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Abstract 

Cost-Effective Thermal Control System of 

Small Lunar Landers and Rovers for  

Lunar Night Survival 
Jang-Joon Lee 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

A lunar day is equivalent to a month on the Earth. As a result, the daylight period of 

a lunar day is extremely hot due to two weeks of sunlight, and lunar nights are extremely 

cold due to the lack of sunlight for an equally long period. During lunar nights, lunar 

probes have no energy access from sunlight, and are required to withstand two weeks 

under extremely cold conditions. 

Various devices have been proposed as solutions to ensure lunar landers and rovers 

are able to withstand two-week-long lunar nights. Certain methods utilize radioisotope 

heating units (RHU) and radioisotope thermoelectric generators (RTG), the heat source 

device and electric generator of lunar probes, respectively. In addition, radiator lids, 

which are thermal switches, have been applied for this purpose. Recently suggested ideas 

include thermal wadis, which are thermal storage devices, and devices that store energy 

from under the lunar surface during the lunar daytime.  
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As such thermal stability devices are accompanied with problems such as high costs, 

safety problems, or limitations in terms of weight or design, small lunar probes opt to 

forsake survival during the two-week-long lunar night and are instead designed for 

missions during the two-week daytime period. 

This study proposes a new idea to enable small lunar landers and rovers to withstand 

the two-week-long lunar night: the multi-layer insulation (MLI) curtain system. The MLI 

curtain system uses devices such as a lid and RHU of the lunar lander to ensure lunar 

night survival, whereas the lunar rover enters into the shelter provided by the MLI curtain 

to survive during this period. This system has the advantage of being a relatively 

simplistic idea to ensure small lunar rovers can survive lunar nights, and is a low-cost 

solution. 

In this study, the feasibility of the MLI curtain system was verified by conducting 

thermal design and thermal analysis according to general thermal design and analysis 

processes for spacecrafts. This produced a final result that met the thermal design 

requirements. Furthermore, to improve the feasibility of the MLI curtain system, the 

system is discussed not only from a thermal control standpoint, but also from structural, 

electric power, and software perspectives, resulting in ideas that could be suggested to 

improve the stability of the MLI curtain system. As a result, the MLI curtain system 

could prove to be a feasible and suitable idea to ensure the survival of small lunar rovers 

over long mission periods. 

Keywords: Thermal Design, Thermal Analysis, Lunar Rover, Lunar Lander, Lunar 

Night Survival, MLI Curtain 

Student Number: 2013-30208 
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Chapter 1. Introduction 

1.1 History of Lunar Exploration Programs 

Mankind’s history in lunar exploration began with the Luna 1 of the former Soviet 

Union, which flew to the vicinity of the Earth’s Moon in 1959. This was followed by 

Luna 2, which became the first spacecraft from Earth to contact the Moon’s surface, and 

Luna 3 took the first photographic images of the far side of the Moon. Subsequent 

missions were taken to contact the Moon’s surface or approach its orbit, and in 1966, the 

former Soviet Union succeeded in the first soft landing on the Moon’s surface with Luna 

9 [57]. 

Lunar exploration gained significant funding due to the Cold War between the United 

States and the former Soviet Union. The U.S. launched unmanned probes as the former 

Soviet Union were undertaking their lunar exploration missions, and in order to explore 

the potential of manned lunar missions, the U.S. undertook hard landing and soft landing 

programs referred to as the Ranger series and Surveyor series, respectively. Based on the 

lunar environment data obtained through these programs, the U.S. established the Apollo 

manned lunar exploration program. In 1968, the crew of the manned spacecraft Apollo 

8 became the first humans to view the surface of the far side of the Moon upon entering 

the Moon’s orbit, and in 1969, astronaut Neil Armstrong of the Apollo 11 crew became 

the first human in history to set foot on the Moon. The U.S. invested a considerable 

amount of money into the lunar exploration program to ensure successful breakthroughs 

within a short period of time, from hard landings on the Moon to manned missions. The 
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U.S. continued with its lunar exploration program, with the Apollo 17 mission in 1972 

being the most recent manned mission to the Moon [57]. 

The lunar landing and exploration missions of the U.S. and the former Soviet Union 

were concluded in the mid-1970s, and funding were redirected to more challenging 

scientific missions to celestial bodies further away, such as Mars and Venus. 

Entering the 1990s, Japan became the third nation to approach the vicinity of the 

Moon through its Hiten spacecraft [58], and this was followed by SELENE, which was 

launched for a mission in the Moon’s orbit that lasted one year and eight months. 

SELENE concluded its mission as it collided with the Moon’s surface as planned [59]. 

Japan had planned a SELENE 2 mission with a rover, although a specific development 

and launch schedule has yet to be decided. 

The European Space Agency launched the SMART-1 lunar orbit satellite in 2003, 

which conducted a lunar observation mission [60]. 

China launched the lunar-orbiting spacecraft Chang’e 1 in 2007 for a lunar mission. 

In 2013, the lunar landing spacecraft Chang’e 3 was launched to explore the lunar surface, 

which was the first lunar surface exploration mission since the former Soviet Union’s 

Luna 24 mission in 1976. In 2019, Chang’e 4 became the first spacecraft to land on the 

far side of the Moon [61]. 

India launched the lunar-orbiting spacecraft Chandrayaan-1 for a mission in 2008, 

which was followed by the launching of Chandrayaan-2 in 2019 for an observation 

mission from the Moon’s orbit. The lunar surface lander and rover were unsuccessful in 

their missions [62]. 
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The U.S. restarted its lunar exploration program in 1994 with the Clementine mission. 

Lunar Prospector, which was launched in 1998, completed its 1.5-year mission, and the 

Lunar Reconnaissance Orbiter launched in 2009 is still conducting its lunar observation 

mission as of 2020 as it was launched with sufficient fuel onboard [57]. 
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1.2 Specifications of Unmanned Lunar Rovers 

As the subject of this thesis is unmanned lunar rovers, we will review the main 

specifications of unmanned lunar rovers, excluding vehicles that were a part of the U.S. 

Apollo program. Table 1.1 summarizes the specifications of unmanned lunar rovers that 

have been manufactured and launched to date. 

Table 1.1 Specifications of unmanned lunar rovers 

Project Title 

(Spacecraft / 

Rover) 

Luna 17 / 

Lunokhod 1 

[37] 

Luna 21 / 

Lunokhod 2 

[37] 

Chang’e-3 / 

Yutu [37] 

Chang’e-4 / 

Yutu 2 

Chandrayaan-2 

/pragyan [38] 

Mission Date 
1970.11 ~ 

1971.9 

1973.1 ~ 

1973.5 

2013.12 ~ 

2016.8 
2019.1 ~ 

2019.09 ~ 

2 weeks (fail) 

Total Mass 5600 kg 4850 kg 3800 kg - 3850 kg [37] 

Lander Dry Mass - 1814 kg 1200 kg 1200 kg [39] 1471 kg  

Rover Mass 756 kg [7] 840kg 140 kg 140kg [39] 27 kg  

Landing Site 38°N 35°W 26°N 30°E 44°N 20°W 
46°S 178°E 

[40] 
71°S 23°E [19] 

Country USSR USSR China China India 

Survival Method of 

the Rover during 

Lunar Nights  

RHU [8] RHU [8] RHU [41] RHU N/A 

 

1.2.1 Lunokhod Series 
Developed as part of the lunar program of the former Soviet Union, Lunokhod 1 was 

the first rover to successfully perform its mission on the lunar surface. An image of 
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Lunokhod 1 is shown in Figure 1.1 [49]. 

 
Figure 1.1 Mockup of Lunokhod 1 at the Memorial Museum of Astronautics [49] 

In Figure 1.1, we can see the unfolded solar panel that supplies power to the rover. 

This is a configuration that involves charging the battery during the lunar daytime via 

sunlight to gather the power required for the rover’s mission. The white surface on the 

top of Lunokhod 1 is a radiator that has a coating with low solar absorptivity and high 

infrared emissivity [7]. The material of the radiator coating is presumed to be white paint, 

which serves to dissipate waste heat inside the rover to the outside during hot lunar days. 

As solar heat is absent during lunar nights, the rover is exposed to an extremely cold 

surrounding environment during these periods. For this reason, Lunokhod 1's solar panel 
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(lid) was folded to prevent heat loss. Moreover, Lunokhod 1 was equipped with an RHU 

[8], which supplies heat during lunar nights to ensure all parts of the rover were 

controlled within the allowable temperature, allowing the rover to survive such cold 

conditions. Lunokhod 1 was a large rover with a mass of 756 kg, and the rover itself 

could be equipped with a lid opening and closing system, RHUs, and a large-capacity 

battery. 

Figure 1.2 [45] shows a mockup of Lunokhod 2. The specifications of Lunokhod 2 

were similar to Lunokhod 1, and both had the same thermal design. 

 
Figure 1.2 Mockup of Lunokhod 2 at the Memorial Museum of Astronautics [45] 
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1.2.2 Yutu Series 
The first lunar lander launched by China, Chang'e 3, was equipped with a Yutu rover. 

Figure 1.3 [46] shows the shape of Yutu through a photograph taken by Chang’e 3 during 

actual Yutu activity on the lunar surface. 

 
Figure 1.3 Yutu rover on the lunar surface, photographed by the Chang’e 3 lander [46] 

The Yutu rover had a mass of 140kg [37] and landed with the lunar lander Chang'e 

3. Originally, Yutu was designed with a mission life of three months, but the rover 

managed to last 31 months.  

In Figure 1.3, we can see that Yutu's solar panels are facing away from the lunar 
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surface. In addition, Yutu was equipped with RHUs to survive during lunar nights [41]. 

As in the case of the Lunokhod series, Yutu is presumed to be designed with a radiator 

to release the rover's waste heat in the upward direction of the body. It has yet to be 

confirmed whether the solar panels were used as lids to cover the radiator during lunar 

nights. 

Yutu 2 is a rover that was mounted on the lunar lander Chang'e 4 launched in January 

2019. Yutu 2 is almost identical in size and mass as Yutu 1, but the former’s mission area 

is on the far side of the Moon from the Earth. Yutu 2 was originally designed for a 

mission life of three months, but it has survived beyond this period and is still performing 

its mission as of May 2020. Yutu 2 is also equipped with RHUs like Yutu 1 to survive 

during lunar nights, and is presumed to have the same thermal design as Yutu 1. 

 

1.2.3 Pragyan 
Chandrayaan 2 was launched in September 2019 and consisted of a lunar orbiter, the 

lunar lander Vikram, and the rover Pragyan. Vikram and Pragyan were originally planned 

to perform a mission for 0.5 lunar days (14 days on Earth) [47], but Vikram failed to 

perform a soft landing on the lunar surface and could not achieve its mission. The Vikram 

lander had a mass of 1471 kg and the Pragyan rover weighed 27 kg [47]. 

Vikram and Pragyan were able to generate electrical power through installed solar 

cells [47]. Both could only survive for a short period of two weeks, which is equivalent 

to the period of lunar daytime. It is believed that survival was not possible during lunar 

nights as no RHUs were installed. 
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1.3 Thesis Objective and Proposal 

As described in the previous section, lunar surface exploration projects, which halted 

during the mid-1970s, have recently seen a revival in countries like China, Japan, India, 

and the United States. The Republic of Korea also aims to join the Moon exploration 

competition by setting a target to launch a test lunar orbiter in 2021 and a lunar lander in 

2030. 

Spacecraft development is a costly endeavor. Commercial Earth observation satellites 

amount to hundreds of millions of dollars, and thus lunar exploration projects are 

promoted at the national level. A factor that greatly influences the cost of spacecraft 

development is the mass of the spacecraft. Previous studies on the correlation between 

spacecraft mass and cost [26], [50] have shown that the overall mission cost significantly 

increases as the spacecraft mass increases. The approximate relationship between 

satellite mass and cost was derived by M. Mirshams et al.[26]: the mass and cost 

relationship for scientific satellites with masses ranging from 10 kg to 1000 kg is given 

by Eq. 1.1 [26]. 

 

𝑌𝑌 = 0.0008 ∗ 𝑥𝑥2.2459                                          (Eq. 1.1) 

 

In Eq. 1.1, the unit of x is kg and the unit of Y is M$. By using Eq. 1.1 to calculate the 

mass to cost ratios of a 300kg satellite and a 900kg satellite, we can determine that the 

900kg satellite, despite having three times the mass of the 300kg satellite, results in costs 

11.8 times greater.  
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Although Eq. 1.1 is a satellite formula, the fact that the development cost of a lunar 

lander and rover increases as the mass increases remains the same. Therefore, the 

purpose of this thesis is to determine a means of achieving long mission times even with 

small mass rovers, which would help save the cost of lunar exploration projects to suit 

the situation of Korea. 

The subject of this study are small rovers with a mass range of 20~30 kg. For small 

lander and rover programs, it is difficult to set up an RHU or RTG system in small rovers. 

For this reason, small rovers have not been able to survive lunar nights until recently. As 

shown in Table 1.1, rovers that perform long-term missions exceeding two weeks have 

masses of at least 100 kg. In contrast, the 27 kg small rover that was loaded in 

Chandrayaan-2[38] was designed for short-term missions of less than two weeks. 

This study proposes a lunar night survival method involving an MLI curtain system 

that enables small rovers of 20~30kg to perform long-term missions. The system can be 

summarized as a small rover without an RHU that performs mission tasks during the 

daytime and continues to survive in an MLI curtain shelter that is part of the lunar lander 

during lunar nights. The rover can perform short missions even during lunar nights 

according to power margins, and it can perform missions again upon the return of the 

lunar day. In order to prove the feasibility of the MLI curtain system for lunar night 

survival, this study introduces a thermal model of a lunar lander and a rover in a lunar 

thermal environment and presents the analysis results. 



CHAPTER 2. Thermal Design of Lunar Exploration Vehicles 

 

11 

 

Chapter 2. Thermal Design of Lunar Exploration Vehicles 

2.1 General Spacecraft Thermal Design Process 

Spacecraft thermal design is a complex and iterative process that constantly requires 

repetition and review to conform with a wide array of other systems. Hence, the thermal 

design process only concludes with the launch of the spacecraft. Spacecraft thermal 

design can be largely divided into the thermal hardware design process and the thermal 

analysis process with the goal of satisfying system requirements. The two processes 

exchange input information with each other and undergo an iteration process of 

readjustment through the sharing of design results. 

The design of a spacecraft should adhere to the intended mission. For example, a 

cube satellite on a month-long mission does not require advanced components for space 

radiation. On the other hand, large geostationary satellites with mission durations 

exceeding 10 years require significant amounts of fuel to maintain orbit and attitude. In 

the same manner, the thermal design of a spacecraft should be in accordance with its 

mission duration, mission environment, and payload characteristics. 

In spacecraft thermal design, input variables are required for thermal analysis. 

Environmental variables require information such as the satellite's external shape, orbit 

configuration, altitude information, and mission life. In addition, the process requires the 

following information: the thermal properties of components, unit allocation information, 

unit operating time, heat dissipation, surface optical properties, external surface finishes, 

MLI (Multi-Layer Insulation) material, heater capacity, and the location and size of the 
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radiator. Using this information, a geometric model for thermal analysis can be 

developed. 

 

 
Figure 2.1 Design process flowchart for thermal control subsystems [1] 

 

Once the geometric model is constructed, a thermal mathematical model can be 

developed by discretizing the geometric model, calculating the radiative heat exchange 

coefficient and the external heat inflow. With the completion of the thermal mathematical 

model, it is possible to calculate the expected heat flux and temperature of the spacecraft 

through simulations of mission scenario cases. If the derived thermal analysis results 
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meet the temperature requirements of all components, the thermal design is deemed 

complete. Conversely, if the thermal analysis results do not meet the temperature 

requirements, a new design is derived through the thermal control hardware design 

process, and the iteration process is again performed for thermal analysis to determine if 

the new results meet the temperature requirements. This process is illustrated in Figure 

2.1 [1]. 

A spacecraft cannot modify its configuration after leaving Earth. For this reason, in 

order to increase the reliability of the spacecraft, the thermal control subsystem should 

be designed with the assumption of worst-case conditions and should include 

redundancy designs, and a design with uncertainty margins. In other words, the thermal 

analysis in the thermal design process should be performed with the potentially coldest 

and hottest conditions, and all thermal control hardware should have redundancies.  

The resource for a spacecraft's thermal control system is its power demand. If the 

uncertainty margin of the thermal control system is too large, the power demand of the 

spacecraft increases. This leads to an increase in spacecraft development costs due to 

increases in solar panel size, battery capacity, and power distribution channel. Therefore, 

it is important to properly set the uncertainty margin of the thermal control system. 

Figure 2.2 shows a guideline for the design temperature of a thermal control system 

proposed by the European Space Agency [13]. 
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Figure 2.2 Temperature definitions for thermal control systems [13] 

 

In Figure 2.2, the predicted temperature range is derived from the calculated 

temperature range by including the uncertainty of the temperature calculation range, 

assuming worst cases. As such, the calculated temperature range should be encompassed 

within the design temperature range. Manufacturers of spacecraft equipment are required 

to develop their equipment with an appropriate acceptance margin from the design 

temperature range for flight models. In the case of qualification models, in addition to 

the acceptance temperature range, verifications are required for the temperature range in 

which the qualification margins are secured. 

It is necessary to verify the derived thermal design results, and the final verification 

is usually performed through the thermal vacuum test of the flight model. Figure 2.3 

shows a photograph of the satellite thermal vacuum test. 
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Figure 2.3 Satellite thermal vacuum test 

 

By comparing the temperature results obtained from the thermal vacuum test with 

the thermal analysis results, the correlation process of the thermal mathematical model 

is performed. As a result, the thermal control hardware is rearranged according the 

corrected thermal analysis model. Through this process, the final satellite shape is 

determined. The spacecraft thermal control system design process is concluded with the 

design of the final shape of the MLI after the spacecraft is combined with the launch 

platform for launch. The final confirmation of the spacecraft's thermal design results is 

verified through telemetry, which is sent from the spacecraft to the Earth's station. 
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2.2 Thermal Environment of the Moon 

A conceptual diagram of the orbital shape of the Sun, Earth, and Moon is shown in 

Figure 2.4. 

 
Figure 2.4 Relative motion of the Earth and Moon 

 

The Moon is constantly influenced by the Earth's gravity, and always faces the Earth 

with the same side. The Moon's orbit and rotation cycle are the same length, and a day 

on the Moon relative to the Sun is equivalent to 29.5 Earth days. The daytime period on 

the Moon corresponds to approximately two weeks, which is half the full day period. 

Likewise, the remaining two weeks corresponds to the night period of the Moon.  

The ecliptic plane of the Earth’s orbit around the Sun and the lunar orbit plane of the 
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Moon’s orbit around the Earth do not lie in the same plane. Just as there is a constant 

angle between the Earth's rotational axis and its orbital plane, there is also a constant 

angle between the Moon's rotational axis and its orbital plane. Figure 2.5 shows a 

conceptual diagram of the relative relationship between the Moon's orbital plane and its 

axis of rotation [54]. 

 
Figure 2.5 Diagram of the Moon’s orbit with respect to the Earth [54] 

 

As illustrated in Figure 2.5, an angle of 5.14˚ exists between the orbital plane of the 

Moon and the orbital plane of the Earth, and an angle of 6.68˚ exists between the axis of 

rotation and orbital plane of the Moon. This indicates that the Moon’s equator only 

deviates from its orbital plane by 1.54˚. This means that even if thermal analysis is 

performed by setting the angle between the axis of rotation and ecliptic plane of the 

Moon as 88.46˚ ≅90˚, the analysis results will exhibit little variation. 

On the other hand, due to the Moon lacking any form of atmosphere like the Earth’s 
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atmosphere, there is no absorption layer for incident sunlight. Furthermore, the absence 

of an atmosphere also means there is no convection, and thus energy exchange does not 

occur between the surfaces of the Moon. As a result, the temperature of the Moon's 

surface is extremely hot in the area exposed to sunlight, and the temperature of the 

Moon's surface exhibits a cosine distribution according to the angle of incidence of 

sunlight [13]. Conversely, the temperature of the opposite surface where sunlight does 

not enter becomes extremely cold. 

 
Figure 2.6 Surface temperatures of the Moon expressed in (a) cylindrical equidistant 

projection and (b) orthographic projection (subsolar longitude at 180˚, 120˚, and 0˚)[24] 
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Measurement values of the surface temperature of the Moon include estimated values 

based on the data measured by Apollo 11 to 13 as well as results of recent studies based 

on the measured values of LRO (Lunar Reconnaissance Orbiter) satellites [24]. The 

figure showing the surface temperature of the Moon in Figure 2.6 is cited in Ref. [24]. 

According to Figure 2.6, the maximum temperature of the Moon's surface that is 

exposed to sunlight reaches 400K or higher, and the temperature of the Moon's surface 

where sunlight does not enter is below 100K. As such, it is clear that the lunar surface 

exhibits extreme temperature variations. 

Furthermore, it is also known from the experimental results of Apollo 11 that the 

substances that comprise the lunar surface have exceptionally low heat transfer 

coefficients and heat capacities [2]. Therefore, even during lunar daytime periods, if a 

shadow is generated by an object, the temperature under the shade remains low in 

contrast to the surrounding hot temperature. 
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2.3 Thermal Hardware of Lunar Exploration Vehicles 

This section describes the thermal control hardware to be applied to lunar landers 

and rovers that will be discussed in this thesis. 

 

2.3.1 MLI (Multi-Layer Insulation) 
MLI, which can be viewed as a spacecraft's clothing, refers to multiple layers of 

metal with low emissivity. MLI is used as insulation in space. Figure 2.7 explains the 

principle of MLI. 

 

 
Figure 2.7 Heat flow configuration of MLI 
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The principle of MLI is based on the fact that the only heat transfer paths in outer 

space are conduction and radiation, as convection is not possible. MLI cuts the 

conduction path by placing spacers between the multiple layers of metal. MLI also 

blocks radiation by placing a layer of metal with low emissivity in the heat transfer path. 

According to Figure 2.7, heat transfer occurs through radiation from the hot side to the 

cold side. Shields located in the middle region are made of metal with low emissivity, so 

the shields reflect most of the radiant energy and absorb only a small amount. As the 

radiant energy passes through the shields across several stages, the amount of energy 

transferred rapidly decreases, and almost no energy reaches the cold side. The 

temperature of the hot and cold sides of the MLI can be continuously maintained at hot 

and cold states, respectively.  

In MLIs, the shield material of choice is aluminum (VDA, Vacuum Deposited 

Aluminum) with an emissivity value of 0.03. In addition, polyimide or polyester 

materials are used to maintain the shape of aluminum in MLIs. As the layer constituting 

the MLI is very thin, MLIs can be easily manufactured with a 3D shape in addition to 

atypical shapes. Figure 2.8, Figure 2.9 [51], and Figure 2.10 introduce design examples 

and actual appearances of MLIs. 
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Figure 2.8 Example of MLI Layer Design 

 

 
Figure 2.9 Inner Configuration of an MLI [51] 
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Figure 2.10 MLI installation on a satellite 

 

2.3.2 SSM (Second Surface Mirror) 
Whereas MLIs insulate space vehicles from outer space, an SSM acts as a channel 

for radiating the spacecraft's waste heat into space. SSMs are mounted on the outer panel 

of a spacecraft and are applied to a fixed area. SSMs are also referred to as optical solar 

radiators (OSR). The ultimate heat sink of a spacecraft is deep space, which approaches 

the absolute temperature of 0K. SSMs achieve heat dissipation through a radiation 

mechanism. To explain the basic principle of radiative heat transfer in radiators, we begin 

with the equation for the radiant energy of a black body, shown in Eq. 2.1 [3]. 
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𝐸𝐸𝑏𝑏𝑏𝑏(𝜆𝜆,𝑇𝑇) =  𝐶𝐶1
𝜆𝜆5[exp (𝐶𝐶2/𝜆𝜆𝜆𝜆)−1] (𝑊𝑊/𝑚𝑚2 ∙ 𝜇𝜇𝜇𝜇)                       (Eq. 2.1) 

 

where C1= 3.742 x 108 W·μm4/m2 and C2= 1.439 x 104 μm·K. Additionally, T is the 

absolute temperature of the surface and λ is the wavelength of the emitted radiation. The 

variation in spectral black body emissive power according to wavelength is plotted in 

Figure 2.11 [3]. 

 

 
Figure 2.11 Emissive power according to wavelength for various temperatures [3] 
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Figure 2.11 shows the radiant energy of a black body; the radiant energy of an actual 

object is lower than the value shown in the graph. In Figure 2.11, the surface of the Sun, 

which corresponds to temperatures of 5800K, emits various forms of radiation in the 

ultraviolet, visible, and infrared regions, whereas a spacecraft corresponding to 

temperatures of 300K emits energy only in the infrared region. 

Actual objects are generally not black bodies and exhibit highly irregular patterns of 

radiant energy. However, an actual object with an irregular radiation pattern can be 

assumed to be a gray surface with a radiation pattern similar to a black body. Emissivity 

is the ratio of energy emitted by a gray surface to the energy emitted by a black body. 

Figure 2.12 shows examples of radiation patterns of a real surface and a gray surface [3]. 

 
Figure 2.12 Emissivity power of a real surface, a black body, and a gray surface [3] 
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In Figure 2.12, the real surface can be assumed to be a gray surface, and the 

emissivity (ε) concept can be introduced to express the amount of radiant energy of an 

object. As shown in Figure 2.12, the surface radiation energy of a real object (𝐸𝐸𝜆𝜆) is 

assumed to be a gray body and can be expressed as Eq. 2.2. Here, emissivity (ε) has a 

range of 0 < ε <1 and 𝐸𝐸𝑏𝑏𝑏𝑏 is black body energy. 

 

𝐸𝐸𝜆𝜆 = 𝜀𝜀 𝐸𝐸𝑏𝑏𝑏𝑏                                                   (Eq. 2.2) 

 

The radiant energy emitted by object A is a function of the wavelength corresponding 

to the temperature of object A's surface. However, the incident energy on object A is a 

function of the wavelength corresponding to the surface temperature of object B, which 

emits energy. For this reason, the radiator of a spacecraft must have high emissivity (ε) 

in the infrared region, which is the wavelength region for waste heat emission, and low 

absorption (α) in the wavelength region of solar heat inflow. The main performance index 

for a radiator is the ratio α/ε, with a lower index value corresponding to better 

performance. 

White paint has a solar absorption value of approximately 0.2 and a surface 

emissivity value of 0.9. Therefore, it can serve as an excellent radiator with an α/ε ratio 

of 0.45. However, an SSM with an α/ε ratio half the value of white paint is still superior 

as a radiator. To explain, Figure 2.13 illustrates the principle of SSMs [2]. 
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Figure 2.13 Energy path of Second-Surface Mirror [2] 

An SSM is a device that applies a metal coating to transparent materials such as 

Teflon. Metal materials have low solar absorption and low surface emissivity. The 

incident sunlight from the outside passes through the transparent material such as Teflon 

and is reflected off the metal surface. The outer layer of an SSM, being comprised of 

Teflon, allows infrared heat radiation to pass through. Due to the low solar absorptivity 

of metals, most of the solar energy is reflected back to the outside. This, in addition to 

the relatively high emissivity of the outer Teflon surface, allows SSMs to have low solar 

absorptivity and high emissivity. SSMs are shaped like a mirror and are the most notable 

form of spacecraft radiators. Figure 2.14 shows an actual SSM mounted on a spacecraft 

structure. 
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Figure 2.14 An SSM installed on a spacecraft panel 

 

2.3.3 RTGs and RHUs 
Radioisotope thermoelectric generators (RTGs) provide electrical energy to 

spacecraft on missions that do not depend on sunlight. For example, it was applied to the 

Viking lander that operated on the surface of Mars as well as Voyager that undertakes 

missions outside the Solar System. RTGs supply energy by converting thermal energy 

generated through nuclear fission into electrical energy. RTGs have the advantage of 

being able to produce energy even in the absence of sunlight. However, there are several 

disadvantages to the technology, such as high development and production costs, safety 

problems due to radioactivity concerns, and decreased power production as nuclear 

fission progresses. Furthermore, the operation of an RTG cannot be stopped even when 
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it is desirable to cease the generator, and a separate device is required to dissipate the 

waste heat. In addition, RTGs generate energy with poor efficiency levels of 

approximately 10%, meaning 90% of the energy is discarded into deep space through 

fins [4]. Figure 2.15 [52] illustrates an example of an RTG and its configuration. 

 
Figure 2.15 Configuration of a GPHS RTG [52] 

 

Due to the low efficiency and high cost of RTGs, radioisotope heater units (RHUs) 

were developed as an alternative. RHUs omit the process of converting heat into 

electricity in RTGs and use heat from nuclear fission instead of an electric resistance 

heater [2]. RHUs, like RTGs, have disadvantages arising from fission and radioactivity. 

On the other hand, RHUs have advantages in terms of the relatively low cost and 
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relatively high efficiency compared to RTGs. RHUs can be developed in small sizes and 

can supply heat by being installed in multiple positions according to the thermal design. 

Figure 2.16 shows an example of an RHU and its configuration [2]. 

 
Figure 2.16 Configuration of a radioisotope heater unit (RHU) [2] 
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2.4 Thermal Design of Lunar Landers and Rovers 

As seen in Section 2.2, the lunar surface exhibits extremely high temperatures of 

approximately 400K during the day, and extremely low temperatures of approximately 

100K during the night. In general, a spacecraft unit is developed with an allowable 

temperature range of approximately 250K ~ 330K. Due to the vast difference in lunar 

surface temperatures throughout a day on the Moon, the spacecraft's temperature could 

increase beyond the allowable high temperature limit during the daytime, or decrease 

below the allowable low temperature limit during the nighttime. Therefore, if the Moon 

surface and the space vehicle exhibit strong thermal coupling, it will become 

exceptionally difficult to control the temperature of the spacecraft within the allowable 

temperature range. For this reason, it is necessary to thermally separate the spacecraft 

from the lunar surface, and it is desirable for landers and rovers to direct the radiator in 

the opposite direction to the lunar surface to reduce thermal coupling with the lunar 

surface. In the case of the Lunokhod series, the Yutu series, and Pragyan discussed in 

Section 1.2, radiators are placed on top of the rover. 

The duration of missions on the lunar surface also affects the thermal design of lunar 

landers and rovers. The Lunokhod series and Yutu series were required to survive during 

the daytime and nighttime phases of the Moon due to mission periods exceeding two 

weeks. In order to survive during lunar nights, it is necessary to minimize the leakage of 

heat to the outside, and a heat source should be prepared to maintain the units within the 

allowable temperature range during the night period. The Lunokhod series used RHUs 
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as heat sources for survival during lunar nights and minimized heat leakage by covering 

the radiator with a lid. The Yutu series vehicles were also thermally designed to survive 

lunar nights using RHUs as heat sources. As Pragyan was purposed for a mission lasting 

two weeks, it was designed to survive only during the lunar daytime. Therefore, heat 

sources such as RHUs necessary for survival during lunar nighttime periods were not 

considered. 

Lunar night survival is a task that encompasses significant challenges and one that is 

essential if lunar landers and rovers are to perform missions longer than two weeks. 

Although heat sources are essential for lunar night survival, the inclusion of such 

technology can lead to significantly higher costs and greater technical challenges. In 

Chapter 3, several methods and features of lunar night survival are described in detail. 
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Chapter 3. Methods of Lunar Night Survival 

3.1 Nuclear Energy 

Lunar landers and rovers that perform missions exceeding a month (one lunar day) are 

required to survive in a temperature environment of -190℃ for two weeks without any 

supply of heat from external heat sources such as solar heat. As lunar landers or rovers 

cannot survive without a heat source during this period, most lunar exploration programs 

employ RHU (Radioisotope Heating Units) or RTG (Radioisotope Thermoelectric 

Generators)[8] for lunar night survival, as described in Table 1.1. 

As of the time of this writing, survival methods for lunar nights that have been 

successfully proven still use RHU or RTG systems. Table 1.1 summarizes the 

specifications of unmanned rovers and landers, not including US manned mission, to 

compare with the subject of this study. Table 1.1 shows that all past unmanned lunar 

surface exploration missions involved the use of RHU or RTG systems. 
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3.2 Lid System 

As discussed in Section 2.1, the thermal design of a spacecraft is based on the worst 

possible thermal environment conditions. Under the potentially hottest conditions that a 

spacecraft can be subjected to, the thermal design should adjust the radiator size to ensure 

the temperature of spacecraft components do not exceed the maximum allowable 

temperature. Additionally, thermal design processes are undertaken to determine the 

capacity of heaters within the power budget limit allocated to the thermal control system, 

ensuring that the determined spacecraft shape can maintain the minimum allowable 

temperature under the potentially coldest conditions. 

In spacecraft such as lunar landers, a lid can be used to maintain an open 

configuration under hot conditions to release waste heat from the spacecraft. Moreover, 

the lid can also maintain a closed configuration to prevent temperature drops in the 

spacecraft under cold conditions. In the case of most spacecraft, if the radiator is 

increased to lower the temperature of the spacecraft under hot conditions, this is 

inevitably accompanied by an increase in heater power consumption under cold 

conditions. However, the use of a lid system can suppress the latter increase in heater 

power consumption.  

In the case of satellites, it is difficult to implement a lid system due to the changes in 

center of gravity caused by the operation of the lid system. Furthermore, the lid could 

give rise to field-of-view (FOV) interference that affects the communication antenna. On 

the other hand, in the case of lunar landers, the usefulness of lid systems was proved 



Chapter 3. Methods of Lunar Night Survival 

 

35 

 

through the Lunokhod series [37]. As a result, lid systems can play a significant role in 

reducing the heater power consumption of lunar landers. 

 



CHAPTER 3. Methods of Lunar Night Survival 

36 

 

3.3 Feasible Proposals 

With concerns of RHU and RTG regarding radioactive contamination, several efforts 

are being made to find other methods for lunar night survival. R. Balasubramaniam et 

al.[9] proposed the Thermal Wadis to survive lunar nights without RHU or RTG. 

Thermal Wadis is a device that maintains the temperature of rovers during lunar nights 

by absorbing heat from the sun during the daytime of the Moon by installing an object 

of high capacity and low thermal conductivity on the surface of the Moon. Thermal 

Wadis accumulates solar heat during the daytime of the Moon, and employs heat 

shielding to limit heat radiation to space during the lunar night. The difficulty of this 

method involves the requirement of complex and heavy systems to implement Wadis. 

Figure 3.1 [9] shows the conceptual diagram of Thermal Wadis. 

 

Figure 3.1 Conceptual Figures of Thermal Wadis [9] 

 

Notsu et al. [17] proposed a method for lunar night survival that involves heat 

exchange with a lunar lander by installing heaters under the lunar surface. This idea 
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involves maintaining a high regolith temperature using a heater installed under the 

Moon's surface during the daytime period, when there is enough sunlight and excess 

power is generated. Subsequently, when the sunlight fades and the Moon's night period 

begins, the Moon lander receives heat from the regolith, which was maintained at a high 

temperature by the heater during the Moon's day period. Figure 3.2 shows a conceptual 

diagram of this proposal. This proposal should aim to develop suitable methods of 

installing heaters under the Moon's surface. 

 
Figure 3.2 Schematic view of using High Heat Storage Capability of Regolith [17] 

 

Okishio et al. [20] proposed a heat exchange device with regolith for night survival. 

Considering that temperature swings are remarkably small during the daytime and 

nighttime periods at depths of only 1 m below the surface of the Moon, the device 

penetrates the surface of the ground below the lunar lander to enable night survival 

through heat exchange with the regolith. This proposal should identify feasible methods 
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for penetrating the string through the lunar surface. Figure 3.3 [20] shows the conceptual 

figure of this idea. 

 

Figure 3.3 Lander Model with String [20] 
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3.4 A Proposal of MLI Curtain System 

Okishio et al. [20] proposed the MLI skirt as an auxiliary means in addition to strings 

for heat exchange with lunar surface regolith for lunar night survival. The basic concept 

of this study is similar to the MLI skirt as a shelter for a small rover for lunar night 

survival. However, unlike the skirt introduced in the study by Shogo Okishio et al. [20], 

the MLI is configured in a curtain shape to allow small rovers to freely enter and exit the 

curtain. Figure 3.3 to Figure 3.5 show conceptual configurations of the MLI curtain 

system for a small rover. 

 

Figure 3.4 A rover in shelter of a lander during lunar nights 
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Figure 3.5 A rover moving outside of a lander at lunar dawn 

 

Figure 3.6 A rover in outside of a lander during lunar day 
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The shape of the MLI curtain proposed in this study is similar to vertical blind curtains 

used in a typical home. The system has the advantage of allowing the rover to pass 

through the MLI curtain without assistance from any special opening/closing 

mechanisms. As shown in Figure 3.3, a rover can survive in a shelter during lunar nights 

and move out from the shelter through the MLI curtain on its own during the lunar 

daytime, as shown in Figure 3.4 and Figure 3.5.  

In this study, the temperature of the lander during lunar nights can be maintained using 

RHUs and a lid. Tae-Yong Park et al. [18] introduced a lunar lander thermal model and 

presented analysis results for lunar night survival. According to their results, the 

combination of a lid and RHUs was more effective compared to other thermal control 

devices such as louvers or heat switches. The combination of a lid and RHUs was 

implemented in the Lunokhod series [7], which were lunar exploration rovers of the 

former Soviet Union.  

From a thermal control perspective, RHUs have the disadvantage of generating heat 

not only during lunar nights but also during lunar daytime. Although RTGs can produce 

electrical power even without sunlight, such devices have large volumes, significant 

weights, and low efficiency. Considering the case of the Galileo probe [21], which 

employed an RTG that weighed up to 56kg with a capacity of 300W, RHUs are more 

suitable for lunar night survival compared to RTGs for small landers. 
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3.5 Cost Effectiveness of MLI Curtain System 

As described in Eq. 1.1, the cost of a spacecraft increases significantly with mass. In 

order for a rover to achieve lunar night survival through thermal wadis [9], as introduced 

in Figure 3.1, it is necessary to manufacture thermal wadis and construct an energy 

reflector that acts as a shield. To implement this concept, an additional rover is required 

to perform the necessary auxiliary tasks, which incurs greater costs than the production 

cost of the rover that performs the main mission.  

As shown in Figure 3.3, the lunar night survival method involving heat exchange 

with regolith using strings requires spacecraft engineers to consider of the mass of the 

string itself in spacecraft design. According to a calculation by Okishio et al. [20], in the 

case of a 1m cubic lander, the desired performance can be obtained by adding 

approximately 50kg of string, which significantly increases the development cost of the 

lunar lander-rover system.  

Compared to these methods, the MLI curtain system is a highly cost-effective 

alternative.  

Considering the additional missions that a small lunar rover can perform with the 

MLI curtain system, it may be possible to observe wider areas of the lunar surface based 

on longer mission durations. In addition, the method allows rovers to acquire lunar 

surface data that varies over long periods of time. Moreover, with power charging from 

the lander, a rover's mission can be extended into the lunar night.  

Ultimately, spacecraft are designed and constructed for the purpose of performing 
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and completing space missions. A spacecraft can be considered to be more cost effective 

if it is capable of performing more missions than other spacecraft of equal production 

cost. The MLI curtain system, which can increase the mission duration of rovers without 

requiring additional special equipment, is a potent method that can significantly increase 

the cost effectiveness of lunar spacecraft. 
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Chapter 4. Implementation of the MLI Curtain System 

4.1 Technical Challenges of the MLI Curtain System 

When introducing a new system for spacecraft, the spacecraft design should offer 

solutions to technical challenges in various subsystems in addition to the thermal control 

subsystem. The proposal of this thesis cannot be implemented if the MLI curtain system 

is not feasible with other subsystems. This chapter considers the technical challenges 

that are expected when implementing the MLI curtain system and presents ideas for 

solutions. 

 

4.1.1 Deployment Devices of the MLI Curtain 
The expected technical challenge of the MLI curtain system in terms of the structure 

mechanics subsystem is the deployment device of the MLI curtain. As the MLI curtain 

consists of a material with very weak stiffness compared to the structure of a spacecraft, 

it is desirable to have the curtain supported by the structure until the spacecraft lands on 

the lunar surface, after which it is subsequently deployed. As a method of deploying the 

MLI curtain, it is possible to consider deploying a structure to which the MLI is attached 

using a mechanism such as motor. In addition, it is possible to consider a method in 

which the structure holding the MLI curtain is momentarily separated by a device such 

as non-explosive actuators (NEA) [32] or a pyro device. 

Significant difficulties are expected when implementing the MLI curtain deployment 

method of deploying a structure using mechanisms such as a motor. This is due to the 
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problem that the individual deployment structures are required to hold an excessive 

quantity of MLI pieces. A realistic means of deploying the MLI curtain is to hold the 

ends of the curtains with a deployment device at the bottom of the lander, which then 

deploys the curtains using a release device. A device that holds another device on a 

spacecraft during launch and then deploys and separates the latter at a certain point after 

launch is called a Hold Down & Release Mechanism (HDRM). 

Among the various HDRMs, a pyro-technique device is a device that cuts and 

separates connection lines using explosives. Whereas this explosive device is quick and 

simple to use, it has the disadvantage of significantly impacting the spacecraft [34]. 

Considering that MLIs are comprised of materials that are easily damaged by physical 

force, pyro-technique devices are considered as an unsuitable means of deploying MLI 

curtains. 

NEAs (non-explosive actuators), a different type of HDRM, are classified according 

to methods involved: burn wire mechanisms or shape memory alloys (SMA) [55], 

depending on the type of material to be implemented. Here, the burn wire mechanism 

involves the principle of separating bolts and nuts by passing current through wires that 

hold the nut segments connected with bolts. Figure 4.1[33] illustrates a conceptual 

diagram explaining the burn wire mechanism. 

In Figure 4.1 (a), the nut, which is divided into two pieces, is fixed by a tightening 

spring and holds the bolt. In Figure 4.1 (b), when a current flows through the fuse wire 

that fixes the tightening spring, the wire burns and the tightening force of the spring is 

lost. This loosens the nut, resulting in the bolt being separated from the nut, as shown in 
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Figure 4.1 (c). 

 

 
Figure 4.1 Operation principles of a NEA based on the burn wire mechanism [33] 

 

To implement NEAs for the deployment of the MLI curtain, each piece of the MLI 

curtain should be attached to the lunar lander on one end, whereas the other end is fixed 

with a bolt. The curtain can be deployed by releasing the bolts through the burn wire 

mechanism. 

 

4.1.2 Power Charging for Rover 
The rover moves into the shelter of the MLI curtain during lunar night periods to be 

protected from the outside cryogenic environment, which lasts for approximately two 

weeks. However, considering that this is a long period of time, it is unclear whether the 

battery installed in the rover can sufficiently last for this period. Therefore, it is necessary 

for the rover to receive a certain amount of power from the lander, which has a large 
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capacity battery, while the rover is sheltered inside the MLI curtain. 

Due to the rover possessing mobility, a wireless method is required for the lander to 

supply power to the rover. Wireless power transfer technology has seen significant 

development in recent years, and has matured enough to be widely used for commercial 

purposes, even in personal mobile devices. Figure 4.2 [56] shows examples of typical 

wireless power transfer types and their characteristics. 

 

 
Figure 4.2 Wireless Charging Methods [56] 

The method that uses magnetic fields is simple, inexpensive, and highly efficient 

when used in close proximities, but has the disadvantage of being sensitive to alignment. 

On the other hand, the electric field coupling method is highly efficient and relatively 

less sensitive to alignment, but it can only charge at close proximities. Furthermore, 

whereas it is possible to transport electrical power over long distances using radio waves, 

this method suffers from low efficiency. Figure 4.3 [36] describes the categories of 

wireless power transfer systems that have been developed to date. 
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Figure 4.3 Categories of wireless power transfer systems [36] 

 

The electric field coupling method in Figure 4.2 corresponds to the capacitive power 

transfer (CPT) category in Figure 4.3. Among the high-efficiency charging methods 

detailed above, a CPT system is deemed to be a suitable choice to charge the rover with 

the lander for the method proposed in this study. This takes into consideration the 

unpredictable surface conditions of the landing point on the Moon, which can render 

perfect alignment difficult. Thus, magnetic field power transfer methods that require 

perfect alignment are not suitable options. 

Figure 4.4 [36] illustrates the general operation concept of a CPT system. 

 

 
Figure 4.4 Typical structure of a capacitive power transfer (CPT) system [36] 
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A system that allows the rover to be supplied with power by the lander becomes more 

important and useful in the case of rovers that are not installed with solar cells, as will 

be mentioned in Section 4.3. If there are no solar cells on a rover, it must be charged in 

the shelter of the MLI curtain not only during lunar nights but also during lunar daytime. 

Considering the significant research on wireless power transfer technology conducted 

by the private sector and the development of a wide array of related commercial products, 

it is thought that the rover power charging method proposed in this thesis can be 

successfully implemented. 

 

4.1.3 RTB (Return to Base) Algorithm 
In the method proposed in this thesis, the rover performs missions outside the MLI 

curtain during the daytime period of the Moon, but returns to the shelter within the MLI 

curtain when the lunar night begins. If the rover fails to enter the MLI curtain shelter, its 

power supply from the Sun will be cut off and the rover will inevitably fail due to its 

inability to overcome the cold conditions of the lunar night. Therefore, the RTB (return-

to-base) algorithm that guides the rover back to the MLI curtain shelter is highly 

important. Moreover, the RTB algorithm is crucial as the rover should be capable of 

performing RTB operations not only at predetermined times but even when its safe mode 

is executed. 

RTB algorithms are a technology that have yet to be applied in the field of space 

vehicles, but it is widely implemented in the commercial sector and is a relatively less 

complex technology. In the case of robot vacuum cleaners that are used in modern homes, 
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not only is RTB technology applied for charging terminals, but further research has been 

conducted on optimal pathfinding technology [35]. 

In the case of the MLI curtain system presented in this thesis, RTB algorithms are 

highly important for rover survival. Fortunately, the technology can easily be 

implemented by introducing existing technology from the commercial field. 
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4.2 The Shape of MLI Curtain 

In this study, an MLI curtain was used to achieve lunar night survival for a rover. The 

MLI curtain provides shelter to the rover to prevent radiative heat exchange with the 

outside environment and to perform heat exchange with the lander. MLI curtains should 

also allow the rover to pass freely, and possess the ability to completely block external 

views. This study recommended that the MLI curtain should be designed in the shape of 

blinds of several pieces. In order to prevent heat loss from gaps between the pieces of 

the blind shape, the MLI curtain could be designed with two layers and installed in a 

staggered manner to enhance feasibility. Figure 4.5 shows the configuration of a double 

layer MLI curtain.  

 

Figure 4.5 Conceptual configuration of a double layer MLI curtain 
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4.3 Suggestion of the Rover without Solar Cells 

In this study, it was assumed that the rover performs missions by charging power 

through solar panels, as in the case of rovers that were launched in the past. Based on the 

concept of sheltering the rover within the MLI curtain during lunar nights, removing of 

the solar panels and SAR (Solar Array Regulator) devices from the rover and, instead, 

charging energy from the lander, may be considered.  

Rovers that convert solar energy into electrical energy are unable to perform missions 

during lunar nights. Conversely, rovers that perform missions by charging energy from 

a lander are able to perform lunar night missions, depending on the available capacity of 

the lander battery. In addition, rovers that are not equipped with solar panels and SAR 

devices weigh less, making it easier to meet mass requirements. Therefore, by increasing 

the capacity of the battery by a certain mass, a rover can successfully perform lunar night 

missions. However, without solar panels on the rover, there exists the restriction of 

having to return to the lander to charge the rover battery if the remaining energy of the 

rover battery is insufficient, even during lunar days. 

A rover that employs a battery-charging method and performs missions during lunar 

nights have significant advantages, as it is possible to assign larger mission goals in terms 

of scientific inquiry. The technology that enables a small rover to recognize the position 

of the charging device that is equipped in the lander reflects the automatic charging 

technology of commercialized robot cleaners for home use, which is a technology that 

can be easily implemented.  
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Chapter 5. Thermal Modeling 

5.1 Governing Equation 

Heat transfer encompasses conduction, convection, and radiation. Due to the lack of 

an atmosphere in outer space, only conductive and radiative heat transfer are considered 

for thermal analysis of spacecraft. Conductive heat transfer can be expressed with the 

Fourier's law governing equation shown below. 

 

𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑘𝑘𝑘𝑘𝑘𝑘                                               (Eq. 5.1) 

 

Fourier's law refers to the physical phenomenon in which the amount of conductive 

heat transfer of an object is proportional to the temperature gradient. In Eq. 5.1, 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

is the amount of heat transferred per unit area and unit time, k is thermal conductivity, 

and ∇T is the temperature gradient. A negative sign in Eq. 5.1 means that heat transfer 

occurs in the direction from high temperature to low temperature. The one-dimensional 

conductive heat transfer equation considering a unit area can be expressed as Eq. 5.2. 

 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑘𝑘𝑘𝑘�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�                                            (Eq. 5.2) 

 

In Eq. 5.2, the unit of 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is W (watt), k is thermal conductivity with the unit 

W/m/K, and A represents the cross-sectional area with the unit 𝑚𝑚2. 

The mechanism of radiative heat transfer is understood through the Stefan-

Boltzmann law assuming black body radiation, as shown in Eq. 5.3. 
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𝑄𝑄𝑏𝑏,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑇𝑇𝑠𝑠4                                                (Eq. 5.3) 

 

 

In Eq. 5.2, 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the radiant energy emitted from the surface of a black body per 

unit area and unit time, 𝑇𝑇𝑠𝑠 is the surface temperature of the black body, and σ is the 

Stefan-Boltzmann constant with a value of 5.67 × 10−8 𝑊𝑊/𝑚𝑚2𝐾𝐾4. 

As described in Section 2.3, real objects are not black bodies but can be simulated as 

gray bodies with an emissivity (ε) value. The radiation emission of a real object 

considering the area of the object can be expressed as Eq. 5.4. 

 

𝑄𝑄𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜀𝜀𝜀𝜀𝐴𝐴𝑠𝑠𝑇𝑇𝑠𝑠4                                             (Eq. 5.4) 

 

In Eq. 5.4, emissivity (ε) is a constant with a value range of 0 <ε <1, and 𝐴𝐴𝑠𝑠 

represents the surface area of the object. 

Returning to the black body case, the heat transfer 𝑄𝑄𝑏𝑏,𝑖𝑖→𝑗𝑗 from the black body face 

i to the black body face j is given by Eq. 5.5. 

 

𝑄𝑄𝑏𝑏,𝑖𝑖→𝑗𝑗 = �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖
𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗

� − �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗
𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖

� 

= 𝐴𝐴𝑖𝑖𝐸𝐸𝑏𝑏𝑏𝑏𝐹𝐹𝑖𝑖→𝑗𝑗 − 𝐴𝐴𝑗𝑗𝐸𝐸𝑏𝑏𝑏𝑏𝐹𝐹𝑗𝑗→𝑖𝑖                             (Eq. 5.5) 

 

 

Here, 𝐹𝐹𝑖𝑖→𝑗𝑗 is called a view factor and represents the ratio of energy reaching surface 
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j to the total radiant energy leaving surface i. The view factor is calculated through a 

complex calculation formula according to the distance between the i-plane and the j-

plane, the shape of each object, and the viewing angle. Calculations by hand are not 

possible unless it involves regular shapes and mutual positions. 

The view factor exhibits the reciprocity relation property [3], as described in Eq. 5.6. 

 

𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖→𝑗𝑗 = 𝐴𝐴𝑗𝑗𝐹𝐹𝑗𝑗→𝑖𝑖                                              (Eq. 5.6) 

 

Substituting Eq. 5.6 into Eq. 5.5 gives the following Eq. 5.7. 

 

𝑄𝑄𝑏𝑏,𝑖𝑖→𝑗𝑗 = 𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖→𝑗𝑗�𝐸𝐸𝑏𝑏𝑏𝑏 − 𝐸𝐸𝑏𝑏𝑏𝑏� = 𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖→𝑗𝑗𝜎𝜎(𝑇𝑇𝑖𝑖4 − 𝑇𝑇𝑗𝑗4)                   (Eq. 5.7) 

 

The radiative energy transfer of an actual object can be assumed to be similar to a 

gray body, which has emissivity (ε, 0 <ε <1) values, unlike a black body with absorption 

and emissivity of 1. In addition, an opaque object has a sum of absorptivity (α, = 

emissivity) and reflectivity (ρ) of 1, which is described in Eq. 5.8 below. 

 

𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑖𝑖 = 1                                                  (Eq. 5.8) 

 

The radiation emitted from a gray body is given by Eq. 5.4, but the reflection of 

radiant energy from the outside also occurs. The sum of the two radiant energies becomes 

the total amount of radiant energy leaving the gray body. In addition, radiant energy that 

leaves gray body i and reaches gray body j and is again affected by absorptivity, meaning 

that a portion of the energy is absorbed whereas the remaining energy is reflected. 
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Therefore, the radiant energy transmitted by gray body i to gray body j is influenced by 

coefficients, with the emissivity and view factor of the i-plane and j-plane as variables. 

Assuming 𝐵𝐵𝑖𝑖𝑖𝑖 is derived with emissivity (ε) and view factor (𝐹𝐹𝑖𝑖𝑖𝑖) as variables, Eq. 5.7 

can be arranged as follows. 

 

𝑄𝑄𝑔𝑔,𝑖𝑖→𝑗𝑗 = 𝐴𝐴𝑖𝑖𝜎𝜎𝐵𝐵𝑖𝑖𝑖𝑖(𝑇𝑇𝑖𝑖4 − 𝑇𝑇𝑗𝑗4)                                      (Eq. 5.9) 

 

𝐵𝐵𝑖𝑖𝑖𝑖 cannot be hand-calculated except for a simplified sealing system or a shape that 

follows certain rules. For this reason, several methods have been proposed to obtain 𝐵𝐵𝑖𝑖𝑖𝑖. 

A program such as TRASYS (Thermal Radiation Analyzer System) was used by NASA 

to calculate B [53], but due to the limited number of nodes, this process took a very long 

time and had poor accuracy compared to modern programs. Furthermore, efforts were 

made to obtain 𝐵𝐵𝑖𝑖𝑖𝑖 with a program using the mesh subdivision method [31], but this 

also requires a significant amount of time to complete the calculation. In this study, the 

analysis was performed using a thermal desktop program [5] that calculates 𝐵𝐵𝑖𝑖𝑖𝑖 using 

the Monte-Carlo technique. 

The thermal capacitance of an object refers to the energy required to raise the unit 

temperature per unit weight, and the unit is expressed as J/kg/℃ in terms of SI units. 

Using the definition of thermal capacitance (𝐶𝐶𝑝𝑝), the relationship between heat and 

temperature difference can be expressed as Eq. 5.10. 

 

Q = m𝐶𝐶𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)                                          (Eq. 5.10) 
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As stated earlier, the thermal equilibrium of a spacecraft without convection is 

represented by conductive heat transfer and radiative heat transfer. According to Eq. 5.2, 

Eq. 5.9, and Eq. 5.10, the equation of thermal equilibrium at node i for numerical analysis 

is expressed as Eq. 5.11 below. 

 

𝜌𝜌𝜌𝜌 𝐶𝐶𝑝𝑝
∆𝑡𝑡
�𝑇𝑇𝑖𝑖𝑛𝑛+1 − 𝑇𝑇𝑖𝑖𝑛𝑛� = 𝑄𝑄𝑖𝑖 +∑ �𝑘𝑘𝐴𝐴𝑗𝑗𝑗𝑗

𝐿𝐿𝑗𝑗𝑗𝑗
�𝑇𝑇𝑗𝑗𝑛𝑛 − 𝑇𝑇𝑖𝑖𝑛𝑛� + 𝜎𝜎𝐴𝐴𝑗𝑗𝐵𝐵𝑗𝑗𝑗𝑗�(𝑇𝑇𝑗𝑗𝑛𝑛)4 − (𝑇𝑇𝑖𝑖𝑛𝑛)4��𝑛𝑛

𝑗𝑗=1   

(Eq. 5.11) 

 

In Eq. 5.11, ρ is the density of the object, V is the volume of the object, and 𝑄𝑄𝑖𝑖 is 

the heat source created at node i. In Eq. 5.11, all variables in the nth time step are known 

values, and only T in the n+1th time step is an unknown value. Eq. 5.11 is an equation 

that is an explicit form of solver. In addition to the explicit form of solver, the Sinda / 

Fluint [6] program used in this study provides an implicit form of solver, and users are 

able to select which solver to implement. The solvers exhibit no differences in terms of 

the accuracy of the analysis results, and the only difference between the two types are in 

the divergence criteria and convergence time of the numerical solution. 
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5.2 Thermal Modeling Method of Lunar Surface 

Various scientific efforts have been made to simulate the temperature distribution of 

the lunar surface, as introduced in Section 2.2. Throughout the history of lunar 

exploration since the 1960s, various models have been developed to model the 

thermophysical properties of lunar surface materials for the purpose of determining the 

temperature distribution of the lunar surface, as described in Ref. [27] and [28]. 

In recent years, the common method of modeling the surface of the Moon involves 

using a two-layer model, as in the case of Mitchell and de Pater [29] and Ashwin R 

Vasavada [22]. As demonstrated by the experimental results of the Apollo program [14], 

[15], the lunar surface layer tends to exhibit thermophysical properties that vary with 

depth. The two-layer modeling method models the lunar surface by dividing it into a thin 

layer of fluff and a deeper regolith. The fluff layer is modeled as a very thin, low density, 

and low thermal conductivity layer, and the regolith layer located below the fluff layer 

is generally modeled as an object with greater density and thermal conductivity than the 

fluff layer. 

Hager P.B. [10] simulated the density, thermal conductivity, and heat capacity of the 

regolith as a function based on several previous studies and test results from the Apollo 

program. The density of regolith is expressed as a function of depth from the ground 

surface. The thermal conductivity of the fluff layer and the regolith layer are expressed 

as respective functions of temperature. Lastly, heat capacity is also expressed as a 

function of temperature to establish a thermal mathematical model of the lunar surface.  



Chapter 5. Thermal Modeling 

 

59 

 

Robert J. Christie et al. [11] did not express all thermophysical properties as functions 

of temperature or surface depth, but instead replaced some properties with constants to 

facilitate the convenience of performing the analysis without compromising the lunar 

surface temperature prediction results. Figure 5.1 shows the lunar surface thermal model 

parameters used by Robert J. Christie et al. [11]. 

 
Figure 5.1 Thermal parameters of the lunar surface by Robert J. Christie et al. [11] 

 

T.Y. Kim [30] introduced the Lumped System Model (LSM) to calculate the lunar 

surface temperature in an analytical manner. Other studies modeled the lunar surface by 

assuming the heat flux value from the bottom of the lunar surface and the thermal 

properties of the surface based on existing lunar surface temperature measurement data. 

Conversely, T.Y. Kim [30] performed lunar surface temperature calculations using the 

equation for lunar surface energy balance and the data measured by the LRO lunar orbiter. 
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Eq. 5.12 [30] shows the energy equilibrium equation for the lunar surface. 

 

𝐶𝐶𝑠𝑠
𝑑𝑑𝑇𝑇𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑏𝑏 + 𝑞𝑞𝑠𝑠 − 𝜀𝜀𝐼𝐼𝐼𝐼𝜎𝜎𝑇𝑇4                                   (Eq. 5.12) 

 

 

In Eq. 5.12, 𝐶𝐶𝑠𝑠  represents the surface heat capacity per unit area, 𝑞𝑞𝑏𝑏  is the 

conduction heat flux flowing in and out of the surface, 𝑞𝑞𝑠𝑠 is the heat flux from the Sun, 

𝜀𝜀𝐼𝐼𝐼𝐼 is the emissivity of the Moon’s surface, and σ is the Stefan-Boltzmann constant. 𝐶𝐶𝑠𝑠, 

𝑞𝑞𝑠𝑠, and 𝜀𝜀𝐼𝐼𝐼𝐼 were quoted from previous research results, and 𝑞𝑞𝑏𝑏 was derived using Eq. 

5.13 [30], which is a function of latitude and longitude. In Eq. 5.13, it is assumed that 

the subsurface conduction heat flux value (𝑞𝑞𝑏𝑏) is proportional to the solar absorption rate 

at noon, and takes the form of an exponential function as a solution of an ordinary 

differential equation during lunar nights without incident solar heat. 

 

𝑞𝑞𝑏𝑏(𝜓𝜓) =  

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝛼𝛼𝑠𝑠𝑠𝑠𝑞𝑞𝑠𝑠(𝜓𝜓0)− (𝛼𝛼0 + 𝛼𝛼𝑠𝑠𝑠𝑠)𝑞𝑞𝑠𝑠(𝜓𝜓)  𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ Ф < Ф

𝑠𝑠𝑠𝑠

𝛼𝛼𝑠𝑠𝑠𝑠𝑞𝑞𝑠𝑠(𝜓𝜓0)𝑒𝑒𝑒𝑒𝑒𝑒 �ln �𝛼𝛼𝑠𝑠𝑠𝑠
𝛼𝛼𝑠𝑠𝑠𝑠
�
Ф−Ф

𝑠𝑠𝑠𝑠

∆Ф
𝑁𝑁

�    𝑓𝑓𝑓𝑓𝑓𝑓 Ф
𝑠𝑠𝑠𝑠
≤ Ф < Ф

𝑠𝑠𝑠𝑠

𝛼𝛼𝑠𝑠𝑠𝑠𝑞𝑞𝑠𝑠(𝜓𝜓0)− (𝛼𝛼0 + 𝛼𝛼𝑠𝑠𝑠𝑠)𝑞𝑞𝑠𝑠(𝜓𝜓)   𝑓𝑓𝑓𝑓𝑓𝑓 Ф
𝑠𝑠𝑠𝑠
≤ Ф < 2𝜋𝜋

    (Eq. 5.13) 

 

 

In Eq. 5.13, 𝜓𝜓 represents the solar incidence angle and Ф represents the longitude. 

Here, 𝛼𝛼𝑠𝑠𝑠𝑠 is a constant at sunset, 𝛼𝛼0 is a constant at noon, and 𝛼𝛼𝑠𝑠𝑠𝑠 is a constant at 

sunrise. When applied as a formula, Eq. 5.14, Eq. 5.15, and Eq. 5.16 [30] are given as 
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follows. 

 

𝛼𝛼0 =  𝑞𝑞𝑠𝑠(𝜓𝜓0)−𝜀𝜀𝐼𝐼𝐼𝐼𝜎𝜎𝑇𝑇𝑠𝑠,0
4

𝑞𝑞𝑠𝑠(𝜓𝜓0)                                            (Eq. 5.14) 

𝛼𝛼𝑠𝑠𝑠𝑠 =  𝑐𝑐𝑠𝑠(𝑑𝑑𝑇𝑇𝑠𝑠/𝑑𝑑𝑑𝑑)𝑠𝑠𝑠𝑠+𝜀𝜀𝐼𝐼𝐼𝐼𝜎𝜎𝑇𝑇𝑠𝑠,𝑠𝑠𝑠𝑠
4

𝑞𝑞𝑠𝑠(𝜓𝜓0)                                       (Eq. 5.15) 

𝛼𝛼𝑠𝑠𝑠𝑠 =  𝑐𝑐𝑠𝑠(𝑑𝑑𝑇𝑇𝑠𝑠/𝑑𝑑𝑑𝑑)𝑠𝑠𝑠𝑠+𝜀𝜀𝐼𝐼𝐼𝐼𝜎𝜎𝑇𝑇𝑠𝑠,𝑠𝑠𝑠𝑠
4

𝑞𝑞𝑠𝑠(𝜓𝜓0)                                       (Eq. 5.16) 

 

To obtain solutions for the above equations, the measurement data of LRO are used: 

the result of Eq. 5.13 can be derived using the temperature and slope values obtained by 

LRO. Kim applied the best curve fitting [30] to recalculate the relevant coefficients, and 

was able to calculate the surface temperature of the Moon based on Eq. 5.12. 

In the results shown in Figure 5.2, the calculation results of Kim are not continuous 

around sunrise and sunset and do not match the actual measurement data. In Kim's LSM 

equation (Eq. 5.12), the left-hand term is set as zero during the daytime with solar 

radiation, but it has a non-zero value at the sunrise and sunset points, the boundary line 

in which solar radiation disappears. Therefore, the resulting discontinuity occurs due to 

the thermal inertia of the left-hand term. All in all, Kim's study [30] is meaningful in that 

the surface temperature of the Moon was obtained by introducing an analytical method. 
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Figure 5.2 Lunar surface temperature calculation results vs LRO measurements [30] 
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5.3 Thermal Modeling of Lunar Regolith and Verification 

Among the studies involving the thermal modeling of lunar regolith and the 

prediction of lunar surface temperatures by Ashwin R Vasavada[22], Hager, PB[10], T.Y. 

Kim [30] and Robert J. Christie[11], this study used the thermal modeling method 

proposed by Robert J. Christie[11]. Of the various thermal modeling variables used by 

Robert J. Christie[11], only Moon albedo was quoted by Ashwin R. Vasavada’s study[23] 

based on LRO(Lunar Reconnaissance Orbiter) measurement results. The main variables 

used for lunar regolith thermal modeling are shown in Table 5.1. 

Table 5.1 Thermal model variables for lunar surface modeling 

Modeling variables Value 

Moon surface IR emissivity 0.97 

Moon Albedo[23] A(θ) = 0.08 + 0.045(θ/45)3 + 

0.14(θ/90)8 

Density of fluff (kg/m3) 1000 

Conductivity of fluff (W/m/K) 9.22E-4[x1+1.48(T/350)3] 

Density of regolith (kg/m3) 2000 

Conductivity of regolith (W/m/K) 9.30E-3[x1+0.73(T/350)3] 

Specific heat of fluff and regolith (J/kg/K) 1050 

Imposed heat flow (W/m2) 0.031 
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Figure 5.3 Thermal model of lunar regolith 

‘Fluff’ in Table 5.1 is a term referring to a surface layer up to a depth of 0.02 m from 

the surface of the Moon, and ‘regolith’ is a deeper layer. In other sections of this thesis, 

‘regolith’ will refer to a combination of fluff and regolith. The thickness of lunar regolith 

was modeled as 0.6 m. Figure 5.3 shows the result of modeling lunar regolith. The 

modeling and analysis of the lunar regolith were conducted using Thermal Desktop[5] 

and Sinda-Fluint[6]. The central part of the lunar regolith model was further subdivided 

as the lunar lander and the rover are located at the corresponding location. This ensures 

that the radiative heat exchange between the lunar surface and the lunar lander and the 

rover further improves the reliability of the analysis. 

The regolith model simulates the temperature change of the regolith due to its 

rotation as it moves along the Moon's rotation cycle. Figure 5.4 shows that the regolith 

model is based on the equator of the Moon and moves according to the Moon's rotation 

cycle during one lunar day. 
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Figure 5.4 Locations of regolith model during 1 lunar day 

 

In order to verify the lunar regolith thermal model, we used the LRO lunar surface 

temperature measurement data from Williams, J.P., Paige[24] as a reference. The 

reference data values and analysis results are shown in Figure 5.5 to Figure 5.8. In Figure 

5.5 to Figure 5.8, the x-axis is the angle from the Sun to the Moon, and the y-axis is the 

temperature of the lunar surface with units in absolute temperature (K). 
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Figure 5.5 Calculated temperatures of the lunar surface at Latitude 0˚ 

 

Figure 5.6 Calculated temperatures of the lunar surface at Latitude 30˚ 
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Figure 5.7 Calculated temperatures of the lunar surface at Latitude 60˚ 

 

 

Figure 5.8 Calculated temperatures of the lunar surface at Latitude 85˚ 
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Figure 5.5 to Figure 5.8 show that the analysis results of the lunar surface temperature 

were similar to the LRO measurement data for the latitude 0º and latitude 30º cases. On 

the other hand, in the case of latitude 60º and latitude 85º, there were slight deviations 

on the cold side of the Moon as the modeling variables presented in the study by Robert 

J. Christie[11] were values derived by approximation for all positions in lunar surface 

modeling. Considering that the landing sites of lunar landers launched to date were 

mostly between latitude 0º and latitude ±40º[42], in addition to the fact that the landing 

position of the lunar lander and the rover in this study is also latitude 0º, Figure 5.5 to 

Figure 5.8 show that the proposed regolith modeling possesses sufficient accuracy to be 

utilized here. In this study, the landing position of the lunar lander and the rover was set 

to latitude 0° as the position of latitude 0° is the worst from a thermal perspective due to 

having the largest temperature difference between day and night on the lunar surface. 

This follows the basic rules of thermal design/analysis to confirm the survivability of 

landers and rovers even under the worst thermal conditions [2]. In addition, analysis was 

performed for latitude 30 ° and latitude 60 ° to compare the results. 
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5.4 Thermal Modeling of the Lunar Lander and the Rover 

With the purpose of this study being to review a lunar night survival method for a 

small lunar rover, the thermal model of the lunar lander and the rover was made as simple 

as possible.  

Table 5.2 Assumed specifications of the lunar lander and the rover 

Lunar Lander 

Dry Mass 300 kg 

Size (L·W·H) 1m x 1m x 1m 

Specific Heat 900 kg/J/K 

Conductivity 20 W/m/K 

Heat Dissipation (Day / Night) 120W / 10W 

Operating Temperature Range -20℃ ~50℃ 

Rover 

Mass 25 kg 

Size (L·W·H) 0.4m x 0.25m x 0.15m 

Specific Heat 900 kg/J/K 

Heat Dissipation (Day / Night) 15W / 0.5W 

Operating Temperature Range -15℃ ~45℃ 

 

Table 5.2 shows the specifications and temperature requirements of the small lunar 
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lander and the rover that were assumed in this study.  

The thermal model of the lunar lander was designed as a cubic shape consisting of 125 

nodes with the width, length, and height being five nodes long. The thermal conductivity 

of the lander model was assumed as 20 W/m/K, which is 1/8 of the thermal conductivity 

of general aluminum, instead of the internal radiation heat exchange in the empty space 

inside the lunar lander. Table 5.2 shows that the heat dissipation of the lunar lander was 

120 W during the day and 10 W during the night as the heat dissipation of the lunar 

lander was assumed as shown in Table 5.3. 

 

Table 5.3 Assumed power consumption of the lunar lander 

Unit Day (Mission profile) Night (Sleep mode) 

Main Computer 40 W 5 W  

Power Converter & Distributer 40 W 3 W 

Communication Transponder 20 W 1 W 

Battery 0 W 1 W 

Location & Attitude Sensors 5 W 0 W 

Lander Payloads 15 W 0 W 

Total 120 W 10 W 

 

 

As the average power consumption during a lunar night was assumed as 10 W in Table 
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5.3, the battery capacity of the lunar lander should be at least 3600 Wh (= 15 days x 24 

hours / day x 10 W) for lunar night survival. In this case, assuming the typical specific 

energy of a battery as 145 Wh/kg[12], the minimum mass of the required battery is 

calculated as 24.8 kg. With the mass of the lunar lander assumed in this study being 

300kg, the mass of the battery is approximately 8% of the total dry mass. Considering 

that the mass ratio of the battery in the Apollo lunar landing mission was approximately 

1%[43], the battery mass ratio of this study is not a small value. 

As the assumed mass of the battery of this study was already high, it was difficult to 

increase the capacity of the battery to consume heater power during lunar nights. 

Therefore, it was concluded that the supply of the heat source for lunar night survival 

should solely depend on the RHU. If heater power is consumed for lunar night survival, 

an incremental increase in battery capacity of 360 Wh is required for the consumption 

of 1 W of heater power, which results in a 2.5 kg mass increase per watt. Such effects 

make it increasingly difficult to meet lander mass requirements.  

Figure 5.9 and Figure 5.10 show the thermal model of the lunar lander and the rover 

of this study. Thermal Desktop[5] and Sinda-Fluint[6] were used for thermal modeling 

and analysis of the lunar lander and the rover as well as the land regolith. 

As illustrated in Figure 5.9, the lunar lander was modeled as a 1 m x 1 m x 1 m cube, 

and the lunar surface was modeled as a 20 m x 20 m square as in Shogo Okishio’s[20] 

study. In order to improve the accuracy of the analysis, the node size of the lunar surface 

in the vicinity of the lunar lander was smaller compared to nodes located further away 

from the lander. 
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Figure 5.9 Thermal model of the regolith, the lander, and the rover 

 

Figure 5.10 Thermal model of the lander and the rover 

As shown in Figure 5.10, the lunar lander was designed as a cubic model with a total 
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of 125 nodes. In order to efficiently radiate heat without interfering with the surrounding 

surface temperature, a radiator was installed in the direction of deep space. 

As shown in Table 5.2, the rover was modeled as a single node that was 40 cm x 25 

cm x 15 cm in size with a mass of 25 kg. The power consumption of the rover was 

assumed as 15 W during lunar day missions and 0.5 W standby power during lunar nights. 

The standby power of 0.5 W while the rover hibernates inside the MLI curtain during 

lunar nights means that an additional 1.25 kg of battery mass is required in a similar 

manner to the situation described in the previous paragraph. As such, it could be 

concluded that it is important to minimize the standby power of the rover in order to 

meet the mass requirements of the rover. If meeting the mass requirements of the rover 

proves challenging, the rover could be charged by the lander during lunar nights, which 

is an idea further described in section 4.1. 

In this study, the model of the MLI uses the CR-model (conduction-radiation model) 

introduced by C.K. Krishnaprakas[25], which is given by the following Eq. 5.17. 

 

Q (W/cm2) = h’(Th–Tc) + ε’eff σ (Th
4–TC

4)                           (Eq. 5.17) 

 

In Eq. 5.17, Q represents the heat flow rate through the MLI. The MLI specification 

is assumed to be 10 single spacer layers, the value of h’ is 7.92E-07 (W/cm2·K), the 

value of ε’eff is 3.27E-03, and σ is the Stefan-Boltzmann constant. The values of Th and 

Tc in Eq. 5.17 represent the temperatures at both sides of the MLI. 

In this study, the radiator optical properties of the lander and the rover were 0.06 for solar 
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absorption and 0.83 for infrared emissivity, as with the example of the UV reflective-

coated OSR (Optical Solar Reflector) of Qioptiq[44]. The bottom surface coating of the 

lunar lander was designed with black paint to enhance heat exchange with the rover to 

enhance lunar night survival. 
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Chapter 6. Thermal Analysis 

6.1 Thermal Design Requirements of the Lander and Rover 

In order to develop the thermal design of a space vehicle, the thermal design 

requirements must be determined in advance. The primary purpose of a thermal design 

is to maintain the temperature of all parts of the spacecraft within acceptable temperature 

ranges during all missions. Some general examples of detailed thermal design 

requirements for spacecraft are as follows.  

- The specifications of the hardware to be used for thermal control should be 

space-grade 

- A redundancy plan should be in place for single fault error 

- The design should consume minimal power during the spacecraft’s safe mode 

- An override function for heater on/off temperature should be in place 

- The design should meet EMI / EMC requirements 

- Thermal analysis should be performed under the worst thermal environmental 

conditions 

- Appropriate margins should be considered for thermal analysis  

The requirements in terms of the allowable temperature ranges for thermal analysis 

of the lander and rover are shown in Table 5.2. Among the thermal design requirements 

listed above, the thermal analysis described in this chapter was performed by applying 

allowable temperature requirements and worst-case thermal analysis conditions, as these 

are applicable to the field of thermal analysis. 
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6.2 Thermal Analysis Case 

In this study, the lunar exploration rover performs its missions outside the lunar 

lander during the lunar daytime, and moves back into the lunar lander MLI curtain during 

the lunar nighttime to survive, as described in the previous section. In addition, the lunar 

lander covers the radiator with a lid, which is a panel equipped with solar cells during 

lunar nights, similar to Lunokhod[7]. During lunar nights, the lander solely uses RHUs 

as a heat source instead of an electrical heater. Figure 6.1 shows that the rover performs 

its missions outside the lunar lander, during the lunar daytime. In addition, the solar panel 

of the lander is deployed. 

 

 

Figure 6.1 Mission configuration of a lunar lander and a rover during a lunar day 
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 Figure 6.2 shows that the rover moves into the MLI curtain of the lunar lander, and 

the solar panel that acts as a lid covers the radiator to prevent heat loss. As it is required 

for the solar panel, which acts as a lid, to cover the radiator and perform heat shielding 

during lunar nights, the design should adopt the application of the MLI to the rear end 

of the solar panel. The heat dissipation of the lander and the rover for one lunar day is 

shown in Table 5.2. 

 

Figure 6.2 Mission configuration of a lunar lander and a rover during a lunar night 

 

The landing position of the lunar lander was set as the latitude 0° position of the Moon, 

where the temperature variation of the lunar surface is the most extreme. The solar heat 

flux was assumed as 1366 W / m2. In Figure 6.3, the positions of the lander and the rover 

at sunrise, noon, sunset, and midnight during a lunar day are shown through a concept 
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diagram. 

 

Figure 6.3 Location of lunar lander during 1 lunar day 

 

As stated above, thermal analysis should be performed under the worst-case 

conditions. As stated in Section 5.3, the most extreme case for thermal analysis among 

the Moon's mission points occurs at latitude 0°, where the temperature difference 

between day and night is greatest. Therefore, in this study, the thermal analysis of the 

lander and rover was based on the position at latitude 0°. The cases of latitude 30° and 

latitude 60° were also analyzed to observe the temperature changes of the lander and 

rover. Figure 6.4, Figure 6.5, and Figure 6.6 show the thermal analysis cases at latitude 

0°, latitude 30°, and latitude 60°, respectively. 
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Figure 6.4 Thermal mathematical model results for the latitude 0° case 

 
Figure 6.5 Thermal mathematical model results for the latitude 30° case 
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Figure 6.6 Thermal mathematical model results for the latitude 60° case 
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6.3 Analysis Result of the Radiator Area and a Number of RHU 

In order for a small lunar lander to survive in the cryogenic environment of lunar 

nights, it is efficient to supply heat through RHUs. From a thermal control perspective, 

RHUs have the disadvantage of continually dissipating heat during lunar days in addition 

to lunar nights. Therefore, the lunar lander should radiate the heat generated by the RHUs 

in addition to the heat of the lunar lander itself, and the heat dissipation area should be 

designed accordingly. 

The procedure of designing the radiator area and the capacity of the RHU of a lunar 

lander is as follows. First, the radiator area of the lunar lander should be designed so that 

the temperature of the lunar lander does not exceed the maximum acceptance 

temperature during lunar days under the thermal environment described in Table 5.2. If 

the lunar lander has no RHU, the temperature of the lunar lander may fall below the 

minimum acceptance temperature during lunar nights. The design should calculate the 

proper number of RHUs that prevents the temperature of the lunar lander from falling 

below the minimum acceptance temperature. Due to the additional RHU heat, the lander 

temperature rises to higher temperatures during lunar days. Hence, a larger radiator area 

is required, which should be recalculated. This iterative process is a flow that proceeds 

with Radiators and Dissipation as variables in the thermal design process of Figure 2.1. 

As the lid covers the radiator area during lunar nights, the decrease in temperature due 

to the greater radiator area is negligible. This completes the design of the radiator area 

and the RHU. An excessive number of RHUs will increase the risk related to cost and 
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mass while a too small number of RHUs will increase the risk related to thermal control 

requirements. Therefore, it is crucial to calculate the appropriate number of RHUs. 

In this study, the lunar rover does not equip RHUs. The lunar rover moves into a 

shelter surrounded by an MLI curtain between the lunar lander and the lunar surface 

during lunar nights. The radiator of the lunar rover should be designed to ensure that the 

maximum temperature of the rover does not exceed the maximum acceptance 

temperature during lunar days. 

The RHUs were evenly distributed inside the lunar lander, and heat load of the RHUs 

evenly distributed 20 watts on the 125 lander model nodes. Assuming that a single RHU 

weighs 40 grams and possesses a heat load of 0.9 watts[48], the lunar lander requires 22 

RHUs with a total mass of 0.88 kg that can supply approximately 20 W of heat. 

Table 6.1 shows the radiator area and the RHU capacity of the lunar lander and the 

rover derived from the aforementioned process. 

 

Table 6.1 Thermal design result of the lunar lander and the rover 

Design Category Value 

Radiator Area of the Lander 3600 cm2  

Radiator Area of the Rover 640 cm2 

Heat capacity of the RHUs in the Lander 20 Watt 

Required RHUs in the Lander 22 ea. 
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6.4 Temperature Trends of the Lunar Lander and the Rover 

Figure 6.7 to Figure 6.10 show calculated temperature contours of the lunar lander 

and the rover at latitude 0° and the four locations defined in Figure 6.3. The temperature 

contours of the lunar lander and the rover shown in Figure 6.7 to Figure 6.10 present the 

temperatures of the structures, excluding the MLI. 

The solar panel was deployed after sunrise (Figure 6.7) and stowed before sunset 

(Figure 6.9). The lunar rover moved outside the lunar lander after sunrise and returned 

inside the MLI curtain before sunset.  

 

Figure 6.7 Temperature contours of the lunar lander and the rover at sunrise 
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Figure 6.8 Temperature contours of the lunar lander and the rover at noon 

 

Figure 6.9 Temperature contours of the lunar lander and the rover at sunset 
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Figure 6.10 Temperature contours of the lunar lander and the rover at midnight 

Among Figures from Figure 6.7 to 6.10, the temperature of lunar lander is lowest at 

sunrise (Figure 6.7) and highest at noon (Figure 6.8). However, the lander reaches a 

maximum temperature between noon and sunset during a lunar day, as shown in Figure 

6.11. 

The configuration of the deployed solar panel and the rover performing missions can 

be seen at the noon location in Figure 6.8. In addition, the temperature of the lunar 

regolith that was shadowed by the solar panel was observed to be lower than the 

temperature of the surrounding area due to the blocking of sunlight by the solar panel. 

At noon, the temperature of the regolith in the vicinity of the lunar lander was observed 

to be slightly higher than the temperature of the regolith further away from the lander. 
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This is due to sunlight being reflected from the MLI of the lunar lander, resulting in 

greater incident solar heat at the regolith near the lander compared to regolith further 

away from the lander. At sunset in Figure 6.9, the temperature at the shadow of the lander 

is lower than the temperature of surrounding regolith, and the temperature of the regolith 

at the front end of the lander, which receives incident solar heat reflected by the lander, 

is higher compared to the surrounding regolith. The solar panel, which also acts as the 

lid of the lander radiator, receives little sunlight at sunset, which results in a substantially 

low temperature at sunset. When the solar panel (lid) covers the radiator of the lander, it 

begins to exchange heat with the lander. As a result, the temperature of the solar panel 

(lid) was confirmed to be higher at midnight compared to sunset. At midnight, the 

temperature of the regolith in the vicinity of the lander was observed to be slightly higher 

compared to the temperature of the surrounding regolith due to radiation heat exchange 

with the lander. The temperature of the regolith near the lander was observed to be lower 

at sunrise compared to midnight. 

Figure 6.11 shows the temperature trend of the lunar lander during a lunar day. In 

Figure 6.11, the x-axis represents time, and the point at which the x value is zero indicates 

sunrise. The point at which the x-value is 354.4 hours indicates sunset, at which the 

temperature abruptly drops due to the change in the heat dissipation of the lunar lander 

from 120 watts to 10 watts. Figure 6.12 shows the diagram of the lunar lander thermal 

model and the description of the variables introduced in Figure 6.11. 
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Figure 6.11 Temperature trend of the lunar lander during a lunar day 

 

Figure 6.12 Diagram of the lunar lander thermal model 
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Figure 6.11 shows the temperature change at the center of the lander model, divided 

into five layers in the height direction, for a lunar day. The maximum temperature of the 

lander occurs at the bottom layer with a temperature of approximately 319 K, which does 

not exceed the maximum temperature requirement of 50℃ (323 K) specified in Table 

5.2. The minimum temperature of the lander occurs at the top layer and is approximately 

257 K. This also satisfies the minimum temperature requirement of -20℃ (253 K) in 

Table 5.2. Therefore, results confirm that the temperature of the lander during a lunar 

day meets the acceptance temperature requirements in Table 5.2. 

When the lander enters lunar nighttime, the lid covers the radiator of the lander, and 

the heat loss is limited to a minimum. From this point, heat exchange takes place inside 

the lander for a certain period of time, and the temperature gradient decreases between 

the lander nodes. This period was termed the ‘convergence period’, during which the 

temperatures of the lander nodes converge. The temperature trend during this period is 

shown in Figure 6.13. As shown in Figure 6.13, the temperature at the bottom of the 

lander, which possessed a relatively high temperature value, rapidly decreases due to the 

decrease in the heat dissipation value of the lander. However, the top of the lander, which 

possesses a relatively low temperature, is temporarily warmed by the heat inflow from 

inside the lander. Once convergence is achieved over a period, the temperature of the 

entire lander decreases during the night. 
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Figure 6.13 Temperature trend of the lunar lander during the convergence period 

 

The highest temperature of the lunar regolith occurs at noon, whereas the highest 

temperature of the lander occurs between noon and sunset. This is caused by the fact that, 

although the solar heat input is greatest at noon, the temperature of the lander is further 

increased past noon as the solar heat input is greater than heat rejection for a certain 

period. The time at which the temperature of the lander reaches a peak varies depending 

on the thermal capacity of the lander and the environmental heat exchange situation in 

the lander. 

Figure 6.14 shows the average temperatures of the lunar lander and the rover for a 

lunar day. In the case of actual rovers that perform lunar missions, a rover does not begin 

missions precisely at sunrise as it will need to receive solar power and produce electricity 
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to perform its mission. However, in this study, a rover mission is assumed to take place 

outside the lander from sunrise to sunset to analyze the temperature behavior of the rover 

under the worst conditions. 

 
Figure 6.14 Average temperatures of the lunar lander and the rover during 1 lunar day 

 

Figure 6.14 shows that the temperature trend of the rover undergoes several inflections, 

unlike the temperature trend of the lander. This is due to the small thermal mass of the 

rover and the various temperature profiles influenced by environmental elements such 

as sunlight reflected from the lander. Similar to the lander, the rover reaches its highest 

temperature between noon and sunset due to the continuous input of solar heat even past 

noon until the rover reaches thermal equilibrium. Due to the relatively small thermal 

mass of the rover and the fact that the rover is affected by the temperature of the lander 
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(which has a relatively large thermal mass), the temperature of the rover retains a flat 

shape for a certain period after reaching a peak temperature. This is in contrast to the 

case of the lander, where the temperature decreases immediately after highest 

temperature. The temperature trend of the rover is affected by the relative position 

between the rover and the lander, and the shape of the graph in Figure 6.14 changes 

according to the changes in the relative position between the rover and the lander. 

In Figure 6.14, as the rover moves through the MLI curtain into the shelter for lunar 

nights, the temperature of the rover rises for a certain period through heat exchange with 

the bottom of the lander, followed by a steady decrease in temperature as the lander 

temperature decreases. The temperature of the rover is maintained at a level slightly 

higher than the lander temperature during lunar nights due to heat from 0.5 W of standby 

power without heat exchange with the environment outside the lander. As a result, the 

maximum temperature of the rover is approximately 310 K, which is below 45 °C (318 

K), and the minimum temperature is approximately 263 K, which is higher than -15 °C 

(258 K). Therefore, the temperature of the rover during a lunar day meets the acceptance 

temperature requirement described in Table 5.2. 

In this study, the rover was able to satisfy the acceptance temperature requirement 

during lunar nights by simply moving into a sheltered location within the MLI curtain of 

the lander without mounting thermal control devices such as a lid or RHUs. The results 

confirm that, with assistance from an MLI curtain in the lunar lander, a small rover is 

able to carry out long-term missions for periods longer than a month, similar to large-

sized rovers. 
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In Figure 6.15, the analysis results of the latitude 30° case are compared with the 

results of the latitude 0° case. 

 
Figure 6.15 Temperature trends of the lander and rover at latitude 0° and latitude 30° 

As shown in the graph, the maximum temperatures of the lander and rover are lower 

at latitude 30° compared to latitude 0°, whereas the minimum temperatures are similar 

in both cases. This is due to the latitude 0° point corresponding to the worst thermal case, 

and it is clear that it is easier to meet the thermal requirements of a lander and rover when 

the missions are performed at latitude 30°. 

In Figure 6.16, the analysis results of the latitude 60° case are compared with the 

results of the latitude 0° case. 
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Figure 6.16 Temperature trends of the lander and rover at latitude 0° and latitude 60° 

The graph shows that the maximum temperatures of the lander and rover are lower 

at latitude 60° compared to latitude 0° in addition to latitude 30°. This is due to the lower 

angle of solar incidence on the surface at latitude 60° compared to latitude 0° or latitude 

30°, as shown in Figure 6.6. Therefore, it is easier to satisfy the thermal requirements of 

a lander and rover if the mission area is located at latitude 60° compared to the other two 

cases. 
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6.5 Analysis of the Influence of the RHUs and Lid 

In order to examine the efficiency of the lid and RHUs of the lander, the temperature 

results of the lander without the lid and RHUs were compared with the thermal analysis 

results of the lander described in the previous section, as shown in Figure 6.17.  

 

Figure 6.17 Case study on the efficiency of the lid and RHUs 

 

The important focal point of Figure 6.17 is the difference between the maximum and 

minimum temperatures during a lunar day. If the difference between the maximum and 

minimum temperatures is small, it is possible to satisfy acceptance temperature 

requirements even if the temperature results exceed the maximum or minimum 

acceptance temperatures by shifting the analysis temperature by adjusting the radiator 



Chapter 6. Thermal Analysis 

 

95 

 

area. In Figure 6.17, the difference between the maximum and minimum temperatures 

of the lander is approximately 59 K, according to the analysis of the design results in 

Table 5.1. The difference is approximately 80 K without the RHUs, and approximately 

113 K without the lid. Considering that the temperature difference of the acceptance 

temperature requirements is 70 K (-20 ℃ ~ 50 ℃), it is difficult to achieve the acceptance 

temperature requirement without the RHUs and the lid even with adjustments in radiator 

area. 

In the absence of a lid, the temperature drops rapidly after entering the lunar night, 

resulting in a larger difference between the maximum and minimum temperatures. Based 

on this result, an active device such as a lid is necessary for small lunar landers to survive 

lunar nights. In Figure 6.17, the temperature decreases more rapidly in the absence of a 

lid compared to the absence of RHUs. Therefore, it can be concluded that, for a lunar 

lander, the effectiveness of a lid is greater than the effectiveness of RHUs for night 

survival.  

For cases with a lid but no RHUs, the difference between the maximum and the 

minimum temperatures is 80 K, which is greater than the requirement of 70 K of this 

study. However, the temperature requirement of the lunar lander may potentially be 

satisfied by efficiently arranging the internal components of an actual lunar lander or by 

optimizing the radiator area. However, this study could not make conclusions regarding 

this possibility as the lunar lander was modeled as a simple cube. Instead, a detailed 

study on this topic is suggested as a future research subject. 
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6.6 Regolith Temperature Analysis according to the Effect of the 

MLI Curtain 

The temperature of the regolith inside the MLI curtain was compared to the 

temperature of the external regolith to investigate the heat protection effect of the MLI 

curtain of the lander on the lunar regolith. The results are presented in Figure 6.18. 

 

Figure 6.18 Comparison of the temperatures of the inner regolith and the outer regolith 

 

In Figure 6.18, the temperature results of the bottom of the lander and the inner surface 

regolith were difficult to distinguish, as the temperature results were superimposed. 

Figure 6.18 shows that the temperature of the outer surface regolith is the same as the 

regolith temperature result of latitude 0º introduced in Figure 5.5. The temperature of the 
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inner surface regolith follows the temperature of the bottom of the lander. As the fluff 

layer of lunar regolith possesses significantly low thermal conductivity and significantly 

small heat capacity, the temperature of the fluff layer inside the MLI curtain can be 

estimated to be similar to the temperature of the lander bottom which has a relatively 

large heat capacity. 

Figure 6.18 shows that the surface temperature of the Moon outside the MLI curtain 

compared to the temperature within the MLI curtain is 71 K higher during the lunar day 

and 183 K lower during the lunar night. If a rover is forced to survive a lunar night 

outside the MLI curtain without survival equipment such as RHUs, the temperature of 

the rover is likely to exceed acceptance temperature requirements due to the harsh 

temperature conditions of the Moon. The MLI curtain idea is not feasible on planets like 

Earth, where there is an atmosphere and a surface with varying thermal conductivity and 

heat capacity depending on location, and is only feasible in a thermal environment like 

the Moon. As shown in Figure 6.18, the effectiveness of the MLI curtain was 

demonstrated by the substantial temperature difference between the space outside and 

inside the MLI curtain. 
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6.7 Thermal Analysis considering the Fluff Layer being Blown 

Away 

The lunar surface can be divided into a fluff layer and a regolith layer, with the fluff 

layer having a lower density. Due to the lightness of the fluff layer, a large amount of 

particles can be scattered even by relatively small impacts. This is indicated in the 

records of the Apollo program, which stated that dust had settled on the video camera 

lens during surface activities by the crew, which were wiped off [16]. 

Propellant release occurs when a lunar lander attempts a soft landing on the lunar 

surface. In this process, the spraying of the propellant may remove the fluff layer, which 

causes the regolith layer to be exposed on the surface. This section describes the thermal 

analysis results that takes into consideration such a case. 

 

Figure 6.19 Comparison of lunar surface temperature with and without fluff 
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It is difficult to accurately simulate the shape of fluff layer portions that are blown 

away from the lunar surface by thrusters. Therefore, the analysis was performed with the 

assumption that the fluff layer completely disappears in the entire model. The results 

were compared with the analysis results described in Section 6.4, in which the fluff layer 

was completely untouched. In Figure 6.19, the temperature results of the lunar surface 

when the entirety of the fluff layer is removed are compared with the lunar surface 

temperatures in Figure 5.5. 

As shown in Figure 6.19, the highest temperature on the lunar surface is similar in 

both cases. This is due to the fact that, even when the fluff layer is removed, the 

maximum temperature due to energy balance remains similar as the model uses the same 

values for the solar absorptivity and infrared emissivity of the Moon's surface. On the 

other hand, during the lunar night period, the lowest temperature on the lunar surface 

exhibits a higher temperature trend when the fluff layer is removed compared to when it 

is present. This is due to the higher thermal conductivity of the regolith compared to the 

fluff. Thus, if the fluff is swept away, the temperature of the lunar surface is affected by 

the temperature below the lunar surface to a greater degree. It is known that the 

temperature below the lunar surface is higher than the temperature of the lunar surface 

during lunar nights. Therefore, the removal of the fluff layer is expected to have a 

positive effect on the survival of a lander and rover due to the smaller gap between the 

highest and lowest temperatures compared to when the fluff layer is present.  

In Figure 6.20, the temperature analysis results of the lander and rover were compared 

between cases that removed and maintained the fluff layer. 
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Figure 6.20 Lunar Lander and rover temperatures in cases with and without the fluff 

Figure 6.20 shows that the maximum temperatures of the lander and rover were lower 

in the absence of the fluff layer than with it present. Furthermore, the minimum 

temperatures of the lander and rover are higher in the former case compared to the latter 

case. All in all, the lander and rover satisfied their respective allowable temperature 

requirements in the absence of the fluff layer.  

The analysis results of Figure 6.20 are based on the condition of the fluff layer being 

completely removed by spray thrusters. However, even if the fluff layer is only partially 

removed, the maximum/minimum temperatures will be lower/higher than if the fluff 

layer is completely untouched. 

From these analysis results, it can be seen that even if the fluff layer is partially or 
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completely removed by spraying thrusters during the landing process of a lander, thermal 

stability does not become an issue for either the lander or rover. 
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6.8 Summary of Thermal Analysis Results 

The analysis results described in Chapter 6 can be summarized as follows. Thermal 

designing of the lander and rover was undertaken with the goal of satisfying the 

allowable temperature requirements specified in Table 5.2. As a result, the size of the 

radiator and the number of RHUs were obtained as shown in Table 6.1.  

Thermal analysis of the lander and rover was performed by applying the design results 

shown in Table 6.1. As a result, it was confirmed that the thermal analysis results of the 

lander and rover met the allowable temperature requirements and secured appropriate 

margins, as shown in Figure 6.11 and Figure 6.14. Table 6.2 shows a summary of the 

results. 

Table 6.2 Summary of the Expected Temperatures of the Lander and Rover 

 
Allowable 

Temperature Range 

Expected 

Temperature Range 

Margin for Min. 

Temperature 

Margin for Max. 

Temperature 

Lander 

(Average) 
-20℃ ~ 50℃ -15℃ ~ 44℃ 5℃ 6℃ 

Rover -15℃ ~ 45℃ -10℃ ~ 37℃ 5℃ 8℃ 

 

As a result of comparing the influence of the lander's RHU and lid for lunar night 

survival, the role of the lid was confirmed to be greater, as shown in Figure 6.17. In 

Figure 6.18, the thermal insulation effect of the MLI curtain was confirmed. In addition, 

in the case of the fluff layer being blown away by thruster propellant, there were no 

issues in terms of lunar night survival for the lander and rover, as shown in Figure 6.20.



Chapter 7. Conclusions 

 

103 

 

Chapter 7. Conclusions 
Survival during night periods on the Moon is a difficult task due to the cryogenic 

environment, yet it is vital when performing lunar missions for periods of longer than 

two weeks. Various types of landers and rovers that have landed on the Moon have been 

thoroughly studied over the years. As a result, long-term missions were identified as 

difficult tasks for small rovers. 

Lunar exploration projects are expensive undertakings, and thus costs are an 

important factor in the development of space vehicles. In the past, relatively low-cost 

projects involving lander-rover systems of small masses did not equip the vehicles with 

adequate means of survival during lunar nights. Therefore, this thesis proposed a cost-

effective survival system for lunar landers and small rovers for long-term missions called 

the MLI curtain system. The system involves a small rover without RHUs that performs 

mission tasks during the daytime and continues to survive within an MLI curtain shelter 

under a lunar lander during lunar nights. 

This thesis verified the proposed idea through thermal analysis. A lunar regolith 

thermal model was established and compared with LRO measurement results for 

verification. A lunar lander thermal model was modeled with a simple cubic shape, and 

the thermal design combined RHUs and a lid to ensure the lander could survive lunar 

thermal environments and meet the acceptance temperature requirements. As a result, 

this study derived the optimized thermal design for a lander to survive lunar days and 

nights. Furthermore, a thermal model of the MLI curtain and a rover was developed, 
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which is a key proposal of this study. Using the established thermal model, the lander 

and rover were thermally designed at 0 ° latitude where the temperature difference 

between night and day is the most severe, and thermal analysis was performed. 

Additional thermal analysis was performed to analyze the effectiveness of the RHUs and 

the lid, and the thermal insulation effect of the MLI curtain was investigated. 

Furthermore, thermal analysis was performed for the lander and rover for cases in which 

the fluff layer was blown away by the thrusters during landing. The thermal analysis 

results showed that the proposed night survival system involving the MLI curtain enables 

small lunar rovers to survive lunar nights without RHUs or other temperature 

maintenance devices. 

In order to determine the feasibility of the MLI curtain system, we examined its 

applicability not only in terms of thermal control systems, but also from the perspective 

of structure mechanical subsystems, electrical power subsystems, and software 

subsystems. As a result, we were able to confirm a feasible method. In order to improve 

the feasibility of the MLI curtain system, this thesis suggested methods such as doubled-

layer MLI curtains and rovers without solar cells. 

In this study, the lunar lander and rover were modeled as simple cubes. Therefore, 

future research is suggested to verify the details presented in this study using detailed 

models of lunar landers and rovers that simulate electrical boxes and internal radiation 

heat exchanges. With further research on rovers that do not equip solar panels and are 

instead supplied with power solely by lander batteries, lunar exploration missions can be 

further advanced to widen the scope of lunar research to include lunar night periods. 
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초    록 

 

달의 하루는 지구의 한달에 해당하며, 태양이 비치는 달의 2주동안은 매

우 뜨거운 상태의 달의 낮기간이고, 태양이 비치지 않는 달의 2주동안은 매

우 차가운 달의 밤기간이다. 달 탐사선은 달의 밤기간동안 태양으로부터의 

에너지 공급도 없고, 매우 추운 주변 환경 가운데서 2주간의 긴 기간을 버

텨야 한다. 

달 탐사를 위한 착륙선과 로버에는 2주동안의 달의 밤기간동안 생존하

기 위해 그동안 여러가지 장치가 제안되고 시도되어 왔다. 달의 밤기간동안 

달 탐사선의 열 공급장치인 RHU(Radioisotope Heating Unit), 혹은 전

기 발생장치인 RTG(Radioisotope Thermoelectric Generator)등이 

사용되어 왔고, 열 개폐장치인 Radiator Lid등이 사용되었다. 최근에는 열 

저장 장치인 Thermal Wadi나 달의 지표면 아래에 달의 낮기간 동안 에너

지를 저장하는 장치 등의 아이디어도 제시되었다. 

이와 같은 온도 유지장치들은 가격적인 문제나 안전문제 혹은 무게나 구

현의 어려움 등의 문제점을 동반하기 때문에, 소형 달탐사선의 경우에는 달 

밤 기간 동안의 생존을 포기하고 달의 낮 기간인 2주동안만을 임무기간으

로 설계되어 제작되기도 하였다. 

본 논문에서는 소형 달착륙선과 로버도 2주동안의 달의 밤기간동안 생
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존할 수 있는 아이디어를 제시하였는데, 그것은 MLI (Multi-Layer 

Insulation) curtain system이다. MLI curtain system은 달 착륙선에 

Lid와 RHU등의 장치를 적용하여 달의 밤 기간 동안 생존할 수 있도록 하

고, 달 탐사 로버는 달 착륙선의 MLI curtain 안의 shelter로 이동하여 

생존할 수 있도록 설계된 시스템이다. MLI curtain system은 소형 로버의 

달 밤 기간 생존을 위하여 그 아이디어가 간단하고 적은 비용으로도 구현할 

수 있는 장점을 갖는다. 

본 논문에서는 MLI curtain system의 실현 가능성을 증명하기 위해 

일반적인 우주비행체 열설계 열해석 과정을 따라 열설계와 열해석을 수행하

였고, 열설계 요구조건에 부합하는 결과물을 얻었다. 뿐만 아니라 MLI 

curtain system feasibility를 향상시키기 위해 열제어 뿐만 아니라 구조, 

전력, 소프트웨어 측면에서 고려할 점도 논하였으며, MLI curtain system

의 안정성을 향상시키기 위한 아이디어도 제시하였다. 그 결과 MLI 

curtain system은 소형 로버의 긴 임무기간 동안의 생존을 위해 실현 가

능하고 적합한 아이디어임을 증명할 수 있었다. 
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