4 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 374)

    Get PDF
    This bibliography lists 227 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Apr. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Activities within the period from January 1, 1992 through June 30, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the integration and initial data flights of the MIR on board the NASA ER-2. Georgia Tech contributions during this period include completion of the MIR flight software and implementation of a 'quick-view' graphics program for ground based calibration and analysis of the MIR imagery. In the current configuration, the MIR has channels at 90, 150, 183 +/- 1,3,7, and 220 GHz. Provisions for three additional channels at 325 +/-1,3 and 9 GHZ have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. The combination of the millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide the necessary aircraft radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been accepted for publication (Gasiewski, 1992), and is included as Appendix A. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. Other Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design

    Conceptual design of a fleet of autonomous regolith throwing devices for radiation shielding of lunar habitats

    Get PDF
    The National Aeronautics and Space Administration (NASA) in conjunction with Universities Space Research Association (USRA) has requested that the feasibility of a fleet of regolith tossing devices designed to cover a lunar habitat for radiation protection be demonstrated. The regolith, or lunar soil, protects the lunar habitat and its inhabitants from radiation. Ideally, the device will operate autonomously in the lunar environment. To prove the feasibility of throwing regolith on the Moon, throwing solutions were compared to traditional, Earth-based methods for moving soil. Various throwing configurations were investigated. A linear throwing motion combined with a spring and motor energizing system proved a superior solution. Three different overall configurations for the lunar device are presented. A single configuration is chosen and critical parameters such as operating procedure, system volume, mass, and power are developed. The report is divided into seven main sections. First, the Introduction section gives background information, defines the project requirements and the design criteria, and presents the methodology used for the completion of this design. Next, the Preliminary Analysis section presents background information on characteristics of lunar habitats and the lunar environment. Then, the Alternate Designs section presents alternate solutions to each of the critical functions of the device. Fourth, a detailed analysis of throwing the regolith is done to demonstrate its feasibility. Then, the three overall design configurations are presented. Next, a configuration is selected and the conceptual design is expanded to include system performance characteristics, size, and mass. Finally, the Conclusions and Recommendations for Future Work section evaluates the design, outlines the next step to be taken in the design process, and suggests possible goals for future design work

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 384)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 372 through 383 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number
    corecore