 1
SðPÞ � 1

1þ SðPÞ � 1ð ÞrðPÞ �
P

ij

mij=SðPÞ

1�
P

i

mii=SðPÞ
� 1

" #


 rðPÞ þrðPÞ
P

i

mii

SðPÞ �

P
i 6¼ j

mij

SðPÞ SðPÞ � 1ð Þ ;

¼ rðPÞ þ xðPÞ rðPÞ � rcðPÞ� �
:

ð25Þ

with xðPÞ¼
P

i
mii

SðPÞ , which justifies equation (2) in the main text. In other words,
mutualistic interactions reduce the effective interspecific competition between
plants, that is, reff(P)or(P), only if the direct interspecific competition parameter
r(P) is smaller than the critical value rc(P) given by

rcðPÞ¼

P
i 6¼ j

mðPÞij

SðPÞ � 1ð Þ
P

i
mðPÞii

: ð26Þ

We can explicitly compute the matrix m Pð Þ
ij in three situations: when mutualistic

interactions are far from saturation for all species (weak regime), close to saturation
for all species (strong regime), or close to saturation for animals and far from
plants (weak-strong regime), as in obligatory mutualism. For simplicity, in these
computations we neglect the variability of the interaction coefficients gik , and
instead of them we use the binary adjacency matrix aik. We denote weak, strong
and weak-strong regimes with the superscripts w, s and ws, respectively.

Weak mutualism. If all mutualistic interactions are far from saturation zi � 1ð Þ
we approximate the effective mutualistic strengths as gLVðPÞ

ik 
 g0aðPÞik =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂ðAÞN̂ðPÞ
p

.
This is valid if all degrees d Pð Þ

i are smaller than the value dðPÞ;c¼1= hig0
�NN̂ðAÞ

� �
,

and equivalent for animals. In this case, it holds

mðPÞij ¼
ðg0Þ2

1�rðAÞ
X

k

aikaT
kj �

dðPÞi dðPÞj

SðAÞ þ SðAÞ0

" #
; ð27Þ

and a straightforward computation yields the critical competition and the
coefficient

rðPÞ;w;c 

dðAÞ=SðPÞ
� �2
D E

=k� F rðAÞ; SðAÞ
� �

k

1� F rðAÞ; SðAÞð Þ dðPÞ=SðAÞð Þ2
D E

=k
ð28Þ

xðPÞ;w¼ðg0Þ2SðAÞ

1�rðAÞ
k� F rðAÞ; SðAÞ

� � dðPÞi

SðAÞ

 !2* +" #
ð29Þ

where k¼
P

i
dðPÞi = SðAÞSðPÞ

� �
is the connectance, x2

k

� �
¼
P

k
x2

k=S and

F rðAÞ; SðAÞ
� �

� FðAÞ ¼ SðAÞ

SðAÞ þ SðAÞ0

¼ rðAÞSðAÞ

rðAÞSðAÞ þ 1�rðAÞ
ð30Þ

with S0
(A)¼ (1� r(A))/r(A). F(r(A), S(A))r1 is a measure of the richness of animal

species with respect to the biodiversity scale S Að Þ
0 . Since ~nðPÞ¼h dðAÞ=SðPÞ

� �2i=k and
~nðAÞ¼h dðPÞ=SðAÞ

� �2i=k are well approximated by the nestedness of plants and
animals, equation (5), we see that the critical competition increases with the
nestedness, making it more likely that mutualism reduces the effective competition.
For fully connected networks aik�1, k¼ 1, ~nðPÞ¼~nðAÞ¼1 and rc(P)¼ 1. Thus, we
recover the result of9 that fully connected mutualistic networks always
decrease the effective competition. The final result reff(P)¼r(P)� g0

2(1� r(P))
F(A)/r(A) coincides for small g0 with the formula reported in ref. 9.

Strong mutualism. In the strong mutualism limit zi � 1 the effective mutualistic

interactions are approximately given by gLVðPÞ
ik 
 gik

zið Þ2

 const

aðPÞik

dðPÞið Þ
2 , with

const ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂ðPÞ=N̂ðAÞ

q
=ðg0 hðPÞ �N

� �2
N̂ðAÞÞ. In this regime, the mutualistic matrix is

given by

mðPÞij ¼ const
1

dðPÞi

� �2

X
k

aðAÞik aðPÞkj

dðAÞk
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dðPÞi

SðAÞ þ SðAÞ0

X
l

aðAÞlj

dðAÞl

� �2

2
64

3
75; ð31Þ

which yields the critical competition

rðPÞ;s;c 

1

SðPÞ
P
ik

1

dðPÞið Þ
2

1
dðAÞk

aik � FðAÞ dðPÞi
SðAÞ

� �
P
ik

aik

dðPÞi dðAÞkð Þ2 1� FðAÞ dðPÞi
SðAÞ

� �

xðPÞ;s¼ 1

g0hðAÞhðPÞð Þ2 1� rðAÞð Þ
1

SðPÞ
X

ik

aik

dðPÞi dðAÞk

� �2 1� FðAÞ
dðPÞi

SðAÞ

 ! ð32Þ

where F(A) is given by equation (30). Once again, for fully connected networks it

holds rc(P)¼ 1, so that fully connected mutualistic networks decrease the effective
competition. For sparse networks, the term at the denominator of equation (32) is
always positive. For a random network with aik 
 dðPÞi dðAÞk =L, we see that the
term at the numerator is proportional to hdðAÞk =SðPÞi� 1 � FðAÞhðdðAÞk =SðPÞÞ� 1i,
which is negative unless k¼ 1 or F(A) is small. This suggests that in the strong
mutualism regime it holds r(P),s,co0 unless the connectance is large, and
mutualistic interactions increase the effective interspecific competition for all
values of r, as verified in our simulations.

Obligatory (weak–strong) mutualism. Finally, in obligatory weak–strong
mutualism animals are in the strong regime and plants are in the weak regime and
it holds

mðAÞij ¼
1

N̂ðPÞ hðAÞ �Nð Þ2
1

1� rðPÞð Þ
1

dðAÞi

� �2

X
k

akiakj �
dðAÞi dðAÞj

SðPÞ þ SðPÞ0

" #
;

mðPÞij ¼
1

N̂ðPÞ hðAÞ �Nð Þ2
1

1�rðAÞð Þ
X

k

aikajk

dðAÞk
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dðPÞi

P
k

ajk= dðAÞk

� �2

SðAÞ þ SðAÞ0

2
664

3
775;

ð33Þ

We see from this equation that the mutualistic matrix does not depend on g0 for
weak-strong mutualism, and therefore the effective competition parameter does
not depend on g0 either. The critical competition is

rðAÞ;ws;c 

1

SðAÞSðPÞ
P
ik

aki dðPÞk =SðAÞð Þ
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where x� 1h i¼ 1
S

P
i 1=xi . The deviation from pure competition is proportional to

N̂ðAÞ=N̂ðPÞSðPÞ , thus it is very small and it can be neglected.

Data and software availability. The artificial mutualistic networks with different
connectance and nestedness simulated in this study can be downloaded from the
url http://ub.cbm.uam.es/research/TheoreticalEcology/TheoreticalEcology.php.
The programs for the analytical prediction of structural stability given a mutualistic
network and a set of metaparameters, and for the computation of the critical
competition of a mutualistic network are available on request.
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