4 research outputs found

    Optimal combining of ground-based sensors for the purpose of validating satellite-based rainfall estimates

    Get PDF
    Two problems related to radar rainfall estimation are described. The first part is a description of a preliminary data analysis for the purpose of statistical estimation of rainfall from multiple (radar and raingage) sensors. Raingage, radar, and joint radar-raingage estimation is described, and some results are given. Statistical parameters of rainfall spatial dependence are calculated and discussed in the context of optimal estimation. Quality control of radar data is also described. The second part describes radar scattering by ellipsoidal raindrops. An analytical solution is derived for the Rayleigh scattering regime. Single and volume scattering are presented. Comparison calculations with the known results for spheres and oblate spheroids are shown

    NASA scientific and technical publications: A catalog of Special Publications, Reference Publications, Conference Publications, and Technical Papers, 1987

    Get PDF
    This catalog lists 239 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered in the NASA scientific and technical information database during accession year 1987. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided

    On requirements for a satellite mission to measure tropical rainfall

    Get PDF
    Tropical rainfall data are crucial in determining the role of tropical latent heating in driving the circulation of the global atmosphere. Also, the data are particularly important for testing the realism of climate models, and their ability to simulate and predict climate accurately on the seasonal time scale. Other scientific issues such as the effects of El Nino on climate could be addressed with a reliable, extended time series of tropical rainfall observations. A passive microwave sensor is planned to provide information on the integrated column precipitation content, its areal distribution, and its intensity. An active microwave sensor (radar) will define the layer depth of the precipitation and provide information about the intensity of rain reaching the surface, the key to determining the latent heat input to the atmosphere. A visible/infrared sensor will provide very high resolution information on cloud coverage, type, and top temperatures and also serve as the link between these data and the long and virtually continuous coverage by the geosynchronous meteorological satellites. The unique combination of sensor wavelengths, coverages, and resolving capabilities together with the low-altitude, non-Sun synchronous orbit provide a sampling capability that should yield monthly precipitation amounts to a reasonable accuracy over a 500- by 500-km grid

    NASA scientific and technical publications: A catalog of special publications, reference publications, conference publications, and technical papers, 1987-1990

    Get PDF
    This catalog lists 783 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered into NASA Scientific and Technical Information Database during the year's 1987 through 1990. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided
    corecore