2 research outputs found

    ์†Œํ˜• ๋‹ฌ์ฐฉ๋ฅ™์„ ๊ณผ ๋กœ๋ฒ„์˜ ๋‹ฌ ๋ฐค๊ธฐ๊ฐ„ ์ƒ์กด์„ ์œ„ํ•œ ๋น„์šฉ ํšจ์œจ์  ์—ด์ œ์–ด ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๊น€๊ทœํ™.A lunar day is equivalent to a month on the Earth. As a result, the daylight period of a lunar day is extremely hot due to two weeks of sunlight, and lunar nights are extremely cold due to the lack of sunlight for an equally long period. During lunar nights, lunar probes have no energy access from sunlight, and are required to withstand two weeks under extremely cold conditions. Various devices have been proposed as solutions to ensure lunar landers and rovers are able to withstand two-week-long lunar nights. Certain methods utilize radioisotope heating units (RHU) and radioisotope thermoelectric generators (RTG), the heat source device and electric generator of lunar probes, respectively. In addition, radiator lids, which are thermal switches, have been applied for this purpose. Recently suggested ideas include thermal wadis, which are thermal storage devices, and devices that store energy from under the lunar surface during the lunar daytime. As such thermal stability devices are accompanied with problems such as high costs, safety problems, or limitations in terms of weight or design, small lunar probes opt to forsake survival during the two-week-long lunar night and are instead designed for missions during the two-week daytime period.๋‹ฌ์˜ ํ•˜๋ฃจ๋Š” ์ง€๊ตฌ์˜ ํ•œ๋‹ฌ์— ํ•ด๋‹นํ•˜๋ฉฐ, ํƒœ์–‘์ด ๋น„์น˜๋Š” ๋‹ฌ์˜ 2์ฃผ๋™์•ˆ์€ ๋งค์šฐ ๋œจ๊ฑฐ์šด ์ƒํƒœ์˜ ๋‹ฌ์˜ ๋‚ฎ๊ธฐ๊ฐ„์ด๊ณ , ํƒœ์–‘์ด ๋น„์น˜์ง€ ์•Š๋Š” ๋‹ฌ์˜ 2์ฃผ๋™์•ˆ์€ ๋งค์šฐ ์ฐจ๊ฐ€์šด ๋‹ฌ์˜ ๋ฐค๊ธฐ๊ฐ„์ด๋‹ค. ๋‹ฌ ํƒ์‚ฌ์„ ์€ ๋‹ฌ์˜ ๋ฐค๊ธฐ๊ฐ„๋™์•ˆ ํƒœ์–‘์œผ๋กœ๋ถ€ํ„ฐ์˜ ์—๋„ˆ์ง€ ๊ณต๊ธ‰๋„ ์—†๊ณ , ๋งค์šฐ ์ถ”์šด ์ฃผ๋ณ€ ํ™˜๊ฒฝ ๊ฐ€์šด๋ฐ์„œ 2์ฃผ๊ฐ„์˜ ๊ธด ๊ธฐ๊ฐ„์„ ๋ฒ„ํ…จ์•ผ ํ•œ๋‹ค. ๋‹ฌ ํƒ์‚ฌ๋ฅผ ์œ„ํ•œ ์ฐฉ๋ฅ™์„ ๊ณผ ๋กœ๋ฒ„์—๋Š” 2์ฃผ๋™์•ˆ์˜ ๋‹ฌ์˜ ๋ฐค๊ธฐ๊ฐ„๋™์•ˆ ์ƒ์กดํ•˜๊ธฐ ์œ„ํ•ด ๊ทธ๋™์•ˆ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์žฅ์น˜๊ฐ€ ์ œ์•ˆ๋˜๊ณ  ์‹œ๋„๋˜์–ด ์™”๋‹ค. ๋‹ฌ์˜ ๋ฐค๊ธฐ๊ฐ„๋™์•ˆ ๋‹ฌ ํƒ์‚ฌ์„ ์˜ ์—ด ๊ณต๊ธ‰์žฅ์น˜์ธ RHU(Radioisotope Heating Unit), ํ˜น์€ ์ „๊ธฐ ๋ฐœ์ƒ์žฅ์น˜์ธ RTG(Radioisotope Thermoelectric Generator)๋“ฑ์ด ์‚ฌ์šฉ๋˜์–ด ์™”๊ณ , ์—ด ๊ฐœํ์žฅ์น˜์ธ Radiator Lid๋“ฑ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ์—ด ์ €์žฅ ์žฅ์น˜์ธ Thermal Wadi๋‚˜ ๋‹ฌ์˜ ์ง€ํ‘œ๋ฉด ์•„๋ž˜์— ๋‹ฌ์˜ ๋‚ฎ๊ธฐ๊ฐ„ ๋™์•ˆ ์—๋„ˆ์ง€๋ฅผ ์ €์žฅํ•˜๋Š” ์žฅ์น˜ ๋“ฑ์˜ ์•„์ด๋””์–ด๋„ ์ œ์‹œ๋˜์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ์˜จ๋„ ์œ ์ง€์žฅ์น˜๋“ค์€ ๊ฐ€๊ฒฉ์ ์ธ ๋ฌธ์ œ๋‚˜ ์•ˆ์ „๋ฌธ์ œ ํ˜น์€ ๋ฌด๊ฒŒ๋‚˜ ๊ตฌํ˜„์˜ ์–ด๋ ค์›€ ๋“ฑ์˜ ๋ฌธ์ œ์ ์„ ๋™๋ฐ˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์†Œํ˜• ๋‹ฌํƒ์‚ฌ์„ ์˜ ๊ฒฝ์šฐ์—๋Š” ๋‹ฌ ๋ฐค ๊ธฐ๊ฐ„ ๋™์•ˆ์˜ ์ƒ์กด์„ ํฌ๊ธฐํ•˜๊ณ  ๋‹ฌ์˜ ๋‚ฎ ๊ธฐ๊ฐ„์ธ 2์ฃผ๋™์•ˆ๋งŒ์„ ์ž„๋ฌด๊ธฐ๊ฐ„์œผ๋กœ ์„ค๊ณ„๋˜์–ด ์ œ์ž‘๋˜๊ธฐ๋„ ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์†Œํ˜• ๋‹ฌ์ฐฉ๋ฅ™์„ ๊ณผ ๋กœ๋ฒ„๋„ 2์ฃผ๋™์•ˆ์˜ ๋‹ฌ์˜ ๋ฐค๊ธฐ๊ฐ„๋™์•ˆ ์ƒ์กดํ•  ์ˆ˜ ์žˆ๋Š” ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•˜์˜€๋Š”๋ฐ, ๊ทธ๊ฒƒ์€ MLI (Multi-Layer Insulation) curtain system์ด๋‹ค. MLI curtain system์€ ๋‹ฌ ์ฐฉ๋ฅ™์„ ์— Lid์™€ RHU๋“ฑ์˜ ์žฅ์น˜๋ฅผ ์ ์šฉํ•˜์—ฌ ๋‹ฌ์˜ ๋ฐค ๊ธฐ๊ฐ„ ๋™์•ˆ ์ƒ์กดํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ณ , ๋‹ฌ ํƒ์‚ฌ ๋กœ๋ฒ„๋Š” ๋‹ฌ ์ฐฉ๋ฅ™์„ ์˜ MLI curtain ์•ˆ์˜ shelter๋กœ ์ด๋™ํ•˜์—ฌ ์ƒ์กดํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋œ ์‹œ์Šคํ…œ์ด๋‹ค. MLI curtain system์€ ์†Œํ˜• ๋กœ๋ฒ„์˜ ๋‹ฌ ๋ฐค ๊ธฐ๊ฐ„ ์ƒ์กด์„ ์œ„ํ•˜์—ฌ ๊ทธ ์•„์ด๋””์–ด๊ฐ€ ๊ฐ„๋‹จํ•˜๊ณ  ์ ์€ ๋น„์šฉ์œผ๋กœ๋„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” MLI curtain system์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜์ ์ธ ์šฐ์ฃผ๋น„ํ–‰์ฒด ์—ด์„ค๊ณ„ ์—ดํ•ด์„ ๊ณผ์ •์„ ๋”ฐ๋ผ ์—ด์„ค๊ณ„์™€ ์—ดํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์—ด์„ค๊ณ„ ์š”๊ตฌ์กฐ๊ฑด์— ๋ถ€ํ•ฉํ•˜๋Š” ๊ฒฐ๊ณผ๋ฌผ์„ ์–ป์—ˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ MLI curtain system feasibility๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์—ด์ œ์–ด ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ตฌ์กฐ, ์ „๋ ฅ, ์†Œํ”„ํŠธ์›จ์–ด ์ธก๋ฉด์—์„œ ๊ณ ๋ คํ•  ์ ๋„ ๋…ผํ•˜์˜€์œผ๋ฉฐ, MLI curtain system์˜ ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์•„์ด๋””์–ด๋„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ MLI curtain system์€ ์†Œํ˜• ๋กœ๋ฒ„์˜ ๊ธด ์ž„๋ฌด๊ธฐ๊ฐ„ ๋™์•ˆ์˜ ์ƒ์กด์„ ์œ„ํ•ด ์‹คํ˜„ ๊ฐ€๋Šฅํ•˜๊ณ  ์ ํ•ฉํ•œ ์•„์ด๋””์–ด์ž„์„ ์ฆ๋ช…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.CHAPTER 1. INTRODUCTION 1 1.1 History of Lunar Exploration Programs 1 1.2 Specifications of Unmanned Lunar Rovers 4 1.3 Thesis Objective and Proposal 9 CHAPTER 2. THERMAL DESIGN OF LUNAR EXPLORATION VEHICLES 11 2.1 General Spacecraft Thermal Design Process 11 2.2 Thermal Environment of the Moon. 16 2.3 Thermal Hardware of Lunar Exploration Vehicles . 20 2.4 Thermal Design of Lunar Landers and Rovers . 31 CHAPTER 3. METHODS OF LUNAR NIGHT SURVIVAL 33 3.1 Nuclear Energy 33 3.2 Lid System 34 3.3 Feasible Proposals. 36 3.4 A Proposal of MLI Curtain System. 39 3.5 Cost Effectiveness of MLI Curtain System. 42 CHAPTER 4. IMPLEMENTATION OF THE MLI CURTAIN SYSTEM. 44 4.1 Technical Challenges of the MLI Curtain System 44 4.2 The Shape of MLI Curtain 51 4.3 Suggestion of the Rover without Solar Cells 52 CHAPTER 5. THERMAL MODELING. 53 5.1 Governing Equation 53 5.2 Thermal Modeling Method of Lunar Surface . 58 5.3 Thermal Modeling of Lunar Regolith and Verification. 63 5.4 Thermal Modeling of the Lunar Lander and the Rover 69 CHAPTER 6. THERMAL ANALYSIS . 75 6.1 Thermal Design Requirements of the Lander and Rover 75 6.2 Thermal Analysis Case 76 6.3 Analysis Result of the Radiator Area and a Number of RHU. 81 6.4 Temperature Trends of the Lunar Lander and the Rover 83 6.5 Analysis of the Influence of the RHUs and Lid 94 6.6 Regolith Temperature Analysis according to the Effect of the MLI Curtain 96 6.7 Thermal Analysis considering the Fluff Layer being Blown Away 98 6.8 Summary of Thermal Analysis Results. 102 CHAPTER 7. CONCLUSIONS 103 REFERENCES. 105 ์ดˆ ๋ก 112Docto
    corecore