4 research outputs found

    Modeling and measurement of fault-tolerant multiprocessors

    Get PDF
    The workload effects on computer performance are addressed first for a highly reliable unibus multiprocessor used in real-time control. As an approach to studing these effects, a modified Stochastic Petri Net (SPN) is used to describe the synchronous operation of the multiprocessor system. From this model the vital components affecting performance can be determined. However, because of the complexity in solving the modified SPN, a simpler model, i.e., a closed priority queuing network, is constructed that represents the same critical aspects. The use of this model for a specific application requires the partitioning of the workload into job classes. It is shown that the steady state solution of the queuing model directly produces useful results. The use of this model in evaluating an existing system, the Fault Tolerant Multiprocessor (FTMP) at the NASA AIRLAB, is outlined with some experimental results. Also addressed is the technique of measuring fault latency, an important microscopic system parameter. Most related works have assumed no or a negligible fault latency and then performed approximate analyses. To eliminate this deficiency, a new methodology for indirectly measuring fault latency is presented

    FTMP data acquisition environment

    Get PDF
    The Fault-Tolerant Multi-Processing (FTMP) test-bed data acquisition environment is described. The performance of two data acquisition devices available in the test environment are estimated and compared. These estimated data rates are used as measures of the devices' capabilities. A new data acquisition device was developed and added to the FTMP environment. This path increases the data rate available by approximately a factor of 8, to 379 KW/S, while simplifying the experiment development process

    A preliminary transient-fault experiment on the SIFT computer system

    Get PDF
    This paper presents the results of a preliminary experiment to study the effectiveness of a fault-tolerant system's ability to handle transient faults. The primary goal of the experiment was to develop the techniques to measure the parameters needed for a reliability analysis of the SIFT computer system which includes th effects of transient faults. A key aspect of such an analysis is the determination of the effectiveness of the operating system's ability to discriminate between transient and permanent faults. A detailed description of the preliminary transient fault experiment along with the results from 297 transient fault injections are given. Although not enough data was obtained to draw statistically significant conclusions, the foundation has been laid for a large-scale transient fault experiment

    Scientific and technical information output of the Langley Research Center for Calendar Year 1985

    Get PDF
    A compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1985 is presented. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents
    corecore