8 research outputs found

    A summary of the 1983 Integrated Flywheel Technology Workshop

    Get PDF
    The use of flywheels to perform the functions of attitude control and/or energy storage on a variety of space missions was studied. Integrated Flywheel Technology was discussed. The four primary objectives are: (1) determine the potential of flywheels for energy storage system applications and for combined energy storage and attitude control concepts; (2) assess the state of the art (SOA) in integrated flywheel technology through a review of government sponsored programs; (3) identify those technology areas which are in critical need of development to meet projected space mission requirements; (4) scope a program for the coordinated development of the required technology

    Integrated Flywheel Technology, 1983

    Get PDF
    Topics of discussion included: technology assessment of the integrated flywheel systems, potential of system concepts, identification of critical areas needing development and, to scope and define an appropriate program for coordinated activity

    Description of a laboratory model Annular Momentum Control Device (AMCD)

    Get PDF
    The basic concept of the Annular Momentum Control Device (AMCD) is that of a rotating annular rim suspended by noncontacting magnetic bearings and driven by a noncontacting electromagnetic spin motor. The purpose of this paper is to highlight some of the design requirements for AMCD's in general and describe how these requirements were met in the implementation of laboratory test model AMCD. An AMCD background summary is presented

    Advanced Integrated Power and Attitude Control System (IPACS) study

    Get PDF
    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission

    An Assessment of Integrated Flywheel System Technology

    Get PDF
    The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented

    Technology for large space systems: A bibliography with indexes (supplement 11)

    Get PDF
    This bibliography contains 539 abstracts of reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1984 and December 31, 1984. Abstracts are arranged in the following categories: systems; analysis and design techniques; structural concepts; structural and thermal analysis; structural dynamics and control; electronics; advanced materials; assembly concepts; propulsion; and miscellaneous. Subject, personal author, corporate source, contract number, report number, and accession number indexes are listed

    Scientific and technical information output of the Langley Research Center

    Get PDF
    Scientific and technical information that the Langley Research Center produced during the calendar year 1983 is compiled. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents

    Study of flywheel energy storage for space stations

    Get PDF
    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted
    corecore