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ABSTRACT

The study describes two problems related to radar rain-

fall estimation. The first part is a description of a pre-

liminary data analysis for the purpose of statistical estima-

tion of rainfall from multiple (radar and raingage) sensors.

Raingage, radar and joint radar-raingage estimation is de-

scribed and some results are give. Statistical parameters of

rainfall spatial dependence are calculated and discussed in

the context of optimal estimation. Quality control of radar

data is described also. The second part describes radar

scattering by ellipsoidal raindrops. Analytical solution is

derived for the Rayleigh scattering regime. Single and vol-

ume scattering is presented. Comparison calculations with

the known results for spheres and oblate spheroids are shown.
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PART I

ESTIMATION OF RAINFALL FROM RADAR AND RAINGAGES



I.l. INTRODUCTION

Estimation of global rainfall is an important component

of global climate studies. This has been well established

and documented (Simpson [1989], Thiele [1987], Wilkerson

[1988], Arkin and Ardunay [1990]). Due to the fact that over

70% of the Earth's surface is covered by oceans it is neces-

sary to use satellite technology for global rainfall estima-

tion. Satellite methods of rainfall estimation rely on indi-

rect ways of inferring rainfall over an area based on mea-

surements of radiation emmitted from several different fre-

quency bands. For review of satellite methods of rainfall

estimation refer to Barrett and Martin [1981], Adler and

Negri [1988], or Arkin and Ardunay [1990]. Satellite estima-

tion methods require validation because they are based on in-

direct inference. Validation simply means comparing the es-

timation with other independently obtained estimates of the

same rainfall. The validation will not be meaningful if the

reference methods are of poor quality or if their accuracy

cannot be established. The reference methods are typically

based on raingage networks and more recently on estimates

from weather radars. It is the purpose of this report to

discuss these methods with particular emphasis on two as-

pects:



, estimation of mean areal rainfall using a combina-

tion of radar and raingage observations; and

, estimation of uncertainty associated with areal es-

timates of rainfall

A general discussion of the problem will be illustrated

with analysis of radar rainfall data from Darwin, Australia.

The data set used in the study is fully described in

Krajewski and Rexroth [1990].

1.2. RAINGAGE RAINFALL ESTIMATION

Raingages are the most traditional means of measuring

rainfall. The observed rainfall represents a point value and

in order to make an assessment of areal rainfall one needs to

resort to interpolation methods. Mathematically the problem

can be defined in the following way. Suppose that the true

but unknown mean areal rainfall is

1
P (u, t) du (I)RA = A

A

where A is the area of interest, u=(x,y) is a two dimensional

space location, and P is the true rainfall process. The in-

dex t signifies the temporal aspect of the problem. In the
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following derivations this index will be dropped to simplify

the notation. It will be assumed that both the estimated

areal rainfall and its observations are given at the same

time scale. The temporal resolution of the data used in this

work is either one hour or one day. Therefore, equation (I)

denotes, say, daily mean area rainfall. The task at hand is

to estimate R A given n point raingage observations Gi(u,t),

i=l,2,...,n. A linear estimator of the following form can be

proposed

n

_A = Z _iGi(-,t)
i-1

(2)

A

It is required that the estimator R A be unbiased and give

minimum variance. The unbiasedness condition gives

n 1

7. - J P(u,t)du]
i-I A

(3)

By taking advantage of the linearity of both sides of this

condition it can be simplified to

n 1 _

i-1 A

(4)

Assuming that the mean of the rainfall process P is constant

in space and that the observations Gi(u,t) are unbiased,

equation (4) can be reduced to

4



n

i=l

(5)

Minimization of the variance of the estimator is accom-

plished in the following way. First, the variance of the es-

timator is written as

2
aRA = _[_R_-_A _2] = _[RA 2] - 2_[RA_A] + _[_A 2]

= E[_2 S S P(%II))P(u2)dUldU2]
A A

n
1

- 2E[_ _ _. _iGi(u) P(u)du]
A i-i

n n

+ E [ Z _ _ikjGi (u) Gj (U) ]

i-1 i-1

(6)

Making use of the fact that for the second-order stationary

processes

cov(v) = E[P(Ul)e(u 2) ] - m2 = cov(ul-u2) (7)

where m is the mean of the process, equation (6) can be writ-

ten as

2 1

A A

cov(ul-U2)duldU2

n
2

f E licovCu-uildu
A i-1



n n

+ _ _ _i_jCOV (Ui-Uj) (8)

i"l i-i

The next step is finding the weights li that will minimize

the expression (8) subject to the constraint (5). This could

be accomplished using the method of Lagrange multipliers.

According to the method an unconstraind optimization problem

is solved which minimizes the following function

2 n

F = (;RA + 2_( _ _i -- I) (9)
i--i

This leads to the following set of linear equations

_F n

_ 2 S cov(u-ui)du +2 _ _jcov(ui-uj)+2 _ = 0A
A j-i

for i=i,2, ...,n (i0)

_F n

(II)

The solution of this system yields the optimal set of
*

weights denoted with _'i which when substituted into the vari-

ance equation (8) give

2 1 1 n ,

_R A = _ I I cov(ul-U2)duldU2 - _ I _ kicov(u-ui)d u - _ (12)
A A A i-i



In order to use the above method one needs to estimate

the spatial covariance function of the rainfall process. Of

course the true covariance, which appears in all the double

integral terms, cannot be inferred from the noisy data and

will be substituted by a model obtained by fitting a theoret-

ical covariance function to the data.

There are many functions which could be used as models

for covariance. For a discussion of these models and the

conditions they have to meet see Journel and Huijbregts

[1978]. Before a model is decided on, the empirical (or raw)

covariance values need to be inspected. In Figures 1 and 2

the raw correlations (normalized covariances) are shown for

all the pairs of raingages for daily and hourly data, respec-

tively. The network of raingages under Darwin radar is com-

posed of 22 raingages (21 were included in the analysis).

Their locations and the raingage data are discussed in

Krajewski and Rexroth [1990]. It is clear from the Figures

that there is not much correlation between the rainfall val-

ues recorded at the network gages. There are two possible

explanations. The first possibility is the statistical sam-

pling variability. The data used in the analysis cover a

rather

7
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short period of time (I month, December 21, 1987 through

January 20, 1988). It is then conceivable that the lack of

significant correlation can be attributed to the small sample

size used. To verify this hypothesis correlation was calcu-

lated for the 6 months of data available covering the period

from October 31, 1987 to May 15, 1988. The results are pre-

sented in Figure 3. The second possibility is that the ex-

isting network is to sparse to capture the fluctuation scale

of the events. The shortest distance between any two sta-

tions within the network is 14 km and there are only a few

pairs of stations separated by a distance less that 30 km.

Correlation distance defined as distance at which the expo-

nential correlation drops to I/e=0.37 depends on the temporal

scale of interest. For hourly GATE data the correlation dis-

tance is about 20 km (Bell [1987]). For daily GATE data it

increases to about 40 km. These numbers represent an overes-

timation of the point value correlation since they were cal-

culated from radar data averaged in space to 4 by 4 km val-

ues. Correlations were also calculated from the Darwin

radar-rainfall data. They are shown in Figures 4 and 5. As

a conclusion from the above plots and the discussion it is

fair to suspect that it is the sparseness of the network that

causes the lack of significant correlation. It can be shown

that, if there is no significant correlation the weights are

all equal and the estimator becomes a simple average.
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Based on the raingage data the average monthly rainfall

rate for the Darwin radar umbrella, calculated from the rain-

gage data is 0.45 mm/hr. The values of daily rainfall are

given in Table i. The variances of these rainfall estimates

can be calculated simply as

Var{RA-P} = I/n[_2-E{Cov(X,Y) }] (13)

where X,Y are independent uniformly distributed points

(gages) in the domain of interest. If this domain is large

compared to the effective range of the covariance function

the second term in (13) becomes negligible. In our case the

domain of interest has radius of 170 km while the effective

range of the correlation is only about 20 km. Assuming tem-

poral independence of the daily estimates the standard devia-

tion of the monthly estimate of the average rainfall rate is

about 0.02 mm/hr. This corresponds to about 13 mm for

monthly rainfall accumulation.
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Table i. Daily Areal Averages of Radar and Gauges

Date R-Rate R-Acum G-Rate G-Acum

(mm/hr) (mm) (mm/hr) (mm)

12/21/87 0.8937 10.7 1.1823 28.4

12/22/87 1.0331 7.2 1.3912 33.4

12/23/87 1.1231 20.2 1.5884 38.1

12/24/87 0.5020 2.0 0.1164 2.8

12/29/87 0.2238 2.5 0.0794 1.9

12/30/87 0.4721 11.3 1.0933 26.2

12/31/87 0.9245 22.2 1.4980 36.0

01/01/88 0.0062 0.i 0.0000 0.0

01/02/88 0.2696 6.5 0.4370 10.5

01/03/88 0.2572 4.4 0.1951 4.7

01/04/88 0.3915 9.4 0.3968 9.5

01/05/88 0.2628 6.3 0.2799 6.7

01/06/88 0.1724 3.3 0.3857 9.3

01/07/88 0.1262 3.0 0.0590 1.4

01/08/88 0.1488 3.6 0.2360 5.7

01/09/88 0.3547 7.1 0.7094 17.0

01/10/88 0.5545 11.6 0.4539 10.9

01/11/88 0.5127 12.3 0.4026 9.7

01/12/88 0.1859 4.5 0.0919 2.2

01/13/88 0.1783 4.3 0.3670 8.8

01/14/88 0.1640 3.6 0.2223 5.3

01/15/88 0.0867 2.1 0.0097 0.2

01/16/88 0.3599 8.6 0.3957 9.5

01/17/88 0.0752 1.8 0.0164 0.4

01/18/88 0.0484 1.2 0.0000 0.0

01/19/88 0.2773 5.8 0.0919 2.2

01/20/88 0.2725 2.5 0.1092 2.6

The monthly areal averages for radar and gages are as fol-

lows: R-Rate=0.36 mm/hr, R-Accum=147 mm, G-Ratem0.44 mm/hr,

G-Accum = 291 mm. The gage rates were calculated with the as-

sumption of 24 hr measurement by all gages during the entire

period. This was not always the case. Missing hours were

accounted for in the monthly and daily radar averages. The

Channal gage was not included in the gage averages.
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1.3 • RADAR-RAINFALL ESTIMATION

Estimation of Darwin rainfall based on the radar data

was described in Krajewski and Rexroth (1990). In their at-

las of radar-rainfall no attempt was made to use the best (in

some sense) Z-R relationship or special preprocessing of the

radar data. The 1.5 km CAP I data prepared at the NASA

Goddard Space Flight Center were used. The Z-R relationship

used was the following: a=230 and b=1.25.

It was found that anomalous propagation presented a se-

vere problem and therefore, a manual computer graphics-aided

procedure was utilized to eliminated it as much as possible.

Also, a quality control procedure aimed at detecting isolated

outliers (see Krajewski, 1987) was applied to both hourly and

daily rainfall fields converged to a 4 km by 4 km resolution

grid. Outliers were defined as those data points which were

statistically inconsistent with their immediate neighbor-

hoods. The outliers detected in the daily fields are listed

in Table 2. The critical parameter _ which appears in the

table controls the sensitivity of the method. Low values of

the parameter indicate high sensitivity and, as a result,

many points are questioned as being outliers. High values of

correspond to lower sensitivity of the method, and as a re-

sult some of the "not-so-obvious" outliers may slip through

the quality control. Based on the simulation study performed

by Krajewski (1987) the optimal choice of the critical param-

16



eter for daily rainfall fields is _=3.0. The total number of

outliers detected with this value of _ in the studied period

was 8.

Once outliers are detected the problem becomes how to

accommodate them. By accommodation is meant replacement of

the erroneous values with their surrogates. One "safe"

choice of such replacement is to use the local mean of the

surrounding data.

After the quality control steps were implemented monthly

rainfall based on radar observations was calculated from the

daily fields. Comparison of daily and monthly values of

radar-rainfall is given in Table 2.
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Cridcal Parameter

Date 1.0 2.0 3.0 4.6 5.0

I J R I J R I J R I J R I J R

12/22/87 74 85 49 88 69 i01 88 69 i01 88 69 i01

72 87 33 88 70 6112/22/87

12/29/87

12/29/87
12/31/87

01/03/88

01/06/88

01106188
01/06/88

01/06/88

01107188

01/07/88

o1/o8/88
01/09/88

01/09/88

01/10/88

01/10/88

01/10/88

01/11/88

01/11/88

01/12/88
i

01/13/88

01/14/88

Ol/%5/_
01115/88

01105/88

01/16/88

01/17/88 ,

01117/88

51 13 31

20 35 48

23 21 28

Ii 36 41

34 38 19

34 39 15

23 34 69

48 31 66

II 36 41

48 31 66

71 81 20

21 41 13

21 45 34

89 63 52 73 29 87 73 29 87

29

26 32 428

30 33 287

14 52

36 31 54

50 12 ,299

26 321 428

26 32 428

30 33 287

48 31 66

23 21 1084

26 32 428

23 21 1084

26 32 428

27 31 189

63 82 .18
=

64 84 .15

9 56 47

41 11 4O

159 29 31
i

85 26 23

62 83 33

66 39 62

37 41 31

62 68 37

9 56 47

=

62 83 33 92 59' 107

92 58 148

Table 2. List of outliers detected in the daily data.
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1.4. RADAR-RAINGAGE COMBINATION

The time-area average of interest can be expressed math-

ematically according to equation (I). An estimate of RTA de-

A

noted RTA can be obtained from a number of ground-based sen-

sors. The most appropriate network for the purpose of satel-

lite rainfall validation exercise seems to be a combined net-

work of a radar and a number of raingages. We could write

- g (14)

where 7_R=(ZRI,ZR2,...,ZRNR) is a vector of NR radar observa-

tions within the area of interest A, _G=(ZGI,ZG2,...,ZGNG) is

a vector of NG corresponding raingage observations, and g is

a function of NG and NR arguments. It is often taken to be

linear, however it can also be nonlinear. The error term

resulting from the approximation (14) is a random component

z
which could be characterized by its mean _e and variance _.

A

Below we outline a methodology to compute RTA and the associ-

2
ated G z from radar and raingage observations. This methodol-

ogy is based on the main assumption that rainfall is a real-

ization of a spatial stochastic process (random field).

Weather radars could be classified as indirect rainfall

measuring devices in the sense that they measure parameters

related to rainfall and not the rainfall itself. Rainfall

19



rate, and more precisely rainfall volume is, therefore, esti-

mated from those measurable parameters. As such, radar-rain-

fall estimates are contaminated by errors which have two ba-

sic components: I) measurement error -- error in measuring

the parameters related to rainfall; and 2) inference error--

error due to an imperfect model (i.e., relationship) assumed

between the measured parameters and rainfall. For example,

one of the major errors introduced in inference models is ice

contamination. The chances for ice contamination of the

radar signal increase with increasing range. Contamination

by ice increases reflectivity for the same rainfall, some-

times by several dB. Another very important measurement er-

ror that is normally neglected, but of extreme importance is

radar calibration error. This is a systematic error unlike

many other errors that are random in nature. This calibra-

tion error can easily be of the order of couple dB, which re-

sults in high errors in rainfall estimates. This radar cali-

bration error can also drift with time, potentially changing

with season. Figure 6 demonstrates the behavior of the bias

which results from many different sources, not necessarily

just the lack of calibration. Appendix C includes a simula-

tion study of a bias model.(Krajewski and Smith, 1991).
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mean areal values.
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Thus, radars which provide nearly continuous spatial

coverage of large areas, are characterized by often signifi-

cant point errors. On the other hand, a raingage network of-

fers good point accuracy but is characterized by relatively

high sampling error related to network density. The premise

of a multisensor rainfall estimation is a combination of high

spatial resolution of radar and good point accuracy of rain-

gages.

II.4.1 Methodology outline

The characteristics of radar and raingage sensors have

been discussed in literature many times (see Wilson and

Brandes, [1979]; Doviak and Zrnic, [1984]; Hudlow et al.,

[1984]; Zawadzki, [1982]; Austin, [1987]; Krajewski, [1987])

justifying the concept of a combined network. Several ap-

proaches have been proposed to combine the two types of mea-

surements (Brandes, [1975]; Crawford, [1979]; Eddy, [1979];

KraJewski, [1987]; Seo et al., [1990ab]; Azimi-Zonooz et al.,

[1988]; Smith et al., [1990]; and Seo and Smith [1990]). The

recent works offer a comprehensive approach to the sensor

merging problem. This approach is based on the stochastic

interpolation technique called cokriging (Journel and

Huijbregts, [1978]). Its application requires estimation of

spatial covariance functions of data from the involved sen-

sors and the cross-covariance function. The method is capa-

22



ble of accounting for different sampling geometries of the

measurements involved and the measurement error. It is as-

sumed that

NR NG

g(_R, _G) = _ _RiZRi + _- _GjZGj
i=l

(15)

where the coefficients _Ri and _Gj can be found by minimizing

the estimation error variance

Var[RTA -- RTA] = E{[RTA- RTA] 2} = (;_ (16)

subject to the condition that we consider only unbiased esti-

mators, i.e.

A

E [RTA] = RTA (17)

The solution of this minimization problem is a function of:

i) observations ZRi and ZGj; 2) the spatial covariance func-

tions of radar observations and raingage observations; 3) the

spatial cross covariance function between the radar and rain-

gage observations; and 4) the spatial covariance functions

between the observations and the true rainfall. This last

term is of course unknown and in general cannot be estimated

from the data. KraJewski [1987] proposed a simple parameter-

ization of this covariance term and performed a limited sen-

sitivity analysis of such an approach. The results showed

23



quite flat behavior of the criterion function near the opti-

mal location of the parameters. However, the disadvantage of

this approach is the lack of meaningful interpretation of the

parameters, which in turn may cause difficulties in choosing

the parameters for real-data situations. The covariance be-

tween the observations and the true rainfall be expressed as

a function of measurement error parameters of the two sen-

sors. Radar observations can be expressed as

1 T

ZRi=_0 _ _S_s_ R(t,s)dtds+_i
i=l, . . .,NR (18)

where S is the area of a basic radar observation (typically

about 4 km x 4 km grid), and _i is an error term. This error

term can be characterized by its second order moments: the

mean and the covariance.

The raingage data represent point observations

1 T

ZGj=_[ R(t,s)dt + vj

0

j=I,...,NG (19)

2
where vj is a zero mean Gaussian variable with variance _v

and can be assumed independent of R(t,s). Therefore, the co-

variance between the observations and the true rainfall can

2
be expressed as a function of _, cov_ and _v" These parame-

ters, in addition to the raingage network density and the

24



methodology used for combining the two data sets, control the

performance of the system.

The precise knowledge of these parameters results in an

optimal scheme of merging radar and raingage data. However,

in general it is very difficult to obtain the true values of

these parameters. Therefore, it is important to investigate

the sensitivity of the merging scheme with respect to the un-

certainty about the measurement error parameters. Such a

sensitivity study can be achieved by a simulation experiment.

It is clear from the previous discussion that the error

term of the estimate (14) could be directly used in the vali-

dation of the satellite-based rainfall estimation methods.

The problems of estimating the covariance function from

a limited sample is demonstrated in Figures 7 and 8 and Table

3. They show the range dependence of the cross-correalation

function between the radar and raingage data. A strong ef-

fect is evident. The cause was probably the fact that the

Darwin radar uses a 5 cm, and therefore attenuating, wave-

length.
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Table 3. Daily Gage Correlations
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It should be evident from the shape of the correlation func-

tion that as the separation lag increases the correlation at

greater distances from the radar will decrease even faster.

Therefore, the radius of the statistical influence of the

raingage points on the radar data in the vicinity of the

gages is relatively small. It should be expected that the

radar-based estimates of rainfall will not be strongly af-

fected by the gage estimates.

1.5. CONCLUSIONS

The performed analysis of the Darwin rainfall data for

one monthly period demonstrated that a statistical approach

to rainfall estimation using both radar and raingage data is

faced with major problems. The two biggest problems seem to

be:

I , Quality control and preprocessing of radar data.

Efficient anomalous propagation detection and re-

moval is fundamental to the success of any subse-

quent estimation approach.

, Sparseness of the raingage network and its configu-

ration. Since the statistical estimation approach

relies on the inference of statistical moments from
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the observations, the sampling density is a criti-

cal issue. The network of 22 approximately evenly

distributed gages cannot capture the spatial vari-

ability of the convective and monsoonal rainfall.

However, the observed difficulty and apparent lack

of strong statistical relation between the radar

and the raingage data should be investigated fur-

ther with a longer data set. The way the network

configuration comes into play is through its abil-

ity to observe the spatial correlation structure of

the investigated process. In the case of the

Darwin network it seems that the rainfall process

has correlation distance on the order of 20 km or

less even on the daily scale. The network which

has average intergage separation distance greater

then that cannot resolve such a scale.

Investigation of the statistical approach as a nonsta-

tionary and space-time process should and will continue.
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II.l. INTRODUCTION

The calculations of scattering of electromagnetic waves

are required in many fields such as remote sensing or radia-

tive heat transfer. In particular, investigation of the

scattering of radar waves by raindrops and the scattering of

light by small chemical and biological particles is of inter-

est in studies related to global climate modeling.

The solution of the electromagnetic scattering problem

by spherical objects is well known as the Mie theory (see

[11,26,39]) and has been used to a great advantage in many

physical applications. However, the problem of scattering by

nonspherical bodies often arises. Many techniques have been

developed but each has a limited range of applicability that

is determined by the size of the scattering object relative

to the wavelength of the incident field.

The scattering by objects that are very small compared

to the wavelength can be analyzed by Rayleigh approximation.

Since Rayleigh's classical paper [35], there have been many

studies performed in this area. Let us only mention

Kleinman's work [29,30] for general considerations of the

low-frequency electromagnetic scattering problems, Jones [25]

for the theoretical aspects of the scattering problem,

Kleinman and Senior [30] for their investigations on scatter-

ing cross-sections, Asvestas and Kleinman [5,6] for the solu-

tion of the low-frequency scattering problem by spheroids and

disks, Angell and Kleinmann [I] for polarizability tensors,
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Stevenson [37,38] for the solution in the case of the ellip-

soid, Siegel [36] for work on bodies of revolution, and

Darling and Senior [16] for a general consideration of low-

frequency scattering by separable and nonseparable bodies.

Objects whose size is of the order of the wavelength of

the incident radiation lie in the range commonly called the

resonance region. The classical method of solution in the

resonance region utilizes the separation of variables tech-

nique. Following this approach Asano and Yamamoto [2] have

solved the problem for spheroidal particles. Generalization

of their results for the case of randomly oriented spheroidal

particles is presented in [3,4].

Based on the well-known T-matrix approach, an integral

equation method which was introduced by Waterman [4,5],

Barber and Yeh [7] have solved the electromagnetic scattering

problem by arbitrarily shaped dielectric bodies. A review

article for scattering by non-spherical particles is listed

for reference [12].

The scattering of microwaves by raindrops is also a

scattering problem which was investigated by many re-

searchers. It is clearly related to the problem of investi-

gating and modeling the shape of raindrops (see Pruppacher-

Klett [34] for extensive discussion). The results for spher-

ical raindrops and hail particles are given in Battan [8].

For the results which use the spheroidal description of rain-

drops refer to Doviak and Zrnic [46]. Also, Warner and Hizal

[44] have investigated the scattering of microwaves by
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spheroidal raindrops based on an integral equation method.

Recently Beard and Als [10,13] have proposed a simple model

for the electrostatic equilibrium shape of falling raindrops.

We also mention Jameson's work [21,22,23] for radar measure-

ments of rainfall and for estimation of raindrop size distri-

bution. A review of the reflectivity technique of measuring

rainfall is presented in [42].

In this work the scattering by ellipsoidal raindrops in

low-frequencies is examined. At frequencies below 6 GHz (or

wavelength _=5 cm) most of the rain droplet sizes satisfy the

condition k_<<l (k is the wave number and _ is the character-

istic diameter of the scatterer) and therefore Rayleigh scat-

tering is applicable. The approximate upper limit of the

characteristic radius of the scatterer is generally taken to

be _ = 0.05_ [20]. At this radius the error of Rayleigh ap-

proximation is less than 4% [27]. We assume that the rain-

drop is an ellipsoid, with semi-axes al, a2, and a 3. Thus, we

have to solve an electromagnetic scattering problem in _3.

Compared to the already existing solutions, we have one more

degree of freedom. We assume an arbitrary direction of the

incident radiation on the scatterer, and we examine the far-

field patterns, taking into account the particle size distri-

bution of the rain drops and their random orientation. All

our analytical results are graphically compared to the known

results for corresponding spheres and spheroids.
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II.2. MATHEMATICAL FORMULATION OF THE PROBLEM

II.2.1. Equations of electrodynamics and the fundamental

dyadic solution

We consider the propagation of electromagnetic waves in

a medium. As it is well known, the electric field E(r,t) and

the magnetic field H(z,t) are governed in free charge and

current space by the Maxwell's equations

_H(=,t)

VxE(=,t)--_ @t (la)

V .E (z, t) =0 (Ib)

_E(r,t)
V xH (=, t) =-£ + GE (r, t) (2a)

_t

V -H (=,t)--0 (2b)

where £ is the dielectric constant, _ the permeability and G

the conductivity of the medium.

For a general consideration of the electromagnetic prob-

lem we refer to [34,39]. Assuming, without any loss of gen-

erality, harmonic time dependence for the electric and the

magnetic field, we have

E (r, t) =E (r) e -i(Ot (3)
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H (r, t) =H(r) e -i_t (4)

where _ is the angular frequency. In what follows, we can

suppress the time dependence from all field quantities and

then, for steady-state waves the equations corresponding to

equations (I) and (2) are

V xE (r) =i_H (r)
(5a)

V .E (=) =0 (5b)

V xH (r) = (-ei(_ + _) E (r) (6a)

V -H(z) =0 (6b)

Elimination of the H(z) field in the equations (5) by substi-

tution of the equations (6) gives us the following equations

for the electric field

V ×V xE (r) -k2E (r) =0 (7a)

V-E(z)=0 (7b)

where k is the complex propagation constant
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k2=(_2_S(I + i--) (8)

In particular for nonconducting media (_ = 0) k is real and

it is expressed in terms of the phase velocity c as

k = 0.1(_U_)-I12 = _Ic (9)

Similarly, the elimination of the E(=) field in the equations

(6) gives us the equations of the same type as equations (7)

for the magnetic field.

The fundamental dyadic solutionF(=,=') satisfies the

equation

V xV xF (r, =' )-k2F (=, r' )=-4_5 (=-r') (i0)

where z is the position of the observation point, ='is the

position of the source point, X is the identity dyadic, and

8(z-z') is the three-dimensional delta function. After some

derivations we conclude that

_ e ikl=-r'l

F(=,=.) - k21=_=,13 {k2(=-=') _(=-=')

+ (l-iklz-z' I) [X-3 (r-r')®(=-r')
I=-=' 12 ]

_eiklr-r'l

-I Ir-r'l } (ii)
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II.2. FORMULATION OF THE SCATTERING PROBLEM

Let us assume that V 2 is a bounded convex and closed

subset of 3 3 having a smooth boundary S. Let V 2 be a dielec-

tric with dielectric constant E2 and permeability _2 that lies

in an infinite, homogeneous isotropic medium V 1 with dielec-

tric constant E1 and permeability _1. We assume, as previ-

ously, harmonic time dependence. An incident plane electric

wave Z in propagates in the medium V 1 along the propagation

vector k. Let the corresponding magnetic wave be H in . The

two waves have the form

A . A

E TM (r) = be_kl k'r (12)

Hin(r) = k× /_i eiklk'r (13)

where

field

V 1 •

is the unit polarization vector for the electric

A

SO that b.k = 0 and k I is the propagation constant for

If E(r), H(r) are the scattered electric and magnetic

waves, respectively, and Ei(r), Hi(r) the total fields for

the spaces V i, i = 1,2, then due to linearity the total waves

are given by the sum of the incident plus the scattered

field.

The vector fields Ein(r), ' E(r), Ei(r) , Hin(E), H(=),

Hi(r) , satisfy the equations
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2
VxVxw(r) -kiw (r) =0 rEVii=l, 2

(14)

V -w(=)=0 (15)

where

k_=_2Ei_i (16)

The boundary conditions for the electric field on the

surface of the dielectric are given by the equation

A A

n XEl(r') = n xE2(r') r'eS (16a)

A A

n × [VxEl(r')] = _I n × [V×El(r')] r'_S (16b)

_2

On the surface of the scatterer the boundary condition

^ e 2 ^ ,
n "El(r') = n .E2(r ) r'eS (16c)

E1

must also be satisfied as a consequence of the integral rela-

tion (see [37])

n̂ -E(r')dS(r') = 0 (16d)

S
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The scattered fields E(r), H(r) satisfy the radiation

condition, due to Sommerfeld [27]:

lim r × (Vx [wEl =)E)]) + iklr[ E(r)(r)] = 0 (17)

uniformly over all directions.

For a general consideration of the electromagnetic scat-

tering problem we also refer to [27] and [43].

The total electric field admits the following integral

representation [I]

E 1 (r') = E TM (r) -
4_ S1

V2

2
- I) k I E2(r').F(r,r')

+ (i - _1) [VxE2(r')IV r, xF(r,r') ] dU(E')
_2

(18)

where the index r' means differentiation with respect to the

variable r. It also has been proved [28] that the normalized

spherical scattering amplitude is given by the relation

4K E1
v 2

A

- I) E2 (Z') e-ikl r'r' dU (r') • (I-r_r)
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2 I" _ ^ ' "-iklr-r ' I r+ k I j (i - )V×X2(r')e dU(r )- x
_2

V2

(19)

where the normalized scattering amplitude is defined by the

relation

Z(r) = g(r,£) h(klr) + O( ) (20)

where h(klr) is the zeroth order spherical Hankel function of

the first kind

eikl r

h(klr) - iklr (21)

In radar applications, the bistatic radar cross section

Gb± and the back-scattering cross-section _b are often used.

They are related to normalized scattering amplitude through

the relations

4K ^ 2
_bl = _ Ig(r,_)l (22)

4_ ^ 2

a_,= _-- Ig(-_:,_)l (23)

The back-scattering cross section G b is also called the radar

cross section. We define as scattering cross-section the ra-

tio of the time average rate (over a period) at which energy

is scattered by the body, to the corresponding time average
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rate at which the energy of the incident wave crosses a unit

area normal to the direction of propagation. The scattering

cross-section is related to the normalized scattering ampli-

tude via the relation

i f ^(_b = _ Ig(-k,_) 12 d(Z)(r) (24)

I=I-i

II.3. THE PROBLEM IN LOW-FREQUENCIES

It is possibile to work in low-frequencies when k_-0

(i.e., 2_/k=0), where k is the wavenumber, I is the wave-

length and _ is the "characteristic dimension" of the scat-

terer, that is the radius of the smallest sphere that con-

tains the scatterer. In such a case we can use the potential

theory and approximate the problem by a sequence of potential

problems. The potential theory approximation is also called

long wavelength approximation or low-frequency approximation.

The solutions of the vector Helmholtz equation considered as

functions of the wavenumber are analytic in the neighborhood

of zero. Thus, we can expand them in a convergent power se-

ries, which we call low-frequency expansion.

For the electric fields Zi(=) for i=I,2 we have the ex-

pansions
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Ei(=) = _ (ikl) n (i)n! _ (=)
n=0

(25)

Inserting this expansion into equation (14) and equating

equal powers of k, the following sequence of partial differ-

ential equations is obtained

VxV×#(i) . (i)n (z) + n(n-l)mi @n_2(=) = 0

V.# (i) (z) = 0
n for n=0,1,2,... (26)

where

_ii£i

for i=l

for i=2 (27)

The boundary conditions could be transformed into the bound-

ary conditions

A A

nx# (I) (Z') = nx# (2) (=')
n n r'eS (28a)

$% A

mx[Vx_ (i) _I x[Vx#(1) (=,)]n (=')] -- -- n n
_2

='eS (28b)
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_2 ^ (2)
n._n^ (1) (r.) = __ n._ n (r') r'_S (28c)

The incident wave can also be expanded into a convergent

power series of kl as follows:

zin(E) ---- g_ (ikl)n ,,n! (k'=) n
n-O

(29)

The fundamental dyadic solution F(r,r') has the expansion

F(r,r') = b_ (ik$)n -n! Yn(r'r')
n-0

(30)

where

m_

7n(E,E') -- --
Ir-=' In-I

n+2 [ (n+l) I- (n-l)

(=-=') ® (=-z')

Ir-=' 12 ] (31)

and the dyadic Vr,xF(z,r') has the expansion

- _ (ikl) nVr'xF(r'r') = n! gn (r' E')

n-0

(32)

where

gn(r,r') = (n-l) Ir-r' In-3(r,r')xI (33)
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Substituting (25), (29), (30), and (32) into (18) and equat-

ing equal powers of kl the following integral relations among

the coefficients _(I) (I)0 (=)'''''_ n (=) are obtained

A A

_(i) (r) = b-(k.r) n
n

n

+_ ;
4_ V2 El

(2) ~

- I)p(p-l) #p-2 7n-P (r'r')

- ]- il - _l)Vx_(2) (r') • 7n_p(r,r') dU(r') (34)
B2 P

In order to derive the low frequency expansion for the

A

scattering amplitude g(z,k) we need the expansion

eiklr.r' (-l)n (ikl)n ^
= nI (r'=') n (35)

n-0

Substituting into equation (19) we obtain

g(r,k) 1 _ (ikl) n+3^ = - -- -- - I)
4_ n, (n) (E 2

n=O P E1

. (2) ^Cn-p (-I)P (=.=')P dU(r').(Z'-_®_')

V2
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4E _2 n=0 p-0

S V " (2)
Xq)n_ p (r')

v2

#% N /%

(-I)P (=.=')P dU(r').Xx= (36)

In particular the leading term approximation as kl-+0 is

_(;,_>= _i- (_._3{ i"(_
4K E1

V2

- 1 (r')dU(r') .Ixr

v2 _2

+ O(k_) (37)

The leading term approximation for the scattering cross-sec-

tion is given by

4

6_ El
V2

_12 0 (r')dU(r') I } + 0

V2

(38)

In low-frequency regions the magnetic.field assumes the se-

ries expansions:

56



Hi(=) = _ (ik$) n (i)n! _ (r) rEV i i=1,2 (39)
n-O

Following the same procedure as for the electric field

we can arrive at a similar sequence of potential problems.

We also mention the relation between the coefficients of the

low-frequency series expansions for the electric and the mag-

netic fields given by equations (25) and (39), respectively

V×(_ (i) (r) (m i _i) 1/2 _ (i)= n Yn-i (r)
Ei

rEV i i=l, 2 (40)

In Rayleigh scattering the radiation zone is determined

from the relation

d 2
S = -- (41)

where d is the characteristic diameter and _ is the wave-

length. So, we can assume a single scattering process if ev-

ery scatterer lies in the radiation zone of any other scat-

terer, that is at low-frequencies a distance equal to a cou-

ple of diameters away from the scatterer justifies the appli-

cability of our method.
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II.4. LOW-FREQUENCY SCATTERING BY AN ELLIPSOIDAL DIELECTRIC

Let us assume that the triaxial ellipsoid

2

3 x i

i-i a i

with 0<a3<a2<al<_ (42)

is the dielectric scatterer. In order to reflect the geomet-

rical peculiarities of the scatterer we introduce the ellip-

soidal harmonic functions.

II.4.1. Ellipsoidal harmonic functions

The ellipsoidal harmonic functions as it is well known,

form a complete system of eigenfunctions. In what follows,

we will give certain definitions about ellipsoidal harmonics.

For details about the ellipsoidal harmonics we refer the

reader to Hobson [19]. For details about the solution of the

Laplace equation we refer to Morse and Feshbach [32] and for

tabulated information of all the coordinate systems to the

Moore and Spencer handbook [31].

The ellipsoidal coordinates (p,_,v) are related to the

Cartesian coordinates (Xl,X2,X 3) by

p_v
x I - h2h3 (43a)
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2 2 2

x 2 = hlh3 (43b)

x 3 = hlh2 (43c)

where

2 2 2
h I = a 2 - a 3 (44a)

2 2 2
h 2 = a I - a 3 (44b)

2 2 2
h 3 = a I - a 2 (44c)

and

(44d)

Separation of variables for the Laplace equation in ellip-

soidal coordinates produces the interior ellipsoidal harmon-

ics

m m m
En(P,g,V) = En(P) Enmlg) EnlV) (45)

and the exterior ellipsoidal harmonics
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m m m

Fn(P,_,V) = Fn(p) Em(_) En(V) (46)

m

where E n are the Lam_ functions of the first kind and

m m m

Fn(Q) = (2n+l) En(Q) In( Q ) (47)

with

du

P [Enm(U)]2 u__-h2 z u_--h23

(48)

are the Lam_ functions of the second kind. The index n spec-

ifies the degree of the corresponding ellipsoidal harmonic

and takes the value of n = 0,1,2,3,... while m represents the

number of independent harmonic functions of degree n and runs

through the values m _ 1,2,...,2n+I. In the present work we

use the interior ellipsoidal harmonics of degree 0,1 and for

the sake of completeness we give their exact form, both in

ellipsoidal as well as in Cartesian representation:

1
E 0 (p,_,V) = 1 (49)

1
E 1 (Q,_,V) = p_V = Xlh2h 3 (50a)
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E 1 (Q,_,V) = p -h 3 = X2hlh3

E 1 (Q,_,V) = p2-h 2 = X3hlh2

(50b)

(50c)

The exterior ellipsoidal harmonics of degree 0,i are given

from equation (46) when equations (49)-(50) are used. The

Lam_ functions of degree 0, I that appear in the expression
m

(48) for the elliptic integrals In( p ) are

1
E 0 (p) = 1

m 22E 1 (P) = p2-UI+(Z m for m=l, 2,3 (51)

The set

n=0,1,2,... m=l,2, ...,2n+l}

forms a complete orthogonal set of surface harmonics on the

surface of the ellipsoid.

II.4.2. The elliptic integrals

The four elliptic integrals I1 m0(al), Ii(a I) for m=I,2,3

given by equation (48) for p=a I are related by the formula
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3 1 (52)

Z II(al) = ala2a3
i-I

3
2 m 1

Z an Ii(al) = I0 (al) (53)

iml

For other useful formulas related to elliptic integrals we

refer to [17]. In order to express the elliptic integral

1
I0(al) to its canonical form we apply some transformations and

conclude in notation of elliptic integrals of the first kind

that

1
I 0 (al) = _

sin# 0

I
al-a 3 0

dt

_l-t2sin2a0

1

2 2
al-a 3

F (#0,a0)
(54)

where

2 2

al-a 3

_0 = sin-1 --2

el

(55a)
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' 2 2

al-a

a 0 = sin-I _ / --_-_

a l-a 3

(55b)

1
For Ii(al) , for example, we take in standard notation of el-

liptic integrals of the second kind the relations

1 1 1

I0(al) = 3/ 2 2 _in2a0

al-a 3

[E ($0, ao) -F ($0, ao) ] (56)

2 3
From equations (52-56) we can evaluate 11 (a I) and 11 (aI) .

II.4.3. The zeroth order approximation for the electric

field

The zeroth order approximation for the electric field is

the solution of the boundary value problem

VxVx_(io )(=) = 0 for i--l, 2 (57a)

V.$(i) (=) = 0
0 for i=l, 2 (57b)

,-,x$ (=') = nx¢ (=,) ='eS (57c)
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/%

.x[Vx$ (1)(r')] _i ^ (I)= -- n×[V×$ _='
0 _2 0 )]

r'ES (57d)

n-_ (r') = -- n-# (r') r'_S (57e)

(57f)

If we use the well-known representation for the electrostatic

problem and that a particular solution for the exterior field

A

is equal to b, we have

_(I)0 (r_ b + VU (I)= 0 (=) (58)

#(2) (=) _ V u(2)(=) (59)

where the scalar potentials for the exterior and the interior

fields are given in terms of second and first kind ellip-

soidal harmonics as follows:

3

U(1) (=) (I) i0 = a00 I0(P) +
m-1

(i) m
a01 F 1 (@,_,v) (60a)

3

U(2) . (2)m m0 (r) = _ D01 E 1 (p,_,V) (60b)
m-1
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For the evaluation of V FI(p,_,v) we will use the general form

m m 1
V F 1 (p,_,V) = (2n+l) V E 1 (p,_v) I 0 (p)

m

E n (p,p.,v)
A

- (2n+l) -_- (61)

hp [Enm(p) ] 2 p2_h2

Sot

(1)m
3 a01

#( ) (r) = b + 3hlh2h3 _ hm II (p) xm
m-i

(1)m
^ 3 a01

(I)i+P [a00 3
m

m-Z E I (p)_ p2_jj.2 ._ p2_v2

m

E_(_)E I(v) ] (62)

• (2)m
3 D01

_( ) (r) = hlh2h 3 _ hm Xm (63)
m-I

°

Applying the boundary conditions on p = a I (the surface

of the ellipsoid) and by the orthogonality of the surface el-

lipsoidal harmonics we obtain a system from which we can
(I)I (i)m

evaluate the unknown coefficients a00 and a01 for i=I,2.

So, the zeroth order coefficients for the electric field are:
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3

*(0_ (_ __ -Z
m-1

ala2a3 ( _2---I)

bmhm £I

[3hlh2h3ala2a3 (E2 _ I) Ii(al)+l

£I

vd'(p,_,_l] (64)

3 bmhm

hlh2h3
m-I ala2a3 (E2

m

1 ) I1 (aI) +i

VE_(p,_,,V)] (65)

II.4.4. The zeroth order approximation for the magnetic

field

The zeroth order approximation for the magnetic field is

the solution of a boundary value problem similar to that de-

scribed by equation (57). This is due to the invariance of

the boundary conditions for the dielectric under the substi-

tution _-)_. So, the zeroth order coefficients for the mag-

netic field are:

m-i hlh2h3
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ala2a3 (_2 _ I)
_z

ala2a3 (__22_ I) Ii(al)+l
_z

V F 1 (p,_,V) ] (66)

3

=
m=l

[ (_,,.&_,_"4_
hlh2h 3

m ]1 V E_ (p,l_,V)

ala2a3 ( 82 m-- - i) Ii(al)+l
£i

(67)

II.4.5. The leading term approximation for the normalized

scattering amplitude

In order to evaluate the leading term approximation for

the normalized scattering amplitude, given by Equation (37)

we have to evaluate the integrals which appear in that equa-

tion. First, we exploit the relation between the electric

and the magnetic low-frequency coefficients given by Equation

(40). We have

Vx$(2) (:) = _2_/__ (2)
I _V (=)

(68)

From the zeroth order approximation for the electric and

magnetic fields we obtain
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4_ 3 ^

; _(2)(r')dU(r') = T ala2a3 _ bmXm

V2 m-I

1

ala2a3 ( 82 - i) Ii(al)+l
£i

(69)

3

Vx# ( ) (r')dU(r') = T ala2a3 -- (kxb).x m

v2 _i m=l

ala2a3 (___2 I) Ii(al)+l

(7O)

The normalized scattering amplitude is given by the re-

lation

3

" asa2a3 " [ (_II
m-Z

b m

ala2a3 - I) I l(a I)+I
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+
_2 ^--)

ala2a3 (_/2 _ I) II(al)+l

Ix= + O(k ) (71)

II.4.6.
The leading term approximation for the scattering

cross-section

For the scattering cross-section the following can be

obtained

(IS =
8E(k I) 4

27 { (E2 2I) 222
E1 - ala2a3

2
3 bm

y.
m-1

[ala2a 3 ( E2 -i) Ii(al)+l] 2
el

+
- ala2a 3 _

m-1

[(ix&).1.]2

I

[ala2a 3 (_2 -I) I?(al)+l] 2

+ O (k6) (72)
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II.4o7. The back-scattering cross-section

Substituting in Equation (23) we conclude that the lead-

ing term approximation for the radar cross-section is given

by the relation

8_(k%) 4 2 2 2 3 ^
_b - 9 ala2a3 _ I Am - km A'kT + "xk I 2 + O(k 6)

m-I

(73)

where

A = (AI,A2,A3) and B = (BI,B2,B 3) (74)

Am = ( E2 bm--- I)
E1 m

ala2a3 ( 82-- - i) I l(a I)+I
El

(75)

_ ^ 1

l \ m
ala2a3 I___2 _ lJ Il(al)+l

(76)

Two cases which are of special interest are examined in

the sequel. The first is the radar scattering cross-section

with vertical polarization, that means

A A

b.x 3 = 0 (77)
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and the second case of the horizontal polarization is

A

= 0 (78)

In these cases the leading term of the backscattering cross-

section is also given by Equation (73), but for the vertical

polarization we have

A 3 = 0 (79)

and for the horizontal polarization we conclude from Equation

(78) that

B 3 = 0 (80)

II.5. PARTICLE SIZE DISTRIBUTION

Up to this point we have examined the scattering by a

single ellipsoid. However, our main interest lies in how a

wave interacts with many randomly distributed particles. The

particles we deal with in practice are not usually all one

size but normally their sizes are distributed over a certain

range. It is, therefore, important to take into account the

size distribution of the particles.

Let n(D)dD be the number of particles per unit volume

having a dimension (such as diameter) between D and D+dD.

The total number of particles per unit volume is then

71



p = _ n(d)ctD

0

(81)

which is called number density (or simply density).

We can also define by w(D) a probability density func-

tion for finding the particle size between D and D+dD

n(D) (82)
w(D) =

P

where

] w(d) dI) -'-1

0

(83)

Now we can define the average cross-section and the av-

erage radar cross-section as the following

E{(I} = ] (I(D)w(d)dD

0

(84)

and

E{(Ib} = f (Ib(D)w(d)dD
0

(85)
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where E{} is the expectation operator and _, _b are given by

Equations (72) and (73), respectively. These quantities can

be expressed in terms of the semi-axis of the ellipsoid al,

a2, and a 3.

The size distribution n(D) in Equation (81) can be rep-

resented by an exponential distribution or by a three parame-

ter gamma distribution.

In order to take into account the particle size distri-

bution, using equations (84) and (85), we need to establish a

relation between the semi-axes of the ellipsoid (in terms of

which are expressed the scattering cross-section and the

radar cross-section) and the radius of an equivalent volume

spherical raindrop, because in terms of this parameter we

have the information on the particle size distribution.

The principal curvatures of a point on the surface of an

ellipsoid p=a I are given by the relations

ala_a _ 1

kl = _ _ 22 (86)
2 2 2 a I-_

ala_a } 1

k2 = _ _ 22 (87)
2 2 2 2 al-V

. The sum of the principal curvatures at the points on the

equator of the ellipsoid are given by the form
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2 ,- _2 2 2 2 2..,2
kz + k 2 = ala2[al(al + a 3) + (a 2 - al)XlJ

{a32[a 2 + (a 2 -a2)x2] -3/2} (88)

For an oblate spheroid a I = a 2 and

kl + k2 = al + 1__.
2

a 3 a 2

(89)

which is the same result as in the Appendix of [18].

= 0 i.e. at the point (0,a2,0) we have

For x I

kl + k2 = a2 (--'{12 + --12)

a 3 a l

(9O)

and for x l = a I (the same as for x I = - al), that is at the

point (al,0,0), we obtain

kl + k 2 = al (_" + -_)

a 3 a 2

(91)

It holds that

1
a 2 (-'_" + ---_.)

a 3 a I a 3 a 2

(91)

If we assume that
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a2 = k (92)
al

where parameter kE (0,1), we can study the influence of defor-

mation of the spheroid along the x2-axis.

We will follow the simplified analysis of the raindrop

shape problem due to Green [18]. From the mechanical equi-

librium condition on the surface of the drop we have

R1 + = Pi - Pe (93)

where RI, R 2 are the principal radii of curvature, and Pi and

Pe are internal and external pressures, respectively.

By ignoring the aerodynamic and hydrodynamic pressures

at the equator of the spheroid Green [18] established the

following relation

a(i___ l!_) -i 'b
R1 + R2 = 2aa 0 + pg = (;(ab-2 + a-l)

(94)

where a 0 is the radius of the sphere with equal volume as the

oblate spheroid with axes al=a2=a, and b=a 3. The right hand

side of Equation (94) is constant and independent of the

point on the equator of the spheroid due to the fact that the

equator is a circle. At the points of the equator of the el-

lipsoid the sum
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which is obvious from Equation (91) and depends on the spe-

cific point. Therefore, in order to establish a relation be-

tween the semi-axes al,a2,a 3 and the radius of the equivolume

sphere based on the physics of the problem, we first choose

the "mean-value" of the sum of curvatures

[ 2 2 2 3 a3) ] (/ala2a3)ala2(a I + a2 ) + a3(a I + ^ 2 2 2 -I (96)

Now we can establish the equality of the volumes of the el-

lipsoid and the sphere, through the relation

3
ala2a 3 = a 0 (97)

So, with the same arguments as Green we conclude that

a0 [ 2 2 3 3 2 2 2 -iala2(a I + a 2) + a_(a I + a 2) ] )(2ala2a 3 = 2+B a3 (98)
a0

where

2 1
B = pg'a0a- (99)
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is the Bond number.

If we introduce a new variable

# a_/& 2
-- ; - ( 00,

a0

we have that

a I = a0_ (I + _) (i01)

a 2 = ka0V (I + _) (102)

a 3 = k-la0_ (I + _) (103)

Substituting in Equation (98) Equations (8), (15), (18),

(96), (I00), and (103) we obtain

B .._/(1+ 8) [_,3(1+ _,) 1 + _3
2 (1 + B) + 2k ] - 2;L(1 + 8)

(104)

If we take that

B 82
"V(1 + S) = 1 + _----{-+ 0(83) (lO5)

we conclude that Equation (104) can be represented to 0(_ 2) by
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3514(1 + 1) - (I + 13 )
B = _3

161

+8
714(I + i) + (i + 13 ) - 812

14(1 + 1) + (I + 13 ) - 412
+ (106)

21

For 1=I (the case of the spheroid) the same relation as

Green's is obtained. From Equation (104) we can evaluate

in terms of the Bond number and from Equations (i01), (102),

and (103) we have al,a2,a3 in terms of the radius of the

sphere with equal volume. Thus, from Equations (84) and (85)

we can evaluate the average cross-section and the average

backscattering cross-section, respectively.

II.6. RANDOMLY ORIENTED ELLIPSOIDAL PARTICLES

In order to take into account the orientation of the

scattering particles we will take the average depending on

the orientation. Thus, we choose a reference rectangular

Cartesian coordinate system (yl,Y2,Y3) and introduce as un-

known the Euler angles of the transformation (by rotation)

from the reference system to one coinciding with the princi-

pal axes of the ellipsoid. For the unit vectors of the

(Yl,Y2,Y3) system in terms of x i (the unit vectors of the sys-
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tem which coincides with the principal axes of the ellipsoid)

we have

A

y = x.D for i = 1,2,3 (107)

where the elements of the matrix D are functions of the Euler

angles and are given by the relations

dll = sin81 sin82 + cos81 cos82 cos83 (108a)

d12 = cos81 sin82 - sin81 cos82 cos83 (108b)

d13 = cos82 sin83 (i08c)

d21 - sin81 cose 2 + cos81 sin82 cos83 (108d)

d22 = cos81 cos82 + sin81 sin82 cos83 (108e)

d23 = _ sin82 sin83 (108f)

d31 = - cose I sine 3 (108g)

d32 = sin81 sin83 (108h)

d33 = cos83 (I08i)

where 0<8i<K/2 for i=I,2,3.
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We mentioned before that the angle 83 is the angle be-

tween the Y3 and the x 3 axes. The XlX 2 plane intersects the

YlY2 plane in a line, which is called the nodal line. The ql

angle is the angle between the nodal line and the Yl-axis and

q2 is the angle between the xl-axis and the nodal line.

The relations between the components of the vectors rel-

ative to the reference frame and the frame coinciding with

the principal axis of the ellipsoid are

!

km = _ djmk j for m = 1,2,3 (109)
mP,,1

!

b m = _ djmb j for m = 1,2,3 (Ii0)
m-,1

where

3 3

k = = kmY m (iii)
m-l m-1

3 3

A _ fAfbmX m = bmY m (112)
m- 1 m- 1

So, in order to take the scattering cross-section and the

radar cross-section over all the orientations we obtain
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_12 _12 _12

<O'> = _ _ _ (;(81,82,831f(81,82,83)dSld82d83

0 0 0

(113)

where f(81,e2,83) is the probability density function for the

angles (81,82,83) and O(81,82,83 ) is the scattering cross-sec-

tion given by Equation (72) after the substitution of the
! !

components kin, b m in terms of k m, b m.

Similarly for the backscattering cross-section we have

the average over orientation

=12 =12 =12

<(_b > = S f S (Ib(81,82,83) f(el,e2,e3)delde2d83

0 0 0

(114)

If we want to obtain the average over the size and ori-

entation we must substitute in Equations (113) and (114) the

terms _ and _b by the averages given by Equations (84) and

(85), respectively.

II.7. NUMERICAL RESULTS - DISCUSSION

The solutions presented in the above sections can be

tested numerically against the known solutions for their spe-

cial cases. For example, if al=a2=a3 we can use the solution

of Rayleigh [8]. Figure 2 in the Appendix A presents both

solution and the differences are indistinguishable. Another
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spectial case of interest in radar-rainfall estimation is

that of an oblate spheroid. Plots in Appendix A present the

comparison with the Gans' solution for both single scatterer

and volume scattering cases. Computer programs written in

FORTRAN are included in Appendix B.
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II .8 . FURTHER RESEARCH

In the present work we have examined the scattering of

raindrops in the Rayleigh region. We have assumed the shape

of the large drops as an ellipsoidal one and we have calcu-

lated the Rayleigh approximation up to the first order. In

order to improve the accuracy of our results we have to take

into account the second order approximation of the Rayleigh

series as well. Further, for the particle size distribution,

when we calculate the sum of the curvature, at any point of

the ellipsoid, we have to assume a more "realistic" average

value of the sum of the curvatures.

In order to derive numerical results taking into account

the random orientation of the raindrops as well, we have to

think about the probability density function, for the Euler

angles. Beard and Jameson's results about the canting of the

raindrops give us enough information for the probability den-

sity function for one of the three Euler angles [9].

If we want to have more accuracy for the scattering

problem of the large raindrops, we have to assume that their

shape is better approximated by a spherical cap. The only

known results for spherical caps are due to Thomas [40] for

the acoustical case and to Collins [14,15] for the electro-

magnetic case. These last results have been obtained assum-

ing different boundary conditions from that which we consider

on the raindrop surface. From a mathematical point of view
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such a study would be rather difficult, but the results would

be applicable for the entire range of frequencies.

The consideration of the scattering of the raindrops as

a multi-scattering problem is also another possibility. Such

an investigation can be based on Twersky's work [41]. We

also can examine the possibility of exploiting the results of

Peterson and Str6m [33] who have generalized the T-matrix ap-

proach of Waterman for the case of multiple scattering by N

arbitrarily shaped configurations.
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APPEND IX B - PROGRAMS
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C _

C _

C*

C*

C*

C*

C*

C

C

C

C

C

C

C

C

C

C

C _

C _

C _

C*

C _

C _

C _

C _

subroutine kuli(am, rk,bm, rmag_sus,epsl,eps2,rlambda,sigmab)

*** calculates the radar cross-section for an

scatterer (Kiriaki-Krajewski method)

special functions

subroutine

ellipsoidal

(uses IMSL

Parameters:

a/_

rk

bm

rmag_sus -

epsl

eps2
rlambda -

sigmab -

vector of ell_psoid axes (m)
unit vector of incident wave direction

unit vector of polarization

magnetic suseptibility of the scatterer
dialectric constant for the scatterer

dielectric constant for the medium

wavelength (m)

backscattering crossection (output, m**2)

implicit real*8(A-H,O-Z)

dimension A(3),am(3),B(3),rk(3),bm(3),RIl(3),h(3)

pi=DCONST('PI')

constant=4.*pi/9.

wave_num=2.0*pi/rlambda

x=am(1) *am(l)

y=am(2) *am(2)
z=am(3) *am(3)

a123=am(1) *am(2) *am(3)

h(1) =sqrt (y-z)

h (2) =sqrt (x-z)

h (3) =sqrt (x-y)

ss s=DMACH (1 )

bbb=DMACH (2 )

RII (i) =DELRD (y, z,x) /3.0

RII (2) =DELRD (x, z,y)/3.0

RII (3) =DELRD (x,y, z)/3.0

sum=RIl (I) ÷RII (2) ÷RII (3)

zp=l. 0/(am(l) *am(2) *am(3) )

coeffl=eps2"/epsl -I.

coeff2=4.0*pi*rmag_sus
coeff3=a123*coeff2



C _

C _

C*

C _

C •

C _

do m=l,3

ar=bm(m)*coeffl

A(m)=ar/(a123*coeffl*RIl(m)÷l.)
enddo

B(!) =coeff2* (rk (2)*bm(3 )-rk (3) *bm(2) )

* / (coeff3*RIl (i) +i. )

B (2) =coeff2* (rk (3) *bm(1) -rk (i) *bm(3 ))

* / (coeff3*RIl (2) +I. )

B (3) =coeff2* (rk (i) *bm(2) -rk (2) *bm(1) )

* / (coeff3*RI1 (3) +I. )

sum=0.0

do i=i,3

sum=sum÷A(i)*rk(i)
enddo

sl= (A(1) -rk (i) *sa+rk (3) *B (2) -rk (2) *B (3)) **2

s2= (A(2) -rk (2) *sa+rk (i) *B (3) -rk (3) *B (i)) **2

s3= (A(3) -rk (3) *sa-rk (2) *B(1) -rk (i) *B(2) )**2

zp=x*y*z

sigmab=wave_num**4*constant*zp*(s!÷s2+s3)

return

end



C _

C _

C _

C*

C"

C*

C _

C _

C*

subroutine rayleigh(crindx, alfa,sigma)

COMPLEX crindx

*** SUBROUTINE COMPUTES THE NORMALIZED CROSS SECTION FOR

A SPHERE IN RALEIGH SCATTERING REGIME

complex zp,K

zp=crindx* crindx

K= (zp-l. 0) / (zp+2.0)

RK2=ABS (K) *ABS (K)

sigma=4.0*alfa**4*RK2

return

end



C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

i00

ii0

subroutine bhmie(crindx, alfa,qext,qsca,qback)

complex crindx ._

*** Subroutine calculates Mie scattering by water spheres.

It is based on the program included in Bohren & Hoffman (1983

Parameters:

crindx - complex refractive index (relative)

of the scatterer

alfa - the size parameter (p*pi*radius/wavelength)

qext - total extinction efficiency

qsca - total scatering efficiency

qback - normalized backscattering crossection

dimension amu(100),theta(100),pai(100),tau(100),pi0(100),pil(100)

complex d(3000),y,xi,xi0,xil,an,bn,sl(200),s2(200)

double precision psi0,psil,psi,dn,dx

pi=CONST('PI')
dx=alfa

y=alfa*crindx

*** series terminated after nstop terms

nang=ll

xstop=alfa+4.*alfa**0.3333+2.0

nstop=xstop

ymod=cabs(y)

nmx=amaxl(xstop,ymod)+15

dang=pi/2./float(nang-l)

do i00 j=l,nang

theta(j)=(float(j)-l.)*dang

amu(j)=cos(theta(j))
continue

_** logarithmic derivative d(j) calculated by downward

recurrence beginning at j=nmx

d(nmx) =crop!x(0.0,0.0)
nn=nmx-i

do ii0 n=l,nn

rn=n/nx-n÷l

d (nmx-n) = (rn/y) - (i. / (d (nmx-n+l) +m/y) )
continue



c

c

c
c
c
c

c

c

120

130

135

do 120 j=l,nang

pi0(j)=0.0

pil(j)=l.0
continue

nn=2*nang-1

do 130 j=l,nn

sl(j)=cmplx(0.0,0.0)

s2(j)=cmplx(0.0,0.0)
continue

*** Riccati-Bessel functions with real argument x

calculated by upward recurrence

psi0=dcos(dx)

psil=dsin(dx)
chi0=-sin(alfa)

chil=cos(alfa)

apsi0=psi0

apsil=psil

xi0=cmplx(apsi0,-chi0)

xil=cmplx(apsil,-chil)

qsca=0.0
n=l

continue

dn=n

rn=n

fn= (2.*rn+l.) / (rn* (rn+l.) )

psi= (2. *dn-i. )*psil/dx-psi0

apsi=psi

chi= (2. *rn-I. )*chil/alfa-chi0

xi=cmplx (aDs i, -chi )

an= (d (n)/crindx+rn/alfa) *apsi-apsil

an=an/((d(n)/crindx+rn/alfa) *xi-xil)

bn= (crindx*d (n) +rn/alfa) *apsi-apsil

bn=bn/( (crindx*d (n)÷rn/alfa) *xi-xil)

qsca=qsca+ (2. *rn+!. )* (cabs (an) *cabs (an) +cabs (bn) *cabs (bn))



140
c

c

150

c

c

do 140 j=l,nang

jj =2*nang-j

pai (j) =pil (3)

tau (j) =rn*amu (j) *pai (j) - (rn+.l.) *piO (j)

p= (-i.) ** (n-l)

sl (j) =sl (j) +fn* (an*pai (j) +bn*tau (j) )

t= (-i.) *_n

s2 (j) =s2 (j) +fn* (an*tau (j) +bn*pai (j) )

if(j.eq.jj) go to 140

sl (jj) =sl (jj) +fn* (an*pai (j) *p+bn*tau (j) *t)

s2(jj)=s2(jj)+fn*(an*tau(j)*t+bn*pai(j)*p)
continue

psiO=psil

psil=psi

apsil=psil
chi 0=chi i

chil=chi

xil =cmplx (apsil, -chil )
n=n+l

rn=n

do 150 j=l,nang

pil (j) = ( (2. *rn-i. )/ (rn-i.) )*ainu (j) *pai (j)

pil (j) =pil (j) -rn*piO (j) / (rn-i.)

piO (j) =pai (j)
continue

if (n-l-nstop.lt. O) then

go to 135
else

qsca= (2. / (alfa*alfa)) *qsca

qext= (4. / (alfa*alfa)) *real (sl (i))

qback= (4. / (alfa*alfa)) *cabs (sl (2*nang-l)) *cabs (sl (2*nang-l))
endif

return

end
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